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1. Introduction. Many classical problems of combinatorial number the-
ory concern extremal sets A of positive integers that do not contain certain
patterns. A general definition was given in [6]: Let o be a nonempty family
of finite nonempty subsets of N. A set A of positive integers is called o-free
if no subset of A belongs to o. We call the system o-invariant if it is both
homogeneous, i.e., kS := {ks : s € S} € o for all k € N and § € o, and
translation-invariant, i.e., k+8 = {k+s:s € S} € o for all k € N and
Seo.

In many cases the forbidden patterns are the solutions S := {x1,...,zx}
C N to linear equations of the form ajx; + - - - 4+ apxi = b with fixed integer
coefficients aq, ..., ag,b. Invariance then means that a1 +--- 4+ a = b =0,
and in order to avoid trivialities, it is understood that x1, ...,z are distinct.
A typical example is the system o of sets {x,y, 2} C N such that z+y = 2z,
x # y. Here the o-free sets A of natural numbers are those that do not
contain arithmetic progressions of length 3.

In the following we only consider noninvariant homogeneous systems o
consisting of the solutions {z,y, 2z} C N to an equation of the form

(1.1) ar + by = cz

with given coefficients a,b,c € N, ged(a,b) = 1, a < b, and ¢ sufficiently
large. For short we say that o is defined by (1.1). Among various possible
density notions we choose as the most natural one in this setting the upper

maximal density bound
D(o) = limsup (M),
n

where f(o,n) = max{|A|: A C {1,...,n} o-free} denotes the largest possi-
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ble cardinality of a o-free subset of {1,...,n} (compare with Ruzsa [10], [11],
Chung and Goldwasser [4], and Chung, Erdds and Graham [2]).

THEOREM 1. Let the system o be defined by (1.1) with a = 1 and positive
integers b, ¢ satisfying ¢ > 2(a+b)% —ged(a+b,c). Then, with ¢ = (a +b)/c,
a =agq/c and = bq/c, we have

1—a?
B (1-¢)———= Jforb=1,
R
(1-9q) - for b> 1.

To a certain extent, the proof reveals the structure of maximal o-free
subsets of {1,...,n} for sufficiently large n. For all integers a, b, ¢ satisfying
1 <a<b, ged(a,b) = 1, and ¢ > (a + b)*>? the constructive part of the
proof of Theorem 1 yields
1-08+a

1-8 7
and we conjecture that this holds with equality, for ¢ sufficiently large.

For arithmetic reasons the lower bound for ¢ in Theorem 1 need not be
optimal. In fact, Baltz et al. [1] investigated the precise structure of o-free
sets for @ = b =1 and ¢ > 4, and determined the value of D (o) conjectured
by Chung and Goldwasser [3]. By applying our method to the cases ¢ = 4, 5,
which are not directly covered by Theorem 1, we obtain an alternative proof
of their density result.

(1.2) D(o) > (1—q)

THEOREM 2 (Baltz, Hegarty, Knape, Larsson and Schoen [1]). Let o be
defined by x +y = cz with integer ¢ > 4. Then

— c—2)(?=2)(®+2

The method of proof of Theorem 1 can also be used to determine the
upper asymptotic density bound

(1.3) d (o) =sup{d(A) : A C N o-free}

for infinite o-free sets of positive integers, where

d(A) = nmsqu AN {1,...,n}\>

n—oo

denotes the upper asymptotic density of the set A C N. Since every finite
subset of an infinite o-free set is again o-free, we have the general inequality

d(c) < D(o).

THEOREM 3. Let o be defined by (1.1) with positive integers a, b, ¢ satis-
fying a < b, ged(a,b) = 1, and ¢ > max{2(a+b)? —ged(a+b,c),a?(b+1)}.
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Then
- c? —cla+b)
(1.4) d(o) = Zalatd)

In particular, Theorem 3 covers also the case a > 1. It follows from (1.2)
and (1.4) that d(0) = (1—¢q)/(1 —a) < D(o), under the assumptions of
Theorem 3. Notice that the difference between d (o) and D(o) is very small.
For instance, in the case @ = b = 1 and ¢ = 6 we obtain d (o) = 12/17 =
0.70588 235 . .., while D(o) = 646/915 = 0.70601092. . ..

Again, the lower bound for ¢ given in Theorem 3 need not be optimal. In
fact, it was shown earlier (see [6] or [7]) that (1.4) holds for ¢ > 2ab(a + b),
but for @ > 1 the lower bound for ¢ given in Theorem 3 slightly improves the
previous results. Special cases of infinite sum-free, c-sum-free or difference-
free sets with a = b =1 and ¢ # 2, or a = —b = 1 were considered by Chung
and Goldwasser [3], by Schoen [12]|, and by Luczak and Schoen [9]. For
more than three variables see also Luczak and Schoen [8], and Deshouillers,

Freiman, S6s and Temkin [5].

2. Construction. Throughout this paper we write (s, ] for the inter-
section of the real interval (s,t| with N and similarly [s,t), (s,t), and [s, t].
We assume that a,b,c € N satisfy a < b and a + b < ¢, which gives
g=(a+b)/c<l.Ifz,y,z€S:=(¢gm,m| with some m > 1 then aS+bS is
bounded above by (a + b)m, whereas the elements of ¢S exceed cgm. Hence
aS + bS and ¢S are disjoint sets so that S is o-free. We notice that, in gen-
eral, S is also an extremal segment, since for m = ¢ and m’ = ¢ — 1 the
set {a+0,...,c} = [gm,m] = (gm’,m’ + 1] yields the solution z = y = ¢,
z=a+btoax+ by = cz.

The idea of constructing extremal o-free subsets A of [1,n] consists in
taking the union of sufficiently distant disjoint segments of the above type.
Suppose that for fixed & € N a sequence of numbers ny =n > ng > --- > ny
is chosen such that the k o-free segments

(2.1) Sj = (qnj,nj] (j: 1,...,]€)

are pairwise disjoint. In order to obtain a o-free union A = S; U --- U Sk, it
suffices to arrange the largest element of the set ¢(S; U--- U Sy) below the
smallest element of the set a(S1U---US;_1)+bA for each j = 2,..., k. This
yields

(2.2) ni=mn, cnj <agnj_i+ bgny (J=2,...,k).
The number of elements of A is
(2.3) [Al=(1—-q)(n1 +---+ng) +r with |r] <k,

which suggests that |A| is maximal if all inequalities (2.2) are equalities.
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With « := ag/c and (3 := bq/c this turns into
(24) ny =n, nj; = an;_1 + Bng (] :2,.‘.,]{).

From this system of linear recurrence relations we obtain the upper segment
bounds n; as functions of n = n; and k: By multiplying the recurrence
equations in (2.4) with ™/, summing over j = 2,...,J and then replacing
J by j we obtain
. 1—ai™t
nj=ao n+ ——pfn i=1,...,k).
j + 1—a ﬁ k (] ) ) )
In particular, for j = k it follows that
(1—a)arF !
n
1—(a+p)+ak 15

ne =

and therefore

1—(a+pB)+a" 3 ;|

2.5 P = =1,...,k).
( ) n] 1—(a—|—ﬂ)+ak_1ﬂa n (] 9 7)
Summation gives
B 1—(a+p) 1—aF kak=13

ny+--+ng = (1—(a+ﬁ)+ak1ﬁ 1~ a +1—(a+ﬂ)+ak*1ﬂ
or

14t

ny+---+ng= n,
1-«a

where we have abbreviated

1- kE—1)8— _
(2.6) te = (1 - (O‘a)(iﬁ) _'_)ak—loé) a1,
By inserting into (2. 3) we get

(2.7) |A| = (1 +tg)n+r with |r| <k

which proves part (a) of the follovvlng lemma (for a weaker version see [7]).

LEMMA 1. With positive integers a, b, c satisfying a < b, ged(a,b) = 1,
and ¢ > (a + b)3/? let the system o be defined by (1.1). Further let q =
(a+b)/c, « = aq/e, B = bq/c, and let the set A C [1,n] be given by A =
Sk U---U Sy with the segments S; determined by (2.1) and (2.5). Then we
have:

(a) The set A is o-free and has

Al = (1 +lg)n+r

elements, where |r| <k and tj is given by (2.6).
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(b) If a = b then the mazimal value of |A| is attained for k = 3, in which

case
1—a?
whereas for a < b it is attained for k = 2, in which case
1—
|A| = (l—q)ﬂrH—r and |r| < 2.
1-p
Proof. It remains to prove part (b). First we notice that (2.6) yields
t1 = —a <0,
b a(f—a) [=0 ifa=0,
T 18 >0 ifa<y,
a?(28 — a)
3= ——-——"<>0.
T 1-B(1+a)

Next we show that the sequence () is strictly decreasing for k > k* where
tp+ is its first positive term. From (2.6) we get for k > k*,

th _(k-—1)f—a 1-(a+f)+a*f 1

UIARES bl
k L1 kEB—a 1—(a+pB)+ak 18 a
L -Df-al-(atp)
k*0 — « «
(k* —1)b—a c® — (a+ b)?
k*b—a a(a +b)
For a = b and k* = 3 the first factor equals 1/2, for a < b and k* = 2 it equals
(b—a)/(2b — a). In both cases it follows from ¢ > (a + b)*/? that 9, > 1 for

k > k*. Finally, by inserting the value of ¢;« into (2.7) we obtain the asserted
cardinality of A in both cases for k* = 3 and for k* = 2, respectively. u

3. Optimality. In order to prove that the construction in Section 2 is
indeed optimal, we suppose that A C {1,...,n} is a given o-free set. We are
then going to show that the cardinality of this set A cannot be much larger
than in the construction above.

It follows from the construction in Section 2 that the segments S, whose
upper bounds behave like the contracting geometric sequence (na’~1), are
nonempty only for j < logn. For a given o-free set A C {1,...,n} with
smallest element s we adapt the above construction (notice that [gng] = s—1)
and define the segments T = (gnj, n;] by

(3.1) ni=n, n;j=oanj_1+bs/c (j=2,3,...).
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The explicit solution to this linear recurrence relation is given by
bs 1 —al~1

3.2 =al!
(3.2) nj =t — o

(j=1,2..).

From o < 1/4 and b < ¢(1 — a) we conclude that n; < s unless j < logn.
Let T} denote the last segment satisfying s < maxTj. Then k < logn and
by construction U := T U --- U1} is o-free.

The idea of the optimality proof for our construction in Section 2 consists
in defining an almost injective map ¢ : A — U, which means that we admit
< logn exceptions from strict injectivity. It suffices to show that there is
amap ¢ : AN (ng,n1] — T := Ty, which is injective apart from a number
n of exceptions depending at most on a,b,c. Then A := (AN [s,n2]) UT)
is o-free again, and |A| < [AN[s,n2]| + [T1] + 7. By repeating this process
with A N [s, ng] instead of A = AN [s,n1] and ng instead of n; we obtain
|A] < |AN[s,ng]| + |T2| + |T1| 4+ 2n. After k inductive steps we arrive at
|A| <|Tk|+ - -+ |T1| + kn. This means that the cardinality of A is at most
that of the o-free union of k disjoint segments T} for j = 1,...,k < logn,
apart from at most kn < logn exceptions. The assertion of Theorem 1 now
follows from Lemma 1.

Following this strategy with n; = n and ny = a(a + b)n/c? + bs/c we
have to construct a mapping

AN (a(a—l—b)n—l—bcs?n} o (Mn}

2
that is injective apart from 7 < 1 exceptions. We split the domain of ¢ into

three disjoint parts,
b
R— AN <Mn]

C

L= AR <a(a+b)2n—i-bcs)E]7
¢ c
M::Am@,w],
c c

and define three mappings pr: R — T, o1 : L — T, and @)y : M — T that
determine ¢ = pr U ¢ U s as follows (see Figure 1).
We leave R fixed under @pg so that

(3.3) vr:R—T with @gr(§):=¢

is injective and satisfies pr(§) € A for all £ € R. In order to define ¢y, we
suppose here that a = 1 and define
€ —bs

(3.4) pr:L—T by ¢r(§):=——-.
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1 s no n/c GT—an n
L M R
393 PR
YL
T
1 s No L‘H’n n

C

Fig. 1. The mapping ¢ (not to scale)

Then ¢y, is injective and satisfies ¢, (§) ¢ A for all £ € L, since otherwise
x = @),y = s and z = pgr(£) yield a solution in A to ax + by = cz,
which is impossible. It follows from ¢r(§) € A and ¢ (§) ¢ A that pr U ¢,
is injective on RU L.

Since for a > 1 the image set (L) will have not only integer elements,
the crucial step then consists in suitably modifying the definition of ¢, This
will be discussed in Section 5.

The definition of pp; : M — T is based on the integers in the open real
interval with diameter 2(a + b) and center ¢£/(a +b),

(€ c§
(3.5) K¢ = (a+b (a+b),a+b+(a+b))
associated with £ € M. Let the subset M’ of M be defined by
M = AN <%+(a+b),@—(a+b)}

Evidently |M \ M'| < 2(a + b). We collect some useful properties of the
sets K.
LEMMA 2. Forc > 2(a+b)%2—gcd(a+b,c) the following assertions hold:

(a) The sets K¢ for & € M are pairwise disjoint.
(b) For every & € M’ the set K¢ is a subset of T
(c) For every & € M' the set K¢ \ (¢r(R) U (L)) is nonempty.

Proof. (a) It suffices to show that K, and K¢, have no common element
for every € € N. We set § = ged(a + b, ¢). From (3.5) we see that
cE—9§6 c€—96
a+b a+b

mg::maxng[ }+(a+b)§ + (a+b)
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and

cE+c
a+b

c+c
1—
}+ (a+b)>a+b

Now ¢ > 2(a + b)? — § implies mg 1 — my > 0 and hence K¢ N Keyq = 0.

(b) From min M’" > n/c+ (a + b) and min K¢ > c£/(a+ b) — (a +b) we
see that the smallest element of all K¢ for £ € M’ is larger than n/(a + b) +
¢ — (a+ b). Hence we have to verify that

n a+b
m+c—(a+b)>

Meq1 :=min Keyq = [ — (a+ D).

n

or, equivalently,
n(c— (a+b)?) > —(a+Db)clc — (a +b)),

which holds trivially.

Since max M’ < (a+ b)n/c— (a+b) and max K¢ < ¢£/(a+b) + (a+b),
the largest element of all K¢ for £ € M’ is at most n — c+ (a + b) < n.

(c) The cardinality of the set K¢ equals 2(a + b) if £ # 0 mod (a + b),
and 2(a +b) — 1 if ¢£ =0 mod (a + b).

Consider any pair of not necessarily distinct elements C(f;,f‘ , C(fif € K¢
such that a\ = bu. They cannot both belong to ¢gr(R), since otherwise
the equation ax 4+ by = cz is solved in A by z = (c€—\)/(a+D),
y = (c€+p)/(a+0b) and z = &, which is impossible. The number of such
pairs of elements in K¢ equals the number of solutions to aA = by in
the range —(a + b)? < A, u < (a + b)? such that a + b divides both
c€ — X and c€ + p. Since a and b are coprime, the solutions to aA =
bu in the above range are A = tb and p = ta with integers ¢ satisfy-
ing —(a+0)%/b < t < (a+b)?/b. Only those ¢ are admissible for which
tb = ¢ mod (a + b) and ta = —c€ mod (a + b). Since these congruences are
equivalent and b is coprime to a + b, there exists precisely one fundamental
solution ¢ty € {0,...,a + b — 1}. In the above range for ¢t we thus obtain
two different parameters to and tg — (a + b) that yield two distinct pairs of
elements ‘f;g‘, ‘fﬂf € K¢ such that aX = bu. Therefore |K¢ \ ¢r(R)| > 2.

Finally we notice that successive elements of ¢z (L) have at least the
distance ¢ so that at most one element of K¢ belongs to ¢r(L). Therefore
the difference set K¢ \ (pr(R) U (L)) is nonempty for every £ € M'. m

By Lemma 2 we may define

(3.6) op M =T by ¢u() :=max K¢\ (pr(R) U @r(L))

and extend oy from M’ to M by ppr(§) = max T for & € M\ M’, say. Then
s 1s injective on M’ and ¢, Upr Uy : LURU M — T is injective by
construction, apart from 1 < 2(a+b) exceptions. According to our previously
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explained strategy, Theorem 1 is proved for ¢ defined by ax + by = cz with
integers b > a = 1 and ¢ > 2(a + b)? — gcd(a + b,c). =

4. Proof of Theorem 2. For a = b = 1 and ¢ > 6 Theorem 2 is
contained in Theorem 1. Therefore it suffices to study the two cases ¢ = 4,5
with a = b = 1 separately.

Due to overlapping segments K¢ in the remaining cases ¢ = 4 and ¢ = 5,
we have to refine the investigation of the mapping ¢ : M — T and start

with modifying the definition of K¢. For convenience we set & := [n/c] + 1
and & = [2n/c].
For ¢ =4 and £ € M we define
(4.1) Ke = {26} if 26 ¢ o1 (L),
(4.2) Kei={26—1,26,26 + 1} if 2¢ € o (L)

and note the following properties of these sets.

LEMMA 3. Fora=b=1 and c =4 let M' := M\ {&s,&}. Then, with
the sets K¢ defined in (4.1) and (4.2), the assertions of Lemma 2 remain
true.

Proof. (a) We observe that successive elements of ¢r (L) have at least
the distance 4. Hence, for {,§ + 1 € M one of the sets K¢ and K¢ is of
type (4.1), which gives the assertion.

(b) In order to guarantee K¢ C T for all £ € M’, in addition to the
assumptions of Lemma 2(b) the element s = [n/4] + 1 has to be excluded
from the set M.

(c) For £ € M’ we have 2§ ¢ ¢or(R), since otherwise x = y = 2§ and
z = £ yield a solution to = + y = 4z, a contradiction. In the case (4.1) the
assertion follows. In the case (4.2) we notice that 2§ — 1 and 2§ + 1 cannot
both belong to ¢r(R). By the distance condition none of them is in ¢, (L).
This gives the assertion. m

Due to Lemma 3 we may now define ¢ : M’ — T by (3.6) and extend
the domain of pys to M by pp(€s) = minT and ¢y (&) = max T, say. Then
wur : M — T is well defined and, by construction, ¢ = ¢ U ¢@r U @y maps
LU RU M injectively into T, apart from 1 < 2 exceptions.

In the case a = b =1, ¢ = 5 we set £ := 5£/2 for £ € M N 2N and
consider

(4.3) Ke = {¢'} if &' ¢ or(L),
(4.4) Ke:={¢-1¢,¢+1} if ¢ € (L),
(4.5) Kerp i ={6'£1,8 2, £33, £4}  if & ¢ or(L),
(4.6) Kepp:={¢ £2, £3} if ¢ € or(L).
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LEMMA 4. Fora =b =1 and ¢ =5 let M’ .= M\ {§}. Then, with
the sets K¢ and K¢y defined in equations (4.3) to (4.6), the assertions of
Lemma 2 remain true.

Proof. Notice that successive segments K¢, K¢1 or K¢_1 are either of
the types (4.3) and (4.5), or of the types (4.4) and (4.6). The verification of
assertions (a) to (¢) now follows the previous lines and uses the fact that the
distance of consecutive elements of (L) is at least 5. m

By Lemma 4 the definition of ¢y, : M" — T follows (3.6) and is extended
to M by oa(&) = max T, say. Again pps : M — T is well defined and by
construction ¢ = o UprUppy : LURU M — T is injective, apart from
1n < 1 exceptions.

This completes the proof of Theorem 2 fora=b=1and c> 4. u

5. The case a > 1. In order to carry through the optimality proof of
our construction also in the case a > 1 via the methods of Section 3, we have
to modify the definition of ¢y, : L — T in equation (3.4),

or(§) = M

a
Thus we associate to each £ € L a number s(§) € A, as close to s as possible,
such that ¢§ — bs(§) = 0 mod a, and alter the above definition to
(5.1 pr(e) = S
Since a and b are coprime, we note that for any given £ € L the preceding
congruence has a unique solution s(§) € Z/aZ. Hence we have to show that
every residue class modulo a contains elements of A.

A vital point is the injectivity of the mapping ¢r,. Let ' and ¢ be defined
by b = b ged(b, ¢) and ¢ = ¢ ged(b, ¢). Suppose that ¢ (&) = ¢ (£'). Then
c€—bs(§) = & —bs(¢') or, equivalently, c(§ —&) = b(s(§) —s(¢')) shows that
s(€) and s(&’) necessarily belong to the same residue class modulo ¢. Hence
we have indeed to ensure that there exists a complete residue system I' C A
modulo a of distinct representatives modulo ¢. Finally, we have to choose
the elements of I" as small as possible in order to obtain a small cardinality
of the difference set ¢, (L) \ 7', which characterizes the exceptions that have
to be made from the injectivity of ¢p : L — T.

We may assume that A has more than (1 —¢)n elements, since otherwise
A can trivially be mapped injectively into 7. We claim that no subset A, :=
{r € A: 2 =pmoda}, o = 0,...,a — 1, is empty. This follows from
n—gn < |A] < (a—1)[n/a]+|A4,l|. In fact, |A,| > (1/a—¢)n. Hence, for any
given £ € L, the congruence bs(§) = ¢£ mod a has many solutions s(§) € A.
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LEMMA 5. Let A C {1,...,n} be o-free, where o is defined by ax + by
= cz with integers a,b,c satisfying 1 < a < b, ged(a,b) = 1, and ¢ >
a?(b+1), and let ¢ = ¢ ged(b, c). If

Al >(1—qg)n>a

then there exists a complete residue system I' C A modulo a of numbers that
are distinct modulo ¢

Proof. It suffices to show that every subset A, = {x € A: 2 = pmod a}
contains at least @ numbers s|, that are distinct modulo ¢’. Since ¢ > ¢/b > a
and ged(a,b) = 1, the numbers s, then appear as an appropriate selection
from the numbers s’g. Suppose, to the contrary, that one of the sets A,,
say Ay, contains fewer than a distinct elements modulo ¢/. Then |Ay| <
(a —1)n/d’. Combining this with (1 — ¢)n < |[A| < (1 —1/a)n + |Ay| and
bc’ > ¢ we obtain

1 (a—1)b

l—g<1-—-+2—2
a C

which yields ¢ < a?(b + 1), a contradiction. =

Lemma 5 shows that for every p € {0,...,a—1} there exists a smallest so-
lution s, € A to bs, = co mod a such that the collection I" := {sg,...,Sq—1}
consists of distinct residue classes modulo ¢’. This s, then serves as s(§) for
every element £ € L N A,, which guarantees injectivity of ¢, on L N A,.
Clearly we have s = min/" and it remains to estimate max I — s. Any
inequality of the type

max ' — s < E(n)

with a function E(n) < n'~¢ and some fixed ¢ > 0, instead of an upper
bound independent from n, would suffice to determine D(o). We have to
leave this as an open problem.

6. Infinite o-free sets as limiting case. Lemma 5 may be used to
easily derive a new proof for the value of the upper asymptotic bound d (o)
defined in (1.3) for infinite o-free sets of positive integers.

Let again a,b,c be positive integers satisfying ¢ < b and ¢ > a + b.
As in Section 2 let ¢ = (a +b)/c and a = a(a+b)/c% For k € N we set
my, = =%, From the general construction principles for o-free sets we see
that the set

A= U{(qu,mk] ck=1,2,...}

is o-free with min A = 1. The upper asymptotic density d(A) of the set A
is then given by

d(A) = (1 —g) lim Tt me 174

k—o0 mp Cl-a
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Notice that this result (see [6], [7]) may be considered the limiting case of the
construction of finite o-free sets A, which is obtained from (2.7) by taking
k =< logn, dividing by n and then taking the limit n — oo.

By inserting the values of ¢ and « the above construction shows that

- 2 —cla+b)
(6.1) d(o) > Zalatd)
In order to prove that this bound is optimal for all positive integers a, b, ¢ sat-
isfying a <b, ¢ >max{2(a + b)? —gcd(a+b,c),a?(b+1)}, and ged(a,b) = 1,
we may suppose that A C N is o-free and has the upper asymptotic density
d(A) > 1 — q. Then there exists a strictly increasing sequence of numbers
n* € N such that the truncated set A« := AN{1,...,n*} has the cardinality

|Ap<| > (1 —g)n".

For n* > a/(1 —¢q) Lemma 5 yields the existence of a complete residue
system I' C A,+ modulo a of elements of A that are distinct modulo ¢
Notice that the choice of I' does no longer depend on n*, since the subsets
A, of A are ordered by inclusion. Let v := max I'. Then, with A replaced
by An+ N (7,n*], there is an injective mapping ¢ : RUL UM — T except
for a number 7 of exceptions which we may estimate similarly to Section 3
in the following way: Since (g is the identity mapping on R C T, there is
no exception. Since for every £ € L there is a unique s(§) € I" such that
¢ — bs(¢) = 0mod a, the mapping ¢ : L — T is well defined by (5.1)
if (¢€—bs(§))/a € T and by ¢r(§) = minT if (€ —bs(§))/a ¢ T. Here
exceptions from injectivity are only caused by those £ € L satisfying
N CGEDELaa

a a a

so that their number is bounded by by/a. Further, the mapping ¢s defined
by (3.6) is injective apart from at most 2(a + b) exceptions. Hence

b
77§2(a+b)+5’y.

Now we apply the strategy described at the beginning of Section 3. The
number of successive mappings that are necessary to map A,~ into a o-free
union of segments of type 7" and A N [1,] is of the order k =< logn*, each
with at most 7 exceptions from injectivity. Hence we obtain

1- *
|Ape| < ﬁ(lﬂk)n + k.

Since t; tends to 0 as n* tends to co, Theorem 3 follows. =

Notice that this proof is not restricted to ¢ = 1 and may be considered
as the limiting case of the analogous result for finite o-free sets proved only
for a = 1.
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