
ACTA ARITHMETICA121.4 (2006)

On �nite pattern-free sets of integersby
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Lutz G. Lucht (Clausthal-Zellerfeld)
1. Introdu
tion. Many 
lassi
al problems of 
ombinatorial number the-ory 
on
ern extremal sets A of positive integers that do not 
ontain 
ertainpatterns. A general de�nition was given in [6℄: Let σ be a nonempty familyof �nite nonempty subsets of N. A set A of positive integers is 
alled σ-freeif no subset of A belongs to σ. We 
all the system σ-invariant if it is bothhomogeneous, i.e., kS := {ks : s ∈ S} ∈ σ for all k ∈ N and S ∈ σ, andtranslation-invariant , i.e., k + S := {k + s : s ∈ S} ∈ σ for all k ∈ N and

S ∈ σ.In many 
ases the forbidden patterns are the solutions S := {x1, . . . , xk}
⊂ N to linear equations of the form a1x1 + · · ·+ akxk = b with �xed integer
oe�
ients a1, . . . , ak, b. Invarian
e then means that a1 + · · · + ak = b = 0,and in order to avoid trivialities, it is understood that x1, . . . , xk are distin
t.A typi
al example is the system σ of sets {x, y, z} ⊂ N su
h that x+y = 2z,
x 6= y. Here the σ-free sets A of natural numbers are those that do not
ontain arithmeti
 progressions of length 3.In the following we only 
onsider noninvariant homogeneous systems σ
onsisting of the solutions {x, y, z} ⊂ N to an equation of the form(1.1) ax + by = czwith given 
oe�
ients a, b, c ∈ N, gcd(a, b) = 1, a ≤ b, and c su�
ientlylarge. For short we say that σ is de�ned by (1.1). Among various possibledensity notions we 
hoose as the most natural one in this setting the uppermaximal density bound

D(σ) = lim sup

(

f(σ, n)

n

)

,where f(σ, n) = max{|A| : A ⊆ {1, . . . , n} σ-free} denotes the largest possi-2000 Mathemati
s Subje
t Classi�
ation: Primary 11B75; Se
ondary 05B10, 05D05.This resear
h proje
t was supported by the Natural S
ien
es and Engineering Resear
hCoun
il of Canada. [313℄
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her and L. G. Lu
htble 
ardinality of a σ-free subset of {1, . . . , n} (
ompare with Ruzsa [10℄, [11℄,Chung and Goldwasser [4℄, and Chung, Erd®s and Graham [2℄).Theorem 1. Let the system σ be de�ned by (1.1) with a = 1 and positiveintegers b, c satisfying c ≥ 2(a+b)2−gcd(a+b, c). Then, with q = (a + b)/c,
α = aq/c and β = bq/c, we have

D(σ) =















(1 − q)
1 − α2

1 − α − α2
for b = 1,

(1 − q)
1 − β + α

1 − β
for b > 1.To a 
ertain extent, the proof reveals the stru
ture of maximal σ-freesubsets of {1, . . . , n} for su�
iently large n. For all integers a, b, c satisfying

1 ≤ a < b, gcd(a, b) = 1, and c ≥ (a + b)3/2 the 
onstru
tive part of theproof of Theorem 1 yields(1.2) D(σ) ≥ (1 − q)
1 − β + α

1 − β
,and we 
onje
ture that this holds with equality, for c su�
iently large.For arithmeti
 reasons the lower bound for c in Theorem 1 need not beoptimal. In fa
t, Baltz et al. [1℄ investigated the pre
ise stru
ture of σ-freesets for a = b = 1 and c ≥ 4, and determined the value of D(σ) 
onje
turedby Chung and Goldwasser [3℄. By applying our method to the 
ases c = 4, 5,whi
h are not dire
tly 
overed by Theorem 1, we obtain an alternative proofof their density result.Theorem 2 (Baltz, Hegarty, Knape, Larsson and S
hoen [1℄). Let σ bede�ned by x + y = cz with integer c ≥ 4. Then

D(σ) =
(c − 2)(c2 − 2)(c2 + 2)

c(c4 − 2c2 − 4)
.The method of proof of Theorem 1 
an also be used to determine theupper asymptoti
 density bound(1.3) d (σ) = sup{d (A) : A ⊂ N σ-free}for in�nite σ-free sets of positive integers, where

d (A) = lim sup
n→∞

(

1

n
|A ∩ {1, . . . , n}|

)

denotes the upper asymptoti
 density of the set A ⊆ N. Sin
e every �nitesubset of an in�nite σ-free set is again σ-free, we have the general inequality
d (σ) ≤ D(σ).Theorem 3. Let σ be de�ned by (1.1) with positive integers a, b, c satis-fying a ≤ b, gcd(a, b) = 1, and c ≥ max{2(a+ b)2 − gcd(a+ b, c), a2(b + 1)}.



Finite pattern-free sets of integers 315Then(1.4) d (σ) =
c2 − c(a + b)

c2 − a(a + b)
.In parti
ular, Theorem 3 
overs also the 
ase a > 1. It follows from (1.2)and (1.4) that d (σ) = (1 − q)/(1 − α) < D(σ), under the assumptions ofTheorem 3. Noti
e that the di�eren
e between d (σ) and D(σ) is very small.For instan
e, in the 
ase a = b = 1 and c = 6 we obtain d (σ) = 12/17 =

0.70588 235 . . ., while D(σ) = 646/915 = 0.70601 092 . . . .Again, the lower bound for c given in Theorem 3 need not be optimal. Infa
t, it was shown earlier (see [6℄ or [7℄) that (1.4) holds for c ≥ 2ab(a + b),but for a > 1 the lower bound for c given in Theorem 3 slightly improves theprevious results. Spe
ial 
ases of in�nite sum-free, c-sum-free or di�eren
e-free sets with a = b = 1 and c 6= 2, or a = −b = 1 were 
onsidered by Chungand Goldwasser [3℄, by S
hoen [12℄, and by �u
zak and S
hoen [9℄. Formore than three variables see also �u
zak and S
hoen [8℄, and Deshouillers,Freiman, Sós and Temkin [5℄.2. Constru
tion. Throughout this paper we write (s, t] for the inter-se
tion of the real interval (s, t] with N and similarly [s, t), (s, t), and [s, t].We assume that a, b, c ∈ N satisfy a ≤ b and a + b < c, whi
h gives
q = (a + b)/c < 1. If x, y, z ∈ S := (qm, m] with some m ≥ 1 then aS +bS isbounded above by (a + b)m, whereas the elements of cS ex
eed cqm. Hen
e
aS + bS and cS are disjoint sets so that S is σ-free. We noti
e that, in gen-eral, S is also an extremal segment, sin
e for m = c and m′ = c − 1 theset {a + b, . . . , c} = [qm, m] = (qm′, m′ + 1] yields the solution x = y = c,
z = a + b to ax + by = cz.The idea of 
onstru
ting extremal σ-free subsets A of [1, n] 
onsists intaking the union of su�
iently distant disjoint segments of the above type.Suppose that for �xed k ∈ N a sequen
e of numbers n1 = n > n2 > · · · > nkis 
hosen su
h that the k σ-free segments(2.1) Sj = (qnj, nj ] (j = 1, . . . , k)are pairwise disjoint. In order to obtain a σ-free union A = S1 ∪ · · · ∪ Sk, itsu�
es to arrange the largest element of the set c(Sj ∪ · · · ∪ Sk) below thesmallest element of the set a(S1∪· · ·∪Sj−1)+ bA for ea
h j = 2, . . . , k. Thisyields(2.2) n1 = n, cnj ≤ aqnj−1 + bqnk (j = 2, . . . , k).The number of elements of A is(2.3) |A| = (1 − q)(n1 + · · · + nk) + r with |r| ≤ k,whi
h suggests that |A| is maximal if all inequalities (2.2) are equalities.
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her and L. G. Lu
htWith α := aq/c and β := bq/c this turns into(2.4) n1 = n, nj = αnj−1 + βnk (j = 2, . . . , k).From this system of linear re
urren
e relations we obtain the upper segmentbounds nj as fun
tions of n = n1 and k: By multiplying the re
urren
eequations in (2.4) with α−j , summing over j = 2, . . . , J and then repla
ing
J by j we obtain

nj = αj−1n +
1 − αj−1

1 − α
βnk (j = 1, . . . , k).In parti
ular, for j = k it follows that

nk =
(1 − α)αk−1

1 − (α + β) + αk−1β
nand therefore(2.5) nj =

1 − (α + β) + αk−jβ

1 − (α + β) + αk−1β
αj−1n (j = 1, . . . , k).Summation gives

n1 + · · · + nk =

(

1 − (α + β)

1 − (α + β) + αk−1β

1 − αk

1 − α
+

kαk−1β

1 − (α + β) + αk−1β

)

nor
n1 + · · · + nk =

1 + tk
1 − α

n,where we have abbreviated(2.6) tk =
(1 − α)((k − 1)β − α)

1 − (α + β) + αk−1β
αk−1.By inserting into (2.3) we get(2.7) |A| =

1 − q

1 − α
(1 + tk)n + r with |r| ≤ kwhi
h proves part (a) of the following lemma (for a weaker version see [7℄).Lemma 1. With positive integers a, b, c satisfying a ≤ b, gcd(a, b) = 1,and c ≥ (a + b)3/2 let the system σ be de�ned by (1.1). Further let q =

(a + b)/c, α = aq/c, β = bq/c, and let the set A ⊆ [1, n] be given by A =
Sk ∪ · · · ∪ S1 with the segments Sj determined by (2.1) and (2.5). Then wehave:(a) The set A is σ-free and has

|A| =
1 − q

1 − α
(1 + tk)n + relements, where |r| ≤ k and tk is given by (2.6).



Finite pattern-free sets of integers 317(b) If a = b then the maximal value of |A| is attained for k = 3, in whi
h
ase
|A| = (1 − q)

1 − α2

1 − α − α2
n + r and |r| ≤ 3,whereas for a < b it is attained for k = 2, in whi
h 
ase

|A| = (1 − q)
1 − β + α

1 − β
n + r and |r| ≤ 2.Proof. It remains to prove part (b). First we noti
e that (2.6) yields

t1 = −α < 0,

t2 =
α (β − α)

1 − β

{

= 0 if a = b,
> 0 if a < b,

t3 =
α2(2β − α)

1 − β(1 + α)
> 0.Next we show that the sequen
e (tk) is stri
tly de
reasing for k ≥ k∗ where

tk∗ is its �rst positive term. From (2.6) we get for k ≥ k∗,
ϑk :=

tk
tk+1

=
(k − 1)β − α

kβ − α

1 − (α + β) + αkβ

1 − (α + β) + αk−1β

1

α

>
(k∗ − 1)β − α

k∗β − α

1 − (α + β)

α

=
(k∗ − 1)b − a

k∗b − a

c2 − (a + b)2

a(a + b)
.For a = b and k∗ = 3 the �rst fa
tor equals 1/2, for a < b and k∗ = 2 it equals

(b − a)/(2b − a). In both 
ases it follows from c ≥ (a + b)3/2 that ϑk > 1 for
k ≥ k∗. Finally, by inserting the value of tk∗ into (2.7) we obtain the asserted
ardinality of A in both 
ases for k∗ = 3 and for k∗ = 2, respe
tively.3. Optimality. In order to prove that the 
onstru
tion in Se
tion 2 isindeed optimal, we suppose that A ⊆ {1, . . . , n} is a given σ-free set. We arethen going to show that the 
ardinality of this set A 
annot be mu
h largerthan in the 
onstru
tion above.It follows from the 
onstru
tion in Se
tion 2 that the segments Sj , whoseupper bounds behave like the 
ontra
ting geometri
 sequen
e (nαj−1), arenonempty only for j ≪ log n. For a given σ-free set A ⊆ {1, . . . , n} withsmallest element s we adapt the above 
onstru
tion (noti
e that [qnk] = s−1)and de�ne the segments Tj = (qnj , nj ] by(3.1) n1 = n, nj = αnj−1 + bs/c (j = 2, 3, . . .).
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her and L. G. Lu
htThe expli
it solution to this linear re
urren
e relation is given by(3.2) nj = αj−1n +
bs

c

1 − αj−1

1 − α
(j = 1, 2, . . .).From α ≤ 1/4 and b < c(1 − α) we 
on
lude that nj < s unless j ≪ log n.Let Tk denote the last segment satisfying s ≤ maxTk. Then k ≪ log n andby 
onstru
tion U := T1 ∪ · · · ∪ Tk is σ-free.The idea of the optimality proof for our 
onstru
tion in Se
tion 2 
onsistsin de�ning an almost inje
tive map ϕ : A → U , whi
h means that we admit

≪ log n ex
eptions from stri
t inje
tivity. It su�
es to show that there isa map ϕ : A ∩ (n2, n1] → T := T1, whi
h is inje
tive apart from a number
η of ex
eptions depending at most on a, b, c. Then A1 := (A ∩ [s, n2]) ∪ T1is σ-free again, and |A| ≤ |A ∩ [s, n2]| + |T1| + η. By repeating this pro
esswith A ∩ [s, n2] instead of A = A ∩ [s, n1] and n2 instead of n1 we obtain
|A| ≤ |A ∩ [s, n3]| + |T2| + |T1| + 2η. After k indu
tive steps we arrive at
|A| ≤ |Tk|+ · · ·+ |T1|+ kη. This means that the 
ardinality of A is at mostthat of the σ-free union of k disjoint segments Tj for j = 1, . . . , k ≪ log n,apart from at most kη ≪ log n ex
eptions. The assertion of Theorem 1 nowfollows from Lemma 1.Following this strategy with n1 = n and n2 = a(a + b)n/c2 + bs/c wehave to 
onstru
t a mapping

ϕ : A ∩

(

a(a + b)n + bcs

c2
, n

]

→ T =

(

(a + b)n

c
, n

]

that is inje
tive apart from η ≪ 1 ex
eptions. We split the domain of ϕ intothree disjoint parts,
R := A ∩

(

(a + b)n

c
, n

]

,

L := A ∩

(

a(a + b)n + bcs

c2
,
n

c

]

,

M := A ∩

(

n

c
,
(a + b)n

c

]

,and de�ne three mappings ϕR : R → T , ϕL : L → T , and ϕM : M → T thatdetermine ϕ = ϕR ∪ ϕL ∪ ϕM as follows (see Figure 1).We leave R �xed under ϕR so that(3.3) ϕR : R → T with ϕR(ξ) := ξis inje
tive and satis�es ϕR(ξ) ∈ A for all ξ ∈ R. In order to de�ne ϕL, wesuppose here that a = 1 and de�ne(3.4) ϕL : L → T by ϕL(ξ) :=
cξ − bs

a
.
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1 s n2 n/c

a+b
c n n

ϕL

ϕM
ϕR

L M R

1 s n2
a+b

c n n

T

Fig. 1. The mapping ϕ (not to s
ale)
Then ϕL is inje
tive and satis�es ϕL(ξ) /∈ A for all ξ ∈ L, sin
e otherwise
x = ϕL(ξ), y = s and z = ϕR(ξ) yield a solution in A to ax + by = cz,whi
h is impossible. It follows from ϕR(ξ) ∈ A and ϕL(ξ) /∈ A that ϕR ∪ϕLis inje
tive on R ∪ L.Sin
e for a > 1 the image set ϕL(L) will have not only integer elements,the 
ru
ial step then 
onsists in suitably modifying the de�nition of ϕL. Thiswill be dis
ussed in Se
tion 5.The de�nition of ϕM : M → T is based on the integers in the open realinterval with diameter 2(a + b) and 
enter cξ/(a + b),(3.5) Kξ :=

(

cξ

a + b
− (a + b),

cξ

a + b
+ (a + b)

)

asso
iated with ξ ∈ M . Let the subset M ′ of M be de�ned by
M ′ = A ∩

(

n

c
+ (a + b),

(a + b)n

c
− (a + b)

]

.Evidently |M \ M ′| ≤ 2(a + b). We 
olle
t some useful properties of thesets Kξ.Lemma 2. For c ≥ 2(a+b)2−gcd(a+b, c) the following assertions hold :(a) The sets Kξ for ξ ∈ M are pairwise disjoint.(b) For every ξ ∈ M ′ the set Kξ is a subset of T .(
) For every ξ ∈ M ′ the set Kξ \ (ϕR(R) ∪ ϕL(L)) is nonempty.Proof. (a) It su�
es to show that Kξ and Kξ+1 have no 
ommon elementfor every ξ ∈ N. We set δ = gcd(a + b, c). From (3.5) we see that
m′

ξ := maxKξ =

[

cξ − δ

a + b

]

+ (a + b) ≤
cξ − δ

a + b
+ (a + b)
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htand
mξ+1 := minKξ+1 =

[

cξ + c

a + b

]

+ 1 − (a + b) >
cξ + c

a + b
− (a + b).Now c ≥ 2(a + b)2 − δ implies mξ+1 − m′

ξ > 0 and hen
e Kξ ∩ Kξ+1 = ∅.(b) From minM ′ > n/c + (a + b) and minKξ > cξ/(a + b) − (a + b) wesee that the smallest element of all Kξ for ξ ∈ M ′ is larger than n/(a + b) +
c − (a + b). Hen
e we have to verify that

n

a + b
+ c − (a + b) >

a + b

c
nor, equivalently,

n(c − (a + b)2) > −(a + b)c(c − (a + b)),whi
h holds trivially.Sin
e maxM ′ ≤ (a + b)n/c− (a + b) and maxKξ < cξ/(a + b) + (a + b),the largest element of all Kξ for ξ ∈ M ′ is at most n − c + (a + b) < n.(
) The 
ardinality of the set Kξ equals 2(a + b) if cξ 6≡ 0 mod (a + b),and 2(a + b) − 1 if cξ ≡ 0 mod (a + b).Consider any pair of not ne
essarily distin
t elements cξ−λ
a+b , cξ+µ

a+b ∈ Kξsu
h that aλ = bµ. They 
annot both belong to ϕR(R), sin
e otherwisethe equation ax + by = cz is solved in A by x = (cξ − λ)/(a + b),
y = (cξ + µ)/(a + b) and z = ξ, whi
h is impossible. The number of su
hpairs of elements in Kξ equals the number of solutions to aλ = bµ inthe range −(a + b)2 < λ, µ < (a + b)2 su
h that a + b divides both
cξ − λ and cξ + µ. Sin
e a and b are 
oprime, the solutions to aλ =
bµ in the above range are λ = tb and µ = ta with integers t satisfy-ing −(a + b)2/b < t < (a + b)2/b. Only those t are admissible for whi
h
tb ≡ cξ mod (a + b) and ta ≡ −cξ mod (a + b). Sin
e these 
ongruen
es areequivalent and b is 
oprime to a + b, there exists pre
isely one fundamentalsolution t0 ∈ {0, . . . , a + b − 1}. In the above range for t we thus obtaintwo di�erent parameters t0 and t0 − (a + b) that yield two distin
t pairs ofelements cξ−λ

a+b , cξ+µ
a+b ∈ Kξ su
h that aλ = bµ. Therefore |Kξ \ ϕR(R)| ≥ 2.Finally we noti
e that su

essive elements of ϕL(L) have at least thedistan
e c so that at most one element of Kξ belongs to ϕL(L). Thereforethe di�eren
e set Kξ \ (ϕR(R) ∪ ϕL(L)) is nonempty for every ξ ∈ M ′.By Lemma 2 we may de�ne(3.6) ϕM : M ′ → T by ϕM (ξ) := maxKξ \ (ϕR(R) ∪ ϕL(L))and extend ϕM from M ′ to M by ϕM (ξ) = maxT for ξ ∈ M \M ′, say. Then

ϕM is inje
tive on M ′ and ϕL ∪ ϕR ∪ ϕM : L ∪ R ∪ M → T is inje
tive by
onstru
tion, apart from η ≤ 2(a+b) ex
eptions. A

ording to our previously



Finite pattern-free sets of integers 321explained strategy, Theorem 1 is proved for σ de�ned by ax + by = cz withintegers b ≥ a = 1 and c ≥ 2(a + b)2 − gcd(a + b, c).4. Proof of Theorem 2. For a = b = 1 and c ≥ 6 Theorem 2 is
ontained in Theorem 1. Therefore it su�
es to study the two 
ases c = 4, 5with a = b = 1 separately.Due to overlapping segments Kξ in the remaining 
ases c = 4 and c = 5,we have to re�ne the investigation of the mapping ϕM : M → T and startwith modifying the de�nition of Kξ. For 
onvenien
e we set ξs := [n/c] + 1and ξl := [2n/c].For c = 4 and ξ ∈ M we de�ne
Kξ := {2ξ} if 2ξ /∈ ϕL(L),(4.1)

Kξ := {2ξ − 1, 2ξ, 2ξ + 1} if 2ξ ∈ ϕL(L)(4.2)and note the following properties of these sets.Lemma 3. For a = b = 1 and c = 4 let M ′ := M \ {ξs, ξl}. Then, withthe sets Kξ de�ned in (4.1) and (4.2), the assertions of Lemma 2 remaintrue.Proof. (a) We observe that su

essive elements of ϕL(L) have at leastthe distan
e 4. Hen
e, for ξ, ξ + 1 ∈ M one of the sets Kξ and Kξ+1 is oftype (4.1), whi
h gives the assertion.(b) In order to guarantee Kξ ⊂ T for all ξ ∈ M ′, in addition to theassumptions of Lemma 2(b) the element ξs = [n/4] + 1 has to be ex
ludedfrom the set M .(
) For ξ ∈ M ′ we have 2ξ /∈ ϕR(R), sin
e otherwise x = y = 2ξ and
z = ξ yield a solution to x + y = 4z, a 
ontradi
tion. In the 
ase (4.1) theassertion follows. In the 
ase (4.2) we noti
e that 2ξ − 1 and 2ξ + 1 
annotboth belong to ϕR(R). By the distan
e 
ondition none of them is in ϕL(L).This gives the assertion.Due to Lemma 3 we may now de�ne ϕM : M ′ → T by (3.6) and extendthe domain of ϕM to M by ϕM (ξs) = minT and ϕM (ξl) = maxT , say. Then
ϕM : M → T is well de�ned and, by 
onstru
tion, ϕ = ϕL ∪ ϕR ∪ ϕM maps
L ∪ R ∪ M inje
tively into T , apart from η ≤ 2 ex
eptions.In the 
ase a = b = 1, c = 5 we set ξ′ := 5ξ/2 for ξ ∈ M ∩ 2N and
onsider

Kξ := {ξ′} if ξ′ /∈ ϕL(L),(4.3)
Kξ := {ξ′ − 1, ξ′, ξ′ + 1} if ξ′ ∈ ϕL(L),(4.4)

Kξ±1 := {ξ′ ± 1, ξ′ ± 2, ξ′ ± 3, ξ′ ± 4} if ξ′ /∈ ϕL(L),(4.5)
Kξ±1 := {ξ′ ± 2, ξ′ ± 3} if ξ′ ∈ ϕL(L).(4.6)
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her and L. G. Lu
htLemma 4. For a = b = 1 and c = 5 let M ′ := M \ {ξl}. Then, withthe sets Kξ and Kξ+1 de�ned in equations (4.3) to (4.6), the assertions ofLemma 2 remain true.Proof. Noti
e that su

essive segments Kξ, Kξ+1 or Kξ−1 are either ofthe types (4.3) and (4.5), or of the types (4.4) and (4.6). The veri�
ation ofassertions (a) to (
) now follows the previous lines and uses the fa
t that thedistan
e of 
onse
utive elements of ϕL(L) is at least 5.By Lemma 4 the de�nition of ϕM : M ′ → T follows (3.6) and is extendedto M by ϕM (ξl) = maxT , say. Again ϕM : M → T is well de�ned and by
onstru
tion ϕ = ϕL ∪ ϕR ∪ ϕM : L ∪ R ∪ M → T is inje
tive, apart from
η ≤ 1 ex
eptions.This 
ompletes the proof of Theorem 2 for a = b = 1 and c ≥ 4.5. The 
ase a > 1. In order to 
arry through the optimality proof ofour 
onstru
tion also in the 
ase a > 1 via the methods of Se
tion 3, we haveto modify the de�nition of ϕL : L → T in equation (3.4),

ϕL(ξ) =
cξ − bs

a
.Thus we asso
iate to ea
h ξ ∈ L a number s(ξ) ∈ A, as 
lose to s as possible,su
h that cξ − bs(ξ) ≡ 0 mod a, and alter the above de�nition to(5.1) ϕL(ξ) :=

cξ − bs(ξ)

a
.Sin
e a and b are 
oprime, we note that for any given ξ ∈ L the pre
eding
ongruen
e has a unique solution s(ξ) ∈ Z/aZ. Hen
e we have to show thatevery residue 
lass modulo a 
ontains elements of A.A vital point is the inje
tivity of the mapping ϕL. Let b′ and c′ be de�nedby b = b′ gcd(b, c) and c = c′ gcd(b, c). Suppose that ϕL(ξ) = ϕL(ξ′). Then

cξ−bs(ξ) = cξ′−bs(ξ′) or, equivalently, c(ξ−ξ′) = b(s(ξ)−s(ξ′)) shows that
s(ξ) and s(ξ′) ne
essarily belong to the same residue 
lass modulo c′. Hen
ewe have indeed to ensure that there exists a 
omplete residue system Γ ⊆ Amodulo a of distin
t representatives modulo c′. Finally, we have to 
hoosethe elements of Γ as small as possible in order to obtain a small 
ardinalityof the di�eren
e set ϕL(L) \T , whi
h 
hara
terizes the ex
eptions that haveto be made from the inje
tivity of ϕL : L → T .We may assume that A has more than (1− q)n elements, sin
e otherwise
A 
an trivially be mapped inje
tively into T . We 
laim that no subset A̺ :=
{x ∈ A : x ≡ ̺ mod a}, ̺ = 0, . . . , a − 1, is empty. This follows from
n− qn < |A| ≤ (a−1)[n/a]+ |A̺|. In fa
t, |A̺| > (1/a− q)n. Hen
e, for anygiven ξ ∈ L, the 
ongruen
e bs(ξ) ≡ cξ mod a has many solutions s(ξ) ∈ A.



Finite pattern-free sets of integers 323Lemma 5. Let A ⊆ {1, . . . , n} be σ-free, where σ is de�ned by ax + by
= cz with integers a, b, c satisfying 1 ≤ a ≤ b, gcd(a, b) = 1, and c ≥
a2(b + 1), and let c = c′ gcd(b, c). If

|A| > (1 − q)n ≥ athen there exists a 
omplete residue system Γ ⊆ A modulo a of numbers thatare distin
t modulo c′.Proof. It su�
es to show that every subset A̺ = {x ∈ A : x ≡ ̺ mod a}
ontains at least a numbers s′̺ that are distin
t modulo c′. Sin
e c′ ≥ c/b > aand gcd(a, b) = 1, the numbers s̺ then appear as an appropriate sele
tionfrom the numbers s′̺. Suppose, to the 
ontrary, that one of the sets A̺,say A̺′ , 
ontains fewer than a distin
t elements modulo c′. Then |A̺′ | ≤
(a − 1)n/c′. Combining this with (1 − q)n < |A| ≤ (1 − 1/a)n + |A̺′ | and
bc′ ≥ c we obtain

1 − q < 1 −
1

a
+

(a − 1)b

c
,whi
h yields c < a2(b + 1), a 
ontradi
tion.Lemma 5 shows that for every ̺ ∈ {0, . . . , a−1} there exists a smallest so-lution s̺ ∈ A to bs̺ ≡ c̺ mod a su
h that the 
olle
tion Γ := {s0, . . . , sa−1}
onsists of distin
t residue 
lasses modulo c′. This s̺ then serves as s(ξ) forevery element ξ ∈ L ∩ A̺, whi
h guarantees inje
tivity of ϕL on L ∩ A̺.Clearly we have s = minΓ and it remains to estimate maxΓ − s. Anyinequality of the type

maxΓ − s ≤ E(n)with a fun
tion E(n) ≪ n1−ε and some �xed ε > 0, instead of an upperbound independent from n, would su�
e to determine D(σ). We have toleave this as an open problem.6. In�nite σ-free sets as limiting 
ase. Lemma 5 may be used toeasily derive a new proof for the value of the upper asymptoti
 bound d (σ)de�ned in (1.3) for in�nite σ-free sets of positive integers.Let again a, b, c be positive integers satisfying a ≤ b and c > a + b.As in Se
tion 2 let q = (a + b)/c and α = a(a + b)/c2. For k ∈ N we set
mk := α1−k. From the general 
onstru
tion prin
iples for σ-free sets we seethat the set

A =
⋃

{(qmk, mk] : k = 1, 2, . . .}is σ-free with minA = 1. The upper asymptoti
 density d (A) of the set Ais then given by
d (A) = (1 − q) lim

k→∞

m1 + · · · + mk

mk
=

1 − q

1 − α
.
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htNoti
e that this result (see [6℄, [7℄) may be 
onsidered the limiting 
ase of the
onstru
tion of �nite σ-free sets A, whi
h is obtained from (2.7) by taking
k ≍ log n, dividing by n and then taking the limit n → ∞.By inserting the values of q and α the above 
onstru
tion shows that(6.1) d (σ) ≥

c2 − c(a + b)

c2 − a(a + b)
.In order to prove that this bound is optimal for all positive integers a, b, c sat-isfying a≤ b, c≥max{2(a + b)2−gcd(a+ b, c), a2(b+1)}, and gcd(a, b) = 1,we may suppose that A ⊂ N is σ-free and has the upper asymptoti
 density

d (A) > 1 − q. Then there exists a stri
tly in
reasing sequen
e of numbers
n∗ ∈ N su
h that the trun
ated set An∗ := A∩{1, . . . , n∗} has the 
ardinality

|An∗ | > (1 − q)n∗.For n∗ ≥ a/(1 − q) Lemma 5 yields the existen
e of a 
omplete residuesystem Γ ⊆ An∗ modulo a of elements of A that are distin
t modulo c′.Noti
e that the 
hoi
e of Γ does no longer depend on n∗, sin
e the subsets
An of A are ordered by in
lusion. Let γ := maxΓ . Then, with A repla
edby An∗ ∩ (γ, n∗], there is an inje
tive mapping ϕ : R ∪ L ∪ M → T ex
eptfor a number η of ex
eptions whi
h we may estimate similarly to Se
tion 3in the following way: Sin
e ϕR is the identity mapping on R ⊆ T , there isno ex
eption. Sin
e for every ξ ∈ L there is a unique s(ξ) ∈ Γ su
h that
cξ − bs(ξ) ≡ 0 mod a, the mapping ϕL : L → T is well de�ned by (5.1)if (cξ − bs(ξ))/a ∈ T and by ϕL(ξ) = minT if (cξ − bs(ξ))/a /∈ T . Hereex
eptions from inje
tivity are only 
aused by those ξ ∈ L satisfying

cξ − bs(ξ)

a
=

cξ − bs

a
−

b

a
(s(ξ) − s) ≤

a + b

c
n∗so that their number is bounded by bγ/a. Further, the mapping ϕM de�nedby (3.6) is inje
tive apart from at most 2(a + b) ex
eptions. Hen
e

η ≤ 2(a + b) +
b

a
γ.Now we apply the strategy des
ribed at the beginning of Se
tion 3. Thenumber of su

essive mappings that are ne
essary to map An∗ into a σ-freeunion of segments of type T and A ∩ [1, γ] is of the order k ≍ log n∗, ea
hwith at most η ex
eptions from inje
tivity. Hen
e we obtain

|An∗ | ≤
1 − q

1 − α
(1 + tk)n

∗ + kη.Sin
e tk tends to 0 as n∗ tends to ∞, Theorem 3 follows.Noti
e that this proof is not restri
ted to a = 1 and may be 
onsideredas the limiting 
ase of the analogous result for �nite σ-free sets proved onlyfor a = 1.
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