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A characterization of the

finite wild sets of rational self-equivalences
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1. Introduction. In [4] it is shown that two number fields have isomor-
phic Witt rings of quadratic forms if and only if there is a Hilbert symbol
equivalence between them. A Hilbert symbol equivalence between two num-
ber fields K and L is a pair of maps (t, T ), where t : K∗/K∗2 → L∗/L∗2

is a group isomorphism and T : ΩK → ΩL is a bijection between the sets
of finite and infinite primes of K and L respectively, such that the Hilbert
symbols are preserved: for any a, b ∈ K∗/K∗2 and for any P ∈ ΩK ,

(a, b)P = (t(a), t(b))T (P ).

In 1991 K. Szymiczek ([6]) proved that there is a Hilbert symbol equiv-
alence between two number fields if and only if the two number fields have
the same level, the same number of real embeddings, and there is a bijec-
tion between the dyadic primes of the two fields such that the corresponding
dyadic completions have the same level and degree over the field of dyadic
numbers Q2. Thus Hilbert symbol equivalent number fields have the same
degree over the field of rational numbers Q, so Q is the only number field
which is Hilbert symbol equivalent with itself. A Hilbert symbol equivalence
between Q and itself will be called a rational self-equivalence.

If (t, T ) is a rational self-equivalence, then T induces a bijection between
the set of prime integers and itself, denoted again by T . A prime integer p
is called tame with respect to (t, T ) if

ordp(a) ≡ ordT (p)(t(a)) (mod2)

for any square class a, and wild if it is not tame ([4]).

The set of wild primes of a Hilbert symbol equivalence is called the wild

set of the equivalence. In [1] it is shown that between any two Hilbert symbol
equivalent number fields there are Hilbert symbol equivalences that have
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finite wild sets. In this paper we will investigate rational self-equivalences
that have finite wild sets. We will prove the following result:

Theorem 1. Let W be a finite set of prime integers. There is a rational

self-equivalence that has the set of wild primes equal to W if and only if no

prime in W is congruent to 3 (mod4).

Recall that a necessary condition for a finite set of prime ideals of an
arbitrary number field K to be the wild set of a Hilbert symbol equiva-
lence between K and some number field L is that −1 is a local square at
each non-dyadic prime in that set (see, for instance, the comments following
Corollary 5 in [3]). Theorem 1 implies that for the field of rational numbers
this condition is also sufficient. In a separate paper we will prove that this
condition is sufficient for the field of Gaussian numbers Q(

√
−1). We ask

whether any finite set W of prime ideals of an arbitrary number field K
such that −1 is a local square at each non-dyadic prime in W is the wild
set of a Hilbert symbol equivalence between K and some number field L.

2. Rational self-equivalences. This section contains basic properties
of the self-equivalences of Q. Let (t, T ) be a rational self-equivalence. Then
t : Q∗/Q∗2 → Q∗/Q∗2 is a group isomorphism, and T : Ω → Ω is a bijection
from the set of finite and infinite primes of Q to itself, such that T (2) = 2
and T (∞) = ∞. If p and q are two prime integers such that T (p) = q, then
t induces a local map

tp : Q∗

p/Q∗2
p → Q∗

q/Q∗2
q .

Note that tp is a group isomorphism that satisfies tp(−1) = −1 (see [4]).
Since −1 is a square in Q∗

p if and only if p ≡ 1 (mod4), it follows that p ≡ 1
(mod4) if and only if q ≡ 1 (mod4).

If p is a prime integer, then there is a unique non-trivial square class
up ∈ Q∗

p/Q∗2
p such that Qp(

√
up) is the non-trivial unramified local quadratic

extension of Qp.
If p = 2 then

Q∗

2/Q∗2
2 = {1,−1, 5, 3, 2,−2, 10, 6}

and in this case u2 = 5.
If p 6= 2 then

Q∗

p/Q∗2
p = {1, up, πp, upπp},

with πp = ̺p(p), where ̺p : Q∗/Q∗2 → Q∗

p/Q∗2
p is the projection map.

In all cases, up has the following characteristic property:

(1) (up, x)p = (−1)ordp(x) ∀x ∈ Q∗

p/Q∗2
p .

From now on we will assume that (t, T ) has a finite wild set W . If p is
a prime integer and q = T (p) then (1) implies that p is tame if and only if
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tp(up) = uq. Note that if p ≡ 3 (mod4) then −1 is a non-square unit in Qp.
Since −1 is a unit in Qq and tp(−1) = −1, we have tp(up) ∈ {1, uq}. But
tp(up) 6= 1, hence tp(up) = uq. Thus p is necessarily tame. This proves that
all the primes p that are congruent to 3 (mod4) are tame with respect to
any rational self-equivalence. Therefore, no element in W is congruent to 3
(mod4).

Let p be a prime integer, (t, T ) a rational self-equivalence, and let q =
T (p). If p is tame, there are two possible types of local maps tp:

Type A: tp(up) = uq, tp(πp) = πq;

Type B: tp(up) = uq, tp(πp) = uqπq.

If p is wild, there are four possible types of local maps tp:

Type 1: tp(up) = πq, tp(πp) = uq;

Type 2: tp(up) = uqπq, tp(πp) = uq;

Type 3: tp(up) = uqπq, tp(πp) = πq;

Type 4: tp(up) = πq, tp(πp) = uqπq.

Let W = {p1, . . . , pn}. We will regard W as an ordered set, with the elements
of W listed in a fixed order. For every i ∈ {1, . . . , n} let qi = T (pi) and
W ′ = {q1, . . . , qn}, regarded as an ordered set with the ordering induced by
the ordering of W . Note that pi = 2 if and only if qi = 2. Moreover, W ′ is
the wild set of the inverse self-equivalence (t−1, T−1).

In order to avoid multiple subscripts, we will use the following notations:
if pj ∈ W and pj 6= 2 then we will denote the elements of Q∗

pj
/Q∗2

pj
by

{1, uj , πj, ujπj}, and the elements of Q∗

qj
/Q∗2

qj
by {1, u′

j , π
′

j , u
′

jπ
′

j}. Also, we
will write tj instead of tpj

.
Set S = {∞, 2}∪W and S′ = {∞, 2}∪W ′, and define the following sets:

E(S) = {x ∈ Q∗/Q∗2 : ordl(x) ≡ 0 (mod2), ∀l 6∈ S},
E(S′) = {y ∈ Q∗/Q∗2 : ordl(y) ≡ 0 (mod2), ∀l 6∈ S′}.

Both E(S) and E(S′) are subgroups of Q∗/Q∗2. Let E(S)+ (and E(S′)+,
respectively) be the subgroup of E(S) (and E(S′), respectively) that consists
of square classes of positive rationals.

For every p ∈ S, consider the projection map νp : E(S) → Q∗

p/Q∗2
p .

Since S contains all the wild primes, the isomorphism t : Q∗/Q∗2 → Q∗/Q∗2

induces an isomorphism t : E(S) → E(S′) such that the following diagram
is commutative:

E(S)
νp

//

t

��

Q∗

p/Q∗2
p

tp

��

E(S′)
νq

// Q∗

q/Q∗2
q
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In fact, if we denote by νS : E(S) → ∏
p∈S Q∗

p/Q∗2
p the diagonal map and

by tS the direct product of all the local maps (tp)p∈S , then there is a com-
mutative diagram

E(S)
νS

//

t

��

∏
p∈S Q∗

p/Q∗2
p

tS
��

E(S′)
νS′

//
∏

q∈S′ Q∗

q/Q∗2
q

Moreover, since t(−1) = −1 we see that t induces a group isomorphism
t : E(S)+ → E(S′)+.

3. Dyadic correspondences. A correspondence C between two Hilbert
symbol equivalent number fields K and L is a composite object (S, S′, T,
(tP )P∈S), where S (and S′, respectively) is a finite set of primes in K (and
L, respectively) that contains all the dyadic and infinite primes, T : S → S′

is a bijection that maps infinite primes to infinite primes, and dyadic primes
to dyadic primes, and for each P ∈ S, tP : K∗

P /K∗2
P → L∗

T (P )/L∗2
T (P ) is a

group isomorphism that preserves the Hilbert symbols. Any correspondence
between two Hilbert symbol equivalent number fields can be extended to a
Hilbert symbol equivalence that has a finite wild set ([5]).

In this section we will investigate the possible correspondences between
the field of rational numbers Q and itself that involve only the infinite prime
∞ and the dyadic prime 2. These correspondences will be called dyadic

correspondences. Explicitly, a dyadic correspondence is a composite object
C = (S, S′, T, t∞, t2), where S = S′ = {∞, 2}. In fact, both T and t∞ are
the identity maps, so a dyadic correspondence is uniquely determined by
the local map t2.

To any correspondence one associates a non-negative integer, called the
defect of the correspondence ([5]). Specifically, if tS is the direct product of
the maps tP with P ∈ S and

H(S) = {x ∈ νS(E(S)) : tS(x) ∈ νS′(E(S′))}
then the defect of the correspondence is the number δ = |S| − rk2 H(S).
Lemma 5 from [4] implies that if the class number hS(K) is odd, then νS is
injective. It follows that if the defect of a rational correspondence is 0 then
there is a group isomorphism t : E(S) → E(S′) that makes the following
diagram commutative:

E(S)

t

��

νS
//
∏

p∈S Q∗

p/Q∗2
p

tS
��

E(S′)
νS′

//
∏

q∈S′ Q∗

q/Q∗2
q
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and the correspondence can be extended tamely to a rational self-equi-
valence. There are six local maps t2 that preserve the Hilbert symbols ([2]).
Two of them are tame:

Type A: t2(2) = 2, t2(5) = 5;

Type B: t2(2) = 10, t2(5) = 5.

The other four are wild (and they match the four types of wild local maps
presented in the previous section):

Type 1: t2(5) = 2, t2(2) = 5, t2(10) = 10;

Type 2: t2(5) = 10, t2(2) = 5, t2(10) = 2;

Type 3: t2(5) = 10, t2(2) = 2, t2(10) = 5;

Type 4: t2(5) = 2, t2(2) = 10, t2(10) = 5.

In [5] it is proved that any correspondence of defect δ can be extended to a
Hilbert symbol equivalence that has no less than δ+|rk2 CK(S)−rk2 CL(S′)|
additional wild primes. When K = L = Q, the second term in the above
formula is 0, so any such correspondence can be extended to a rational
self-equivalence that has δ additional wild primes.

Among the six dyadic correspondences, two have the defect equal to 0
(Type A and Type 3) and four have the defect equal to 1 (Type B, Type 1,
Type 2, and Type 4).

The dyadic correspondence of Type A can be extended (tamely) to the
identity self-equivalence of Q. The dyadic correspondence of Type 3 can be
extended tamely to a rational self-equivalence, denoted by (t(3), T (3)).

The dyadic correspondences of Types B, 1, 2, and 4 can be extended
to self-equivalences that have one additional wild prime (they cannot be
extended tamely to Hilbert symbol equivalences). In the remaining part of
this section we will show how to accomplish this when considering corre-
spondences of Types 1, 2, and 4.

Let q ≡ 5 (mod8) be any prime integer, and S = {∞, 2, q} = S′. For
each type of dyadic correspondence we will define a wild local map tq :
Q∗

q/Q∗2
q → Q∗

q/Q∗2
q of a certain type. Let tS = id × t2 × tq. Consider the

following diagram:

(2)

E(S)
νS

// R∗/R∗2 × Q∗

2/Q∗2
2 × Q∗

q/Q∗2
q

tS
��

E(S′)
νS′

// R∗/R∗2 × Q∗

2/Q∗2
2 × Q∗

q/Q∗2
q

Type 1. Define tq : Q∗

q/Q∗2
q → Q∗

q/Q∗2
q as a local wild map of Type 1.

Note that νS(−1) = (−1,−1, 1), νS(2) = (1, 2, uq), and νS(q) = (1, 5, πq) are
mapped by tS to (−1,−1, 1) = νS′(−1), (1, 5, πq) = νS′(q), and (1, 2, uq) =
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νS′(2) respectively, so the defect of this correspondence is equal to 0. There-
fore, the correspondence can be extended tamely to a rational self-equi-
valence denoted by (t(1), T (1)).

Type 2. Define tq : Q∗

q/Q∗2
q → Q∗

q/Q∗2
q as a local wild map of Type 4. In

this case νS(−1) = (−1,−1, 1), νS(2) = (1, 2, uq), and νS(q) = (1, 5, πq) are
mapped by tS to (−1,−1, 1) = νS′(−1), (1, 5, πq) = νS′(q), and (1, 10, uqπq)
= νS′(2q) respectively, so the defect of this correspondence is equal to 0.
Hence this correspondence can be extended tamely to a rational self-equi-
valence denoted by (t(2), T (2)).

Type 4. Define tq : Q∗

q/Q∗2
q → Q∗

q/Q∗2
q as a local wild map of Type 2.

The elements νS(−1) = (−1,−1, 1), νS(2) = (1, 2, uq), and νS(q) = (1, 5, πq)
are mapped by tS to (−1,−1, 1) = νS′(−1), (1, 10, uqπq) = νS′(2q), and
(1, 2, uq) = νS′(2) respectively, so the defect of this correspondence is equal
to 0. This correspondence can be extended tamely to a rational self-
equivalence denoted by (t(4), T (4)).

Remark 2. When constructing these rational self-equivalences, one can
use any prime integer q that is congruent to 5 (mod8).

4. The main results. Let (t, T ) be a rational self-equivalence with wild
set W . In Section 2 we have seen that if p ∈ W then either p = 2 or p ≡ 1
(mod4). Conversely, let p be a prime that is not congruent to 3 (mod4). If
p = 2, then the rational self-equivalence (t(3), T (3)) has the wild set equal
to {2}.

Proposition 3. For any prime p ≡ 1 (mod4) there is a rational self-

equivalence that has the wild set equal to {p}.

Proof. We will consider two cases:

Case 1: p ≡ 1 (mod8). In this case, θ2(p) = 1. Let q ≡ 1 (mod8)
be an arbitrary prime. Let S = {∞, 2, p}, S′ = {∞, 2, q}, and define C =
(S, S′, T, (tP )P∈S) as follows: T (∞) = ∞, T (2) = 2, T (p) = q, t∞ = id,
t2 = id, and tp wild of Type 3. Since

tS(νS(−1)) = tS(−1,−1, 1) = (−1,−1, 1) = νS′(−1),

tS(νS(2)) = tS(1, 2, 1) = (1, 2, 1) = νS′(2),

tS(νS(p)) = tS(1, 1, p) = (1, 1, q) = νS′(q),

and (−1,−1, 1), (1, 2, 1), (1, 1, p) are independent over F2, it follows that
the defect of this correspondence is equal to 0. Therefore, C can be extended
tamely to a rational self-equivalence. The wild set of this self-equivalence is
W = {p}.
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Case 2: p ≡ 5 (mod8). In this case, θ2(p) = 5. Let q ≡ 5 (mod8)
be an arbitrary prime. Let S = {∞, 2, p}, S′ = {∞, 2, q}, and define C =
(S, S′, T, (tP )P∈S) as follows: T (∞) = ∞, T (2) = 2, T (p) = q, t∞ = id,
t2 tame of Type B, and tp wild of Type 3. Since

tS(νS(−1)) = tS(−1,−1, 1) = (−1,−1, 1) = νS′(−1),

tS(νS(2)) = tS(1, 2, up) = (1, 10, uqq) = νS′(2q),

tS(νS(p)) = tS(1, 5, p) = (1, 5, q) = νS′(q),

and (−1,−1, 1), (1, 2, up), (1, 5, p) are independent over F2, it follows that
the defect of this correspondence is equal to 0. Therefore, C can be extended
tamely to a rational self-equivalence whose wild set is W = {p}.

Corollary 4. For any prime p that is not congruent to 3 (mod4) there

are infinitely many rational self-equivalences for which p is the only wild

prime.

Proof. If p ≡ 1 (mod4) then the proof of Proposition 3 and Remark 2
show that infinitely many rational self-equivalences (one for each q) have
the wild set equal to {p}.

If p = 2, let q be an arbitrary prime that is congruent to 5 (mod8).
Let S = {∞, 2, 5}, S′ = {∞, 2, q}, and define C = (S, S′, T, (tP )P∈S) as
follows: T (∞) = ∞, T (2) = 2, T (5) = q, t∞ = id, t2 wild of Type 3, and
tq : Q∗

5/Q∗2
5 → Q∗

q/Q∗2
q tame of Type B.

Note that tS sends νS(−1) = (−1,−1, 1), νS(2) = (1, 2, u), and νS(5) =
(1, 5, π), to (−1,−1, 1) = νS′(−1), (1, 2, u) = νS′(2), and (1, 10, uπ) =
νS′(2q) respectively, so the defect of this correspondence is equal to 0.
Therefore, the correspondence can be extended tamely to a rational self-
equivalence. Note that different primes q produce different rational self-
equivalences, so there are infinitely many rational self-equivalences with wild
set equal to {2}.

Proof of Theorem 1. We will prove by induction that for any n ≥ 1
and any set W of n prime integers not congruent to 3 (mod4), there is
a self-equivalence with wild set equal to W .

If n = 1 then for any set W that consists of one prime not congruent
to 3 (mod4), use Proposition 3 to construct a self-equivalence with wild set
equal to W .

Suppose that any set of n primes not congruent to 3 (mod4) is the wild
set of a rational self-equivalence; we will prove that any set of n + 1 primes
not congruent to 3 (mod4) is the wild set of a rational self-equivalence.
Let W = {p1, . . . , pn, pn+1} be an arbitrary set of primes not congruent
to 3 (mod 4), and let Wn = {p1, . . . , pn}. From the induction hypothesis,
there is a rational self-equivalence (t, T ) with wild set equal to Wn. Let
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qn+1 = T (pn+1). Use Proposition 3 to construct a rational self-equivalence
(t′, T ′) with wild set equal to {qn+1}.

We claim that (t′t, T ′T ) is a rational self-equivalence with wild set equal
to W . Indeed, (t′t)pk

= t′
T (pk)tpk

is the composition of a tame map (t′
T (pk))

with a wild map (tpk
), so pk is wild for any k ∈ {1, . . . , n}. Similarly,

(t′t)pn+1
= t′

T (pn+1)
tpn+1

is the composition of a wild map (t′
T (pn+1)

) with

a tame map (tpn+1
), so pn+1 is wild. Finally, if q 6∈ W then (t′t)q = t′

T (q)tq
is the composition of two tame maps, so q is tame.

Corollary 5. Any finite set of prime integers that are not congruent

to 3 (mod4) is the wild set of infinitely many rational self-equivalences.
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