Some congruences for binomial coefficients

by

TSUNE O ISHIKAWA (Osaka)

1. Introduction. Throughout this paper e denotes an integer ≥ 3 and p a prime $\equiv 1 \pmod{e}$. The integer f is defined by $p = ef + 1$. For integers r and s satisfying $1 \leq s < r < e$, we consider binomial coefficients of the form $\binom{rf}{sf}$. In the cases where p is represented by well known binary quadratic forms, the congruences modulo p or p^2 have been studied by many authors (for example, see [3]). In particular, the congruence modulo p^2 for $e = 3, 4, 6$ was explicitly obtained by Yeung in [7].

In the case of $e = 5$, Rajwade proved in [6] that

$$\binom{2f}{f} + \binom{3f}{f} + x \equiv 0 \pmod{p}$$

where x is given uniquely by Dickson’s equations

$$\begin{cases} p = x^2 + 50u^2 + 50v^2 + 125w^2, \\
xw = v^2 - 4uv - u^2, \quad x \equiv 1 \pmod{5}. \end{cases}$$

The explicit formula for $\binom{rf}{sf} \pmod{p}$ for $e = 5$ was given by Hudson and Williams in [3].

In this paper, we study the generalization of (1) for any e and the congruences modulo p^2, using Jacobi sums. The main theorem is Theorem 1 in §3. In §4, §5, and §6, we obtain explicit formulas by applying our theorem in the cases where $e = 5, 7,$ and 8.

2. Jacobi sums. For a positive integer n we set $\zeta_n = \exp(2\pi \sqrt{-1}/n)$. For $(a, e) = 1$, we define the automorphism σ_a by $\sigma_a(\zeta_e) = \zeta_e^a$, and let \mathcal{P} denote any of the $\phi(e)$ prime ideals dividing p in the cyclotomic field $\mathbb{Q}(\zeta_e)$. We define a multiplicative character $\chi_e \pmod{p}$ of order e by

$$\chi_e(n) = \begin{cases} \zeta_e^n & \text{if } n \not\equiv 0 \pmod{p}, \\
^f\zeta_e^n & \equiv 1 \pmod{\mathcal{P}}, \\
0 & \text{if } n \equiv 0 \pmod{p}. \end{cases}$$

2000 Mathematics Subject Classification: Primary 11A07; Secondary 11B65, 11T24.
For any positive integers r and s, the Jacobi sum $J_e(r, s)$ of order e is defined by
\[J_e(r, s) = -\sum_{n=0}^{p-1} \chi_e(n)^r \chi_e(1-n)^s. \]

Basic properties of Jacobi sums are as follows.

Proposition 1 (see [3]). We have
(a) $J_e(r, s) = J_e(s, r)$,
(b) $J_e(r, s) = (-1)^{sf} J_e(e - r - s, s)$ for $r + s < e$,
(c) $J_e(r, s) J_e(e - r, e - s) = p$,
(d) $J_e(r, r) = \sigma(r)(J_e(1, 1))$ for $1 \leq r \leq e - 1$,
(e) $J_e(e - r, e - s) \equiv 0 \pmod{P}$ for $r + s < e$,
(f) $(r^f + sf) \equiv J_e(r, s) \pmod{P^2}$ for $r + s < e$.

The following proposition is important to determine the congruence modulo p^2. It was proved by Yeung (see Proposition 4.1 of [7]).

Proposition 2. Let $r + s < e$ and $r \geq s$. Then
\[\left(\frac{(r + s)f}{sf}\right) \equiv J_e(r, s) \left\{ 1 + ((r + s)B_{r+s} - rB_r - sB_s) \frac{p}{e} \right\} \pmod{P^2} \]
where $B_t = \sum_{i=1}^{t} (1/i)$, $1 \leq t \leq e$.

3. Main theorem

Theorem 1. Let $e \geq 3$ be an integer and $p = ef + 1$ a prime. Then for $1 \leq r \leq e - 1$ with $(r, e) = 1$,
\[\sum_{1 \leq i \leq [e/2]} \left\{ (e - 2i) \left(\frac{2if}{if}\right) + 2i(-1)^{if} \left(\frac{(e - i)f}{if}\right) \right\} \equiv e \cdot \text{tr}_{K/Q} \left(2\Re J_e(r, r) - \frac{p}{2\Re J_e(r, r)} \right) \pmod{p^2}, \]
where $\text{tr}_{K/Q}(x)$ is the trace of x in the maximal real subfield $K = \mathbb{Q}(\zeta_e + \zeta_e^{-1})$ of $\mathbb{Q}(\zeta_e)$ over \mathbb{Q} and \(\Re z = \text{tr}_{\mathbb{Q}(\zeta_e)/K}(z)/2 \) is the real part of z.

Proof. By Proposition 2, we have
\[\left(\frac{2if}{if}\right) \equiv J_e(i, i) \left\{ 1 + (2iB_{2i} - 2iB_i) \frac{p}{e} \right\} \equiv J_e(i, i) \left\{ 1 + 2i(B_{2i} - B_i) \frac{p}{e} \right\} \pmod{P^2}. \]
Since $B_e = \sum_{i=1}^{p-1} (1/i) \equiv 0 \pmod{p}$, we obtain $B_{e-i} \equiv B_i \pmod{p}$ and
\(B_{e-2i} \equiv B_{2i} \pmod{p} \). Then, by Proposition 2, we have
\[
\binom{e-i}{if} \equiv J_e(e-2i, i) \left\{ 1 + ((e-i)B_{e-i} - (e-2i)B_{e-2i} - iB_i) \frac{p}{e} \right\} \equiv J_e(e-2i, i) \left\{ 1 - (e-2i)(B_{2i} - B_i) \frac{p}{e} \right\} \pmod{p^2}.
\]
Hence, by Proposition 1(b) we obtain
\[
(e-2i) \binom{2if}{if} + 2i(-1)^i \binom{e-i}{if} \equiv eJ_e(i, i) \pmod{p^2}.
\]

Put \(J_e(i, i) = R_i + S_i \sqrt{-1} \in \mathbb{Q}(\zeta_e) \), where \(R_i \) and \(S_i \) are real numbers. By Proposition 1(e), for any \(1 \leq i \leq \lfloor e/2 \rfloor \), we have
\[
\sigma_{e-1}(J_e(i, i)) = J_e(e-i, e-i) = R_i - S_i \sqrt{-1} \equiv 0 \pmod{\mathfrak{p}},
\]
so \(R_i \equiv S_i \sqrt{-1} \pmod{\mathfrak{p}} \). Then, by Proposition 1(c), we have
\[
R_i - S_i \sqrt{-1} = \frac{p}{R_i + S_i \sqrt{-1}} \equiv \frac{p}{2R_i} \pmod{p^2},
\]
hence,
\[
J_e(i, i) \equiv 2R_i - \frac{p}{2R_i} \pmod{p^2}.
\]
Since
\[
\sum_{1 \leq i \leq \lfloor e/2 \rfloor \atop (i,e)=1} \sigma_i(x) = \text{tr}_{K/Q}(x) \in \mathbb{Q}, \quad x \in K = \mathbb{Q}(\zeta_e + \zeta_e^{-1}),
\]
we have
\[
\sum_{1 \leq i \leq \lfloor e/2 \rfloor \atop (i,e)=1} J_e(i, i) = \sum_i \sigma_i(J_e(r, r)) \equiv \sum_i \sigma_i \left(2R_r - \frac{p}{2R_r} \right) \pmod{p^2}
\]
\[
\equiv \text{tr}_{K/Q} \left(2R J_e(r, r) - \frac{p}{2R J_e(r, r)} \right) \pmod{p^2},
\]
where \(r \) is an integer satisfying \(1 \leq r \leq e - 1 \) and \((r, e) = 1 \).

By the reduction modulo \(p \), we obtain the following corollary which is a generalization of (1).

Corollary 1. For \(1 \leq r \leq e - 1 \) with \((r, e) = 1 \),
\[
\sum_{1 \leq i \leq \lfloor e/2 \rfloor \atop (i,e)=1} \binom{2if}{if} \equiv \text{tr}_{\mathbb{Q}(\zeta_e)/\mathbb{Q}}(J_e(r, r)) \pmod{p}.
\]
4. The case of $e = 5$. Let p be a prime $\equiv 1 \pmod{5}$. The properties of Jacobi sums of order 5 were shown by Dickson (see [2] and [3]). We know that

$$J_5(1,1) = \frac{-1}{4} \left\{ x + u(2\zeta_5 + 4\zeta_5^2 - 4\zeta_5^3 - 2\zeta_5^4) + v(4\zeta_5 - 2\zeta_5^2 + 2\zeta_5^3 - 4\zeta_5^4) + 5w\sqrt{5} \right\} \equiv \frac{-1}{4} \{ x + 5\sqrt{5} + \sqrt{-1}(u\sqrt{50} + 10\sqrt{5} + v\sqrt{50} - 10\sqrt{5}) \},$$

where (x, u, v, w) is one of four solutions of (2). Therefore,

$$\text{tr}_{K/Q} \left(2\mathcal{R}J_e(1,1) - \frac{p}{2\mathcal{R}J_e(1,1)} \right) = \text{tr}_{K/Q} \left(\frac{-x + 5w\sqrt{5}}{2} + \frac{2p}{x + 5w\sqrt{5}} \right) \equiv -x \left(1 - \frac{4p}{x^2 - 125w^2} \right) \pmod{p^2}.$$

Note that x and w^2 are invariants under the change of the solution of (2). By Theorem 1, we obtain the following theorem. Moreover, by Corollary 1, we obtain the congruence (1). For $p < 1000$, the values of x, u, v, w are given in [4].

Theorem 2. If $p = 5f + 1$ is prime and (x, w) is any solution of (2), then

$$\binom{4f}{2f} + 2\binom{4f}{f} + 3\binom{2f}{f} + 4\binom{3f}{f} + 5x \left(1 - \frac{4p}{x^2 - 125w^2} \right) \equiv 0 \pmod{p^2}.$$

5. The case of $e = 7$. Let p be a prime $\equiv 1 \pmod{7}$. We consider the triple of diophantine equations

$$\begin{cases} 72p = 2a_1^2 + 42(a_2^2 + a_3^2 + a_4^2) + 343(a_5^2 + 3a_6^2), \\ 12(a_2^2 - a_4^2 + 2a_2a_3 - 2a_2a_4 + 4a_3a_4) + 49(3a_5^2 + 2a_5a_6 - 9a_6^2) + 56a_1a_6 = 0, \\ 12(a_2^2 - a_4^2 + 4a_2a_3 + 2a_2a_4 + 2a_3a_4) + 49(a_2^2 + 10a_5a_6 + 3a_5^2) + 28a_1(a_5 + a_6) = 0, \\ a_1 \equiv 1 \pmod{7}. \end{cases} \quad (4)$$

This simultaneous system has six nontrivial solutions in addition to the two trivial solutions $(-6b_1, \pm 2b_2, \pm 2b_2, \mp 2b_2, 0, 0)$, where b_1 and b_2 are given by $p = b_1^2 + 7b_2^2$ and $b_1 \equiv 1 \pmod{7}$. If $(a_1, a_2, a_3, a_4, a_5, a_6)$ is one of the six nontrivial solutions of (4), we know that for some r,

$$J_7(r, r) = c_1\zeta_7 + c_2\zeta_7^2 + c_3\zeta_7^3 + c_4\zeta_7^4 + c_5\zeta_7^5 + c_6\zeta_6$$
where
\[12c_1 = -2a_1 + 6a_2 + 7a_5 + 21a_6, \quad 12c_2 = -2a_1 + 6a_3 + 7a_5 - 21a_6,\]
\[12c_3 = -2a_1 + 6a_4 - 14a_5, \quad 12c_4 = -2a_1 - 6a_4 - 14a_5,\]
\[12c_5 = -2a_1 - 6a_3 + 7a_5 - 21a_6, \quad 12c_6 = -2a_1 - 6a_2 + 7a_5 + 21a_6.\]

The other five nontrivial solutions correspond to Jacobi sums \(\sigma_i(J_7(r, r))\) for \(2 \leq i \leq 6\). These results were proved by Leonard and Williams in [5]. For \(p < 1000\), the values of \(a_1, a_2, a_3, a_4, a_5, a_6\) are given in [4]. The right-hand side of the congruence in Theorem 1 is
\[(\sigma_1 + \sigma_2 + \sigma_3)(2R_r) + p \frac{(\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_3\sigma_1)(2R_r)}{(\sigma_1\sigma_2\sigma_3)(2R_r)}\]
where \(2R_r = 2\Re J_7(r, r) = (\sigma_1 + \sigma_6)(J_7(r, r))\). By Theorem 1 and direct calculation, we obtain the following theorem.

Theorem 3. If \(p = 7f + 1\) is prime and \((a_1, a_2, a_3, a_4, a_5, a_6)\) is any nontrivial solution of (4), then
\[
\left(\begin{array}{c}
6f \\
3f
\end{array}\right) + 2\left(\begin{array}{c}
6f \\
2f
\end{array}\right) + 3\left(\begin{array}{c}
4f \\
2f
\end{array}\right) + 4\left(\begin{array}{c}
5f \\
2f
\end{array}\right) + 5\left(\begin{array}{c}
2f \\
f
\end{array}\right) + 6\left(\begin{array}{c}
4f \\
f
\end{array}\right)
\]
\[+ 7\left(a_1 - \frac{18p(4a_1^2 - 343(a_5^2 + 3a_6^2))}{8a_1^2 - 2058a_1(a_5^2 + 3a_6^2) - 2041V}\right) \equiv 0 \pmod{p^2}\]
where \(V = a_3^2 - 27a_5^2a_6 - 9a_5a_6^2 + 27a_6^3\).

The next corollary follows immediately from Corollary 1. It was shown by Hudson and Williams in [3].

Corollary 2. If \(a_1\) is given by (4), then
\[
\left(\begin{array}{c}
2f \\
f
\end{array}\right) + \left(\begin{array}{c}
4f \\
2f
\end{array}\right) + \left(\begin{array}{c}
4f \\
3f
\end{array}\right) + a_1 \equiv 0 \pmod{p}.
\]

6. The case of \(e = 8\). Let \(p\) be a prime \(\equiv 1 \pmod{8}\). We can find the properties of Jacobi sums of order 8 in [1]. We know that
\[(5) \quad J_8(1, 1) = C + D\sqrt{-2}, \quad C \equiv \eta \pmod{4}\]
where
\[\eta = \begin{cases}
1 & \text{if 2 is a quartic residue } \pmod{p}, \\
-1 & \text{otherwise.}
\end{cases}\]
But, since \(\sigma_3(\sqrt{-2}) = \sqrt{-2} \in \mathbb{Q}(\zeta_8)\), we have \(J_8(1, 1) = J_8(3, 3)\). From (3), we obtain

Theorem 4. If \(p = 8f + 1\) is prime and \(C\) is given uniquely by (5), then
\[3\left(\begin{array}{c}
2f \\
f
\end{array}\right) + (-1)^f\left(\begin{array}{c}
7f \\
2f
\end{array}\right) \equiv \left(\begin{array}{c}
5f \\
2f
\end{array}\right) + 3(-1)^f\left(\begin{array}{c}
5f \\
3f
\end{array}\right) \equiv 4\left(2C - \frac{p}{2C}\right) \pmod{p^2}.
\]
References

Department of Mathematics
Osaka Institute of Technology
Omiya, Asahi-ku, Osaka 535-8585, Japan
E-mail: ishikawa@ge.oit.ac.jp

Received on 28.2.2005 (4945)