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Mixed sums of squares and triangular numbers
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Zhi-Wei Sun (Nanjing)

1. Introduction. A classical result of Fermat asserts that any prime
p ≡ 1 (mod4) is a sum of two squares of integers. Fermat also conjectured
that each n ∈ N can be written as a sum of three triangular numbers, where
N is the set {0, 1, 2, . . .} of natural numbers, and triangular numbers are
those integers tx = x(x + 1)/2 with x ∈ Z. An equivalent version of this
conjecture states that 8n + 3 is a sum of three squares (of odd integers).
This follows from the following profound theorem (see, e.g., [G, pp. 38–49]
or [N, pp. 17–23]).

Gauss–Legendre Theorem. n ∈ N can be written as a sum of three

squares of integers if and only if n is not of the form 4k(8l+7) with k, l ∈ N.

Building on some work of Euler, in 1772 Lagrange showed that every
natural number is a sum of four squares of integers.

For problems and results on representations of natural numbers by various
quadratic forms with coefficients in N, the reader may consult [Du] and [G].

Motivated by Ramanujan’s work [Ra], L. Panaitopol [P] proved the fol-
lowing interesting result in 2005.

Theorem A. Let a, b, c be positive integers with a ≤ b ≤ c. Then every

odd natural number can be written in the form ax2+by2+cz2 with x, y, z ∈ Z
if and only if the vector (a, b, c) is (1, 1, 2) or (1, 2, 3) or (1, 2, 4).

According to L. E. Dickson [D2, p. 260], Euler already noted that any
odd integer n > 0 is representable by x2 + y2 + 2z2 with x, y, z ∈ Z.

In 1862 J. Liouville (cf. [D2, p. 23]) proved the following result.

Theorem B. Let a, b, c be positive integers with a ≤ b ≤ c. Then every

n ∈ N can be written as atx + bty + ctz with x, y, z ∈ Z if and only if (a, b, c)
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is among the following vectors:

(1, 1, 1), (1, 1, 2), (1, 1, 4), (1, 1, 5), (1, 2, 2), (1, 2, 3), (1, 2, 4).

Now we turn to representations of natural numbers by mixed sums of
squares (of integers) and triangular numbers.

Let n ∈ N. By the Gauss–Legendre theorem, 8n + 1 is a sum of three
squares. It follows that 8n+1 = (2x)2 +(2y)2 +(2z+1)2 for some x, y, z ∈ Z
with x ≡ y (mod2); this yields the representation

n =
x2 + y2

2
+ tz =

(

x+ y

2

)2

+

(

x− y

2

)2

+ tz

as observed by Euler. According to Dickson [D2, p. 24], E. Lionnet stated,
and V. A. Lebesgue [L] and M. S. Réalis [Re] proved that n can also be
written in the form x2 + ty + tz with x, y, z ∈ Z. Quite recently, this was
reproved by H. M. Farkas [F] via the theory of theta functions.

Using the theory of ternary quadratic forms, in 1939 B. W. Jones and
G. Pall [JP, Theorem 6] proved that for any n ∈ N we have 8n + 1 =
ax2 + by2 + cz2 for some x, y, z ∈ Z if the vector (a, b, c) belongs to the set

{(1, 1, 16), (1, 4, 16), (1, 16, 16), (1, 2, 32), (1, 8, 32), (1, 8, 64)}.

As (2z + 1)2 = 8tz + 1, the result of Jones and Pall implies that each n ∈ N
can be written in any of the following three forms with x, y, z ∈ Z:

2x2 + 2y2 + tz = (x+ y)2 + (x− y)2 + tz, x
2 + 4y2 + tz, x

2 + 8y2 + tz.

In this paper we establish the following result by means of q-series.

Theorem 1.

(i) Any n ∈ N is a sum of an even square and two triangular numbers.

Moreover , if n/2 is not a triangular number then

(1) |{(x, y, z) ∈ Z × N × N : x2 + ty + tz = n and 2 ∤x}|

= |{(x, y, z) ∈ Z × N × N : x2 + ty + tz = n and 2 |x}|.

(ii) If n ∈ N is not a triangular number , then

(2) |{(x, y, z) ∈ Z × Z × N : x2 + y2 + tz = n and x 6≡ y (mod2)}|

= |{(x, y, z) ∈ Z×Z×N : x2 +y2 + tz = n and x ≡ y (mod2)}| > 0.

(iii) A positive integer n is a sum of an odd square, an even square and

a triangular number , unless it is a triangular number tm (m > 0)
for which all prime divisors of 2m + 1 are congruent to 1 mod 4
and hence tm = x2 + x2 + tz for some integers x > 0 and z with

x ≡ m/2 (mod2).

Remark. Note that t2 = 12 + 12 + t1 but we cannot write t2 = 3 as a
sum of an odd square, an even square and a triangular number.
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Here are two more theorems of this paper.

Theorem 2. Let a, b, c be positive integers with a ≤ b. Suppose that

every n ∈ N can be written as ax2 + by2 + ctz with x, y, z ∈ Z. Then (a, b, c)
is among the following vectors:

(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 4),

(1, 3, 1), (1, 4, 1), (1, 4, 2), (1, 8, 1), (2, 2, 1).

Theorem 3. Let a, b, c be positive integers with b ≥ c. Suppose that

every n ∈ N can be written as ax2 + bty + ctz with x, y, z ∈ Z. Then (a, b, c)
is among the following vectors:

(1, 1, 1), (1, 2, 1), (1, 2, 2), (1, 3, 1), (1, 4, 1), (1, 4, 2), (1, 5, 2),

(1, 6, 1), (1, 8, 1), (2, 1, 1), (2, 2, 1), (2, 4, 1), (3, 2, 1), (4, 1, 1), (4, 2, 1).

Theorem 1 and Theorems 2–3 will be proved in Sections 2 and 3 respec-
tively. In Section 4, we will pose three conjectures and discuss the converses
of Theorems 2 and 3.

2. Proof of Theorem 1. Given two integer-valued quadratic polyno-
mials f(x, y, z) and g(x, y, z), by writing f(x, y, z) ∼ g(x, y, z) we mean that

{f(x, y, z) : x, y, z ∈ Z} = {g(x, y, z) : x, y, z ∈ Z}.

Clearly ∼ is an equivalence relation on the set of all integer-valued ternary
quadratic polynomials.

The following lemma is a refinement of Euler’s observation ty + tz ∼
y2 + 2tz (cf. [D2, p. 11]).

Lemma 1. For any n ∈ N we have

(3) |{(y, z) ∈ N2 : ty + tz = n}| = |{(y, z) ∈ Z × N : y2 + 2tz = n}|.

Proof. Note that t−y−1 = ty. Thus

|{(y, z) ∈ N2 : ty + tz = n}| =
1

4
|{(y, z) ∈ Z2 : ty + tz = n}|

=
1

4
|{(y, z) ∈ Z2 : 4n+ 1 = (y + z + 1)2 + (y − z)2}|

=
1

4
|{(x1, x2) ∈ Z2 : 4n+ 1 = x2

1 + x2
2 and x1 6≡ x2 (mod2)}|

=
2

4
|{(y, z) ∈ Z2 : 4n+ 1 = (2y)2 + (2z + 1)2}|

=
1

2
|{(y, z) ∈ Z2 : n = y2 + 2tz}| = |{(y, z) ∈ Z × N : n = y2 + 2tz}|.
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Lemma 1 is actually equivalent to the following observation of Ramanu-
jan (cf. Entry 25(iv) of [B, p. 40]): ψ(q)2 = ϕ(q)ψ(q2) for |q| < 1, where

(4) ϕ(q) =
∞

∑

n=−∞

qn2

and ψ(q) =
∞
∑

n=0

qtn .

Let n ∈ N and define

r(n) = |{(x, y, z) ∈ Z × N × N : x2 + ty + tz = n}|,(5)

r0(n) = |{(x, y, z) ∈ Z × N × N : x2 + ty + tz = n and 2 |x}|,(6)

r1(n) = |{(x, y, z) ∈ Z × N × N : x2 + ty + tz = n and 2 ∤x}|.(7)

Clearly r0(n) + r1(n) = r(n). In the following lemma we investigate the
difference r0(n) − r1(n).

Lemma 2. For m = 0, 1, 2, . . . we have

(8) r0(2tm) − r1(2tm) = (−1)m(2m+ 1).

Also, r0(n) = r1(n) if n ∈ N is not a triangular number times 2.

Proof. Let |q| < 1. Recall the following three known identities implied
by Jacobi’s triple product identity (cf. [AAR, pp. 496–501]):

ϕ(−q) =
∞
∏

n=1

(1 − q2n−1)2(1 − q2n) (Gauss),

ψ(q) =
∞
∏

n=1

1 − q2n

1 − q2n−1
(Gauss),

∞
∏

n=1

(1 − qn)3 =
∞
∑

n=0

(−1)n(2n+ 1)qtn (Jacobi).

Observe that
∞

∑

n=0

(r0(n) − r1(n))qn

=
(

∞
∑

x=−∞

(−1)xqx2
)(

∞
∑

y=0

qty
)(

∞
∑

z=0

qtz
)

= ϕ(−q)ψ(q)2

=
(

∞
∏

n=1

(1 − q2n−1)2(1 − q2n)
)

( ∞
∏

n=1

1 − q2n

1 − q2n−1

)2

=
∞
∏

n=1

(1 − q2n)3 =
∞

∑

m=0

(−1)m(2m+ 1)(q2)tm .

Comparing the coefficients of qn on both sides, we obtain the desired result.
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The following result was discovered by Hurwitz in 1907 (cf. [D2, p. 271]);
an extension was established in [HS] via the theory of modular forms of half
integer weight.

Lemma 3. Let n > 0 be an odd integer , and let p1, . . . , pr be all the

distinct prime divisors of n congruent to 3 mod 4. Write n = n0
∏

0<i≤r p
αi

i ,
where n0, α1, . . . , αr are positive integers and n0 has no prime divisors con-

gruent to 3 mod 4. Then

(9) |{(x, y, z) ∈ Z3 : x2 + y2 + z2 = n2}| = 6n0

∏

0<i≤r

(

pαi

i + 2
pαi

i − 1

pi − 1

)

.

Proof. We deduce (9) in a new way and use some standard notations in
number theory.

By (4.8) and (4.10) of [G],

|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = n2}|

=
∑

d|n

24

π
d

∞
∑

m=1

1

m

(

−4d2

m

)

=
24

π

∑

d|n

d
∞

∑

k=1

(−1)k−1

2k − 1

∑

c|gcd(2k−1,d)

µ(c)

=
24

π

∑

d|n

d
∑

c|d

µ(c)
∞

∑

k=1

(−1)((2k−1)c−1)/2

(2k − 1)c

=
24

π

∑

d|n

d
∑

c|d

µ(c)

c
(−1)(c−1)/2

∞
∑

k=1

(−1)k−1

2k − 1

= 6
∑

c|n

(−1)(c−1)/2 µ(c)

c

∑

q|n
c

cq

= 6
∑

c|n

(−1)(c−1)/2µ(c)σ

(

n

c

)

and hence
1

6
|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = n2}|

=
∑

d0|n0

∑

d1|p
α1

1
,...,dr|p

αr
r

(

−1

d0d1 · · · dr

)

µ(d0d1 · · · dr)σ

(

n0

d0

∏

0<i≤r

pαi

i

di

)

=
∑

d0|n0

(

−1

d0

)

µ(d0)σ

(

n0

d0

)

∏

0<i≤r

∑

di|p
αi
i

(

−1

di

)

µ(di)σ

(

pαi

i

di

)
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=
∑

d0|n0

µ(d0)σ

(

n0

d0

)

∏

0<i≤r

(

σ(pαi

i ) +

(

−1

pi

)

µ(pi)σ(pαi−1
i )

)

= n0

∏

0<i≤r

(pαi

i + 2σ(pαi−1
i )) = n0

∏

0<i≤r

(

pαi

i + 2
pαi

i − 1

pi − 1

)

.

Proof of Theorem 1. (i) By the Gauss–Legendre theorem, 4n + 1 is a
sum of three squares and hence 4n + 1 = (2x)2 + (2y)2 + (2z + 1)2 (i.e.,
n = x2 + y2 + 2tz) for some x, y, z ∈ Z. Combining this with Lemma 1 we
obtain a simple proof of the known result

r(n) = |{(x, y, z) ∈ Z × N × N : x2 + ty + tz = n}| > 0.

Recall that r0(n)+ r1(n) = r(n). If n/2 is not a triangular number, then
r0(n) = r1(n) = r(n)/2 > 0 by Lemma 2. If n = 2tm for some m ∈ N, then
we also have r0(n) > 0 since n = 02 + tm + tm.

(ii) Note that

n = x2 + y2 + tz ⇔ 2n = 2(x2 + y2) + 2tz = (x+ y)2 + (x− y)2 + 2tz.

From this and Lemma 1, we get

|{(x, y, z) ∈ Z × Z × N : x2 + y2 + tz = n}|

= |{(x, y, z) ∈ Z × Z × N : x2 + y2 + 2tz = 2n}|

= |{(x, y, z) ∈ Z × N × N : x2 + ty + tz = 2n}|

= r(2n) > 0;

in the language of generating functions, it says that

ϕ(q)ψ(q)2 + ϕ(−q)ψ(−q)2 = 2ϕ(q2)2ψ(q2).

Similarly,

|{(x, y, z) ∈ Z × Z × N : x2 + y2 + tz = n and x ≡ y (mod2)}|

= |{(x, y, z) ∈ Z × Z × N : x2 + y2 + 2tz = 2n and 2 |x}|

= |{(x, y, z) ∈ Z × N × N : x2 + ty + tz = 2n and 2 |x}| = r0(2n) > 0

and

(10) |{(x, y, z) ∈ Z × Z × N : x2 + y2 + tz = n and x 6≡ y (mod2)}|

= r1(2n).

If n is not a triangular number, then r0(2n) = r1(2n) = r(2n)/2 > 0 by
Lemma 2, and hence (2) follows from the above.

(iii) By Theorem 1(ii), if n is not a triangular number then n = x2+y2+tz
for some x, y, z ∈ Z with 2 |x and 2 ∤ y.
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Now assume that n = tm (m > 0) is not a sum of an odd square, an
even square and a triangular number. Then r1(2tm) = 0 by (10). In view of
(ii) and (8),

|{(x, y, z) ∈ Z × Z × N : x2 + y2 + tz = tm}|

= r0(2tm) + r1(2tm) = r0(2tm) − r1(2tm) = (−1)m(2m+ 1).

Therefore

(−1)m(2m+ 1) =
1

2
|{(x, y, z) ∈ Z3 : x2 + y2 + tz = tm}|

=
1

2
|{(x, y, z) ∈ Z3 : 2(2x)2 + 2(2y)2 + (2z + 1)2 = 8tm + 1}|

=
1

2
|{(x, y, z) ∈ Z3 : (2x+ 2y)2 + (2x− 2y)2 + (2z + 1)2 = 8tm + 1}|

=
1

2
|{(x1, y1, z) ∈ Z3 : 4(x2

1 + y2
1) + (2z + 1)2 = (2m+ 1)2}|

=
1

6
|{(x, y, z) ∈ Z3 : x2 + y2 + z2 = (2m+ 1)2}|.

Since

(−1)m6(2m+1) = |{(x, y, z) ∈ Z3 : x2 + y2 + z2 = (2m+1)2}| 6> 6(2m+1),

by Lemma 3 the odd number 2m+1 cannot have a prime divisor congruent
to 3 mod 4. So all the prime divisors of 2m + 1 are congruent to 1 mod 4,
and hence

|{(x, y) ∈ N2 : x > 0 and x2 + y2 = 2m+ 1}| =
∑

d|2m+1

1 > 1

by Proposition 17.6.1 of [IR, p. 279]. Thus 2m+1 is a sum of two squares of
positive integers. Choose positive integers x and y such that x2+y2 = 2m+1
with 2 |x and 2 ∤ y. Then

8tm + 1 = (2m+ 1)2 = (x2 − y2)2 + 4x2y2 = 8t(x2−y2−1)/2 + 1 + 16

(

x

2

)2

y2

and hence

tm = t(x2−y2−1)/2 +

(

x

2
y

)2

+

(

x

2
y

)2

.

As x2 = 2m+ 1 − y2 ≡ 2m (mod8), m is even and

m

2
≡

(

x

2

)2

≡
x

2
≡
x

2
y (mod2).

We are done.
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3. Proofs of Theorems 2 and 3

Proof of Theorem 2. We distinguish four cases.

Case 1: a = c = 1. Write 8 = x2
0 + by2

0 + tz0
with x0, y0, z0 ∈ Z. Then

y0 6= 0 and hence 8 ≥ b. Since x2 + 5y2 + tz 6= 13, x2 + 6y2 + tz 6= 47 and
x2 + 7y2 + tz 6= 20, we must have b ∈ {1, 2, 3, 4, 8}.

Case 2: a= 1 and c= 2. Write 5 = x2
0 + by2

0 + 2tz0
with x0, y0, z0 ∈ Z.

Then y0 6= 0 and hence 5 ≥ b. Observe that x2 + 3y2 + 2tz 6= 8 and x2 +
5y2 + 2tz 6= 19. Therefore b ∈ {1, 2, 4}.

Case 3: a = 1 and c ≥ 3. Since 2 = x2 + by2 + ctz for some x, y, z ∈ Z,
we must have b ≤ 2. If b = 1, then there are x0, y0, z0 ∈ Z such that
3 = x2

0+y2
0 +ctz0

≥ c and hence c = 3. But x2+y2+3tz 6= 6, therefore b = 2.
For some x, y, z ∈ Z we have 5 = x2+2y2+ctz ≥ c. Since x2+2y2+3tz 6= 23
and x2 + 2y2 + 5tz 6= 10, c must be 4.

Case 4: a > 1. As b ≥ a ≥ 2 and ax2+by2+ctz = 1 for some x, y, z ∈ Z,
we must have c = 1. If a > 2, then ax2 + by2 + tz 6= 2. Thus a = 2. For some
x0, y0, z0 ∈ Z we have 4 = 2x2

0 + by2
0 + tz0

≥ b. Note that 2x2 + 3y2 + tz 6= 7
and 2x2 + 4y2 + tz 6= 20. Therefore b = 2.

In view of the above, Theorem 2 has been proven.

Proof of Theorem 3. Let us first consider the case c > 1. Since 1 = ax2+
bty + ctz for some x, y, z ∈ Z, we must have a = 1. Clearly x2 + bty + ctz 6= 2
if c ≥ 3. So c = 2. For some x0, y0, z0 ∈ Z we have 5 = x2

0 + bty0
+ 2tz0

≥ b.
It is easy to check that x2 + 3ty + 2tz 6= 8. Therefore b ∈ {2, 4, 5}.

Below we assume that c = 1. If a and b are both greater than 2, then
ax2 + bty + tz 6= 2. So a ≤ 2 or b ≤ 2.

Case 1: a = 1. For some x0, y0, z0 ∈ Z we have 8 = x2
0 + bty0

+ tz0
≥ b.

Note that x2 + 5ty + tz 6= 13 and x2 + 7ty + tz 6= 20. So b ∈ {1, 2, 3, 4, 6, 8}.

Case 2: a = 2. For some x0, y0, z0 ∈ Z we have 4 = 2x2
0 + bty0

+ tz0
≥ b.

Thus b ∈ {1, 2, 4} since 2x2 + 3ty + tz 6= 7.

Case 3: a > 2. In this case b ≤ 2. If b = 1, then for some x0, y0, z0 ∈ Z
we have 5 = ax2

0 + ty0
+ tz0

≥ a, and hence a = 4 since 3x2 + ty + tz 6= 8
and 5x2 + ty + tz 6= 19. If b = 2, then for some x, y, z ∈ Z we have 4 =
ax2 + 2ty + tz ≥ a and so a ∈ {3, 4}.

The proof of Theorem 3 is now complete.

4. Some conjectures and related discussion. In this section we
raise three related conjectures.

Conjecture 1. Any positive integer n is a sum of a square, an odd

square and a triangular number. In other words, each natural number can

be written in the form x2 + 8ty + tz with x, y, z ∈ Z.
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We have verified Conjecture 1 for n ≤ 15 000. By Theorem 1(iii), Con-
jecture 1 is valid when n 6= t4, t8, t12, . . . .

Conjecture 2. Each n ∈ N can be written in any of the following

forms with x, y, z ∈ Z:

x2 + 3y2 + tz, x
2 + 3ty + tz, x

2 + 6ty + tz, 3x2 + 2ty + tz, 4x2 + 2ty + tz.

Conjecture 3. Every n ∈ N can be written in the form x2 + 2y2 +
3tz (with x, y, z ∈ Z) except n = 23, in the form x2 + 5y2 + 2tz (or the

equivalent form 5x2 + ty + tz) except n = 19, in the form x2 +6y2 + tz except

n = 47, and in the form 2x2 + 4y2 + tz except n = 20.

Both Conjectures 2 and 3 have been verified for n ≤ 10 000.
The second statement in Conjecture 3 is related to an assertion of Ra-

manujan confirmed by Dickson [D1] which states that even natural numbers
not of the form 4k(16l+ 6) (with k, l ∈ N) can be written as x2 + y2 + 10z2

with x, y, z ∈ Z. Observe that

n = x2 + 5y2 + 2tz for some x, y, z ∈ Z

⇔ 4n+ 1 = x2 + 5y2 + z2 for some x, y, z ∈ Z with 2 ∤ z

⇔ 8n+ 2 = 2(x2 + y2) + 10z2 = (x+ y)2 + (x− y)2 + 10z2

for some x, y, z ∈ Z with 2 ∤ y

⇔ 8n+ 2 = x2 + y2 + 10z2 for some x, y, z ∈ Z with x 6≡ y (mod4).

Below we reduce the converses of Theorems 2 and 3 to Conjectures 1
and 2. For convenience, we call a ternary quadratic polynomial f(x, y, z)
essential if {f(x, y, z) : x, y, z ∈ Z} = N. (Actually, in 1748 Goldbach (cf.
[D2, p. 11]) already stated that x2 + y2 + 2tz, x

2 + 2y2 + tz, x
2 + 2y2 + 2tz

and 2x2 + 2ty + tz are essential.)

Step I. We show that the 10 quadratic polynomials listed in Theorem 2
are essential except for the form x2 + 3y2 + tz appearing in Conjecture 2.

As 4x2 +y2 +2tz ∼ 4x2 + ty + tz, the form x2 +(2y)2 +2tz is essential by
Theorem 1(i). Both x2+(2y)2+tz and 2x2+2y2+tz = (x+y)2+(x−y)2+tz
are essential by Theorem 1(ii) and the trivial fact tz = 02 +02 + tz. We have
pointed out in Section 1 that x2 +2(2y)2+tz is essential by [JP, Theorem 6],
and we do not have an easy proof of this deep result.

Since

x2 + 2y2 + 4tz ∼ x2 + 2(ty + tz) ∼ tx + ty + 2tz,

the form x2 + 2y2 + 4tz is essential by Theorem B (of Liouville). By the
Gauss–Legendre theorem, for each n ∈ N we can write 8n + 2 = (4x)2 +
(2y+ 1)2 + (2z+ 1)2 (i.e., n = 2x2 + ty + tz) with x, y, z ∈ Z. Thus the form
x2 + 2y2 + 2tz is essential since 2x2 + y2 + 2tz ∼ 2x2 + ty + tz.
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Step II. We analyze the 15 quadratic polynomials listed in Theorem 3.
By Theorem 1(i), (2x)2 + ty + tz and x2 + ty + tz are essential. Since

x2 + 2ty + tz ∼ tx + ty + tz,

x2 + 2ty + 2tz ∼ tx + ty + 2tz,

x2 + 4ty + 2tz ∼ tx + 4ty + tz,

x2 + 5ty + 2tz ∼ tx + 5ty + tz,

2x2 + 4ty + tz ∼ 2tx + 2ty + tz,

the forms

x2 + 2ty + tz, x
2 + 2ty + 2tz, x

2 + 4ty + 2tz, x
2 + 5ty + 2tz, 2x2 + 4ty + tz

are all essential by Liouville’s theorem. For n ∈ N we can write 2n = x2 +
4ty + 2tz with x, y, z ∈ Z, and hence n = 2x2

0 + 2ty + tz with x0 = x/2 ∈ Z.
So the form 2x2 + 2ty + tz is also essential.

Recall that 2x2 + ty + tz and 2x2 + y2 + 2tz are essential by the last
two sentences of Step I. For each n ∈ N we can choose x, y, z ∈ Z such that
2n + 1 = 2x2 + (2y + 1)2 + 2tz and hence n = x2 + 4ty + tz. So the form
x2 + 4ty + tz is essential.

The remaining forms listed in Theorem 3 are x2 +8ty + tz and four other
forms, which appear in Conjectures 1 and 2 respectively. We are done.

Acknowledgement. The author is indebted to the referee for his/her
helpful comments.

Added in proof (February 2007). The second conjecture in Section 4 has been
confirmed by Song Guo, Hao Pan and the author.
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