Mixed sums of squares and triangular numbers

by

Zhi-Wei Sun (Nanjing)

1. Introduction. A classical result of Fermat asserts that any prime $p \equiv 1(\bmod 4)$ is a sum of two squares of integers. Fermat also conjectured that each $n \in \mathbb{N}$ can be written as a sum of three triangular numbers, where \mathbb{N} is the set $\{0,1,2, \ldots\}$ of natural numbers, and triangular numbers are those integers $t_{x}=x(x+1) / 2$ with $x \in \mathbb{Z}$. An equivalent version of this conjecture states that $8 n+3$ is a sum of three squares (of odd integers). This follows from the following profound theorem (see, e.g., [G, pp. 38-49] or [N, pp. 17-23]).

Gauss-Legendre Theorem. $n \in \mathbb{N}$ can be written as a sum of three squares of integers if and only if n is not of the form $4^{k}(8 l+7)$ with $k, l \in \mathbb{N}$.

Building on some work of Euler, in 1772 Lagrange showed that every natural number is a sum of four squares of integers.

For problems and results on representations of natural numbers by various quadratic forms with coefficients in \mathbb{N}, the reader may consult $[\mathrm{Du}]$ and $[G]$.

Motivated by Ramanujan's work [Ra], L. Panaitopol [P] proved the following interesting result in 2005.

Theorem A. Let a, b, c be positive integers with $a \leq b \leq c$. Then every odd natural number can be written in the form $a x^{2}+b y^{2}+c z^{2}$ with $x, y, z \in \mathbb{Z}$ if and only if the vector (a, b, c) is $(1,1,2)$ or $(1,2,3)$ or $(1,2,4)$.

According to L. E. Dickson [D2, p. 260], Euler already noted that any odd integer $n>0$ is representable by $x^{2}+y^{2}+2 z^{2}$ with $x, y, z \in \mathbb{Z}$.

In 1862 J. Liouville (cf. [D2, p. 23]) proved the following result.
Theorem B. Let a, b, c be positive integers with $a \leq b \leq c$. Then every $n \in \mathbb{N}$ can be written as at $t_{x}+b t_{y}+c t_{z}$ with $x, y, z \in \mathbb{Z}$ if and only if (a, b, c)

[^0]is among the following vectors:
$$
(1,1,1),(1,1,2),(1,1,4),(1,1,5),(1,2,2),(1,2,3),(1,2,4) .
$$

Now we turn to representations of natural numbers by mixed sums of squares (of integers) and triangular numbers.

Let $n \in \mathbb{N}$. By the Gauss-Legendre theorem, $8 n+1$ is a sum of three squares. It follows that $8 n+1=(2 x)^{2}+(2 y)^{2}+(2 z+1)^{2}$ for some $x, y, z \in \mathbb{Z}$ with $x \equiv y(\bmod 2)$; this yields the representation

$$
n=\frac{x^{2}+y^{2}}{2}+t_{z}=\left(\frac{x+y}{2}\right)^{2}+\left(\frac{x-y}{2}\right)^{2}+t_{z}
$$

as observed by Euler. According to Dickson [D2, p. 24], E. Lionnet stated, and V. A. Lebesgue [L] and M. S. Réalis [Re] proved that n can also be written in the form $x^{2}+t_{y}+t_{z}$ with $x, y, z \in \mathbb{Z}$. Quite recently, this was reproved by H. M. Farkas [F] via the theory of theta functions.

Using the theory of ternary quadratic forms, in 1939 B. W. Jones and G. Pall [JP, Theorem 6] proved that for any $n \in \mathbb{N}$ we have $8 n+1=$ $a x^{2}+b y^{2}+c z^{2}$ for some $x, y, z \in \mathbb{Z}$ if the vector (a, b, c) belongs to the set

$$
\{(1,1,16),(1,4,16),(1,16,16),(1,2,32),(1,8,32),(1,8,64)\} .
$$

As $(2 z+1)^{2}=8 t_{z}+1$, the result of Jones and Pall implies that each $n \in \mathbb{N}$ can be written in any of the following three forms with $x, y, z \in \mathbb{Z}$:

$$
2 x^{2}+2 y^{2}+t_{z}=(x+y)^{2}+(x-y)^{2}+t_{z}, x^{2}+4 y^{2}+t_{z}, x^{2}+8 y^{2}+t_{z} .
$$

In this paper we establish the following result by means of q-series.
Theorem 1.
(i) Any $n \in \mathbb{N}$ is a sum of an even square and two triangular numbers. Moreover, if $n / 2$ is not a triangular number then

$$
\begin{align*}
& \mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}: x^{2}+t_{y}+t_{z}=n \text { and } 2 \nmid x\right\} \mid \tag{1}\\
&=\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}: x^{2}+t_{y}+t_{z}=n \text { and } 2 \mid x\right\} \mid .
\end{align*}
$$

(ii) If $n \in \mathbb{N}$ is not a triangular number, then

$$
\begin{align*}
& \mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+t_{z}=n \text { and } x \not \equiv y(\bmod 2)\right\} \mid \tag{2}\\
& =\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+t_{z}=n \text { and } x \equiv y(\bmod 2)\right\} \mid>0 .
\end{align*}
$$

(iii) A positive integer n is a sum of an odd square, an even square and a triangular number, unless it is a triangular number $t_{m}(m>0)$ for which all prime divisors of $2 m+1$ are congruent to 1 mod 4 and hence $t_{m}=x^{2}+x^{2}+t_{z}$ for some integers $x>0$ and z with $x \equiv m / 2(\bmod 2)$.
Remark. Note that $t_{2}=1^{2}+1^{2}+t_{1}$ but we cannot write $t_{2}=3$ as a sum of an odd square, an even square and a triangular number.

Here are two more theorems of this paper.
Theorem 2. Let a, b, c be positive integers with $a \leq b$. Suppose that every $n \in \mathbb{N}$ can be written as $a x^{2}+b y^{2}+c t_{z}$ with $x, y, z \in \mathbb{Z}$. Then (a, b, c) is among the following vectors:

$$
\begin{aligned}
& (1,1,1),(1,1,2),(1,2,1),(1,2,2),(1,2,4), \\
& (1,3,1),(1,4,1),(1,4,2),(1,8,1),(2,2,1) .
\end{aligned}
$$

Theorem 3. Let a, b, c be positive integers with $b \geq c$. Suppose that every $n \in \mathbb{N}$ can be written as $a x^{2}+b t_{y}+c t_{z}$ with $x, y, z \in \mathbb{Z}$. Then (a, b, c) is among the following vectors:

$$
\begin{gathered}
(1,1,1),(1,2,1),(1,2,2),(1,3,1),(1,4,1),(1,4,2),(1,5,2), \\
(1,6,1),(1,8,1),(2,1,1),(2,2,1),(2,4,1),(3,2,1),(4,1,1),(4,2,1) .
\end{gathered}
$$

Theorem 1 and Theorems 2-3 will be proved in Sections 2 and 3 respectively. In Section 4, we will pose three conjectures and discuss the converses of Theorems 2 and 3.
2. Proof of Theorem 1. Given two integer-valued quadratic polynomials $f(x, y, z)$ and $g(x, y, z)$, by writing $f(x, y, z) \sim g(x, y, z)$ we mean that

$$
\{f(x, y, z): x, y, z \in \mathbb{Z}\}=\{g(x, y, z): x, y, z \in \mathbb{Z}\}
$$

Clearly \sim is an equivalence relation on the set of all integer-valued ternary quadratic polynomials.

The following lemma is a refinement of Euler's observation $t_{y}+t_{z} \sim$ $y^{2}+2 t_{z}$ (cf. [D2, p. 11]).

Lemma 1. For any $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\left|\left\{(y, z) \in \mathbb{N}^{2}: t_{y}+t_{z}=n\right\}\right|=\left|\left\{(y, z) \in \mathbb{Z} \times \mathbb{N}: y^{2}+2 t_{z}=n\right\}\right| . \tag{3}
\end{equation*}
$$

Proof. Note that $t_{-y-1}=t_{y}$. Thus

$$
\begin{aligned}
\mid\{(y, z) & \left.\in \mathbb{N}^{2}: t_{y}+t_{z}=n\right\} \left.\left|=\frac{1}{4}\right|\left\{(y, z) \in \mathbb{Z}^{2}: t_{y}+t_{z}=n\right\} \right\rvert\, \\
= & \frac{1}{4}\left|\left\{(y, z) \in \mathbb{Z}^{2}: 4 n+1=(y+z+1)^{2}+(y-z)^{2}\right\}\right| \\
= & \left.\left.\frac{1}{4} \right\rvert\,\left\{\left(x_{1}, x_{2}\right) \in \mathbb{Z}^{2}: 4 n+1=x_{1}^{2}+x_{2}^{2} \text { and } x_{1} \not \equiv x_{2}(\bmod 2)\right\} \right\rvert\, \\
= & \frac{2}{4}\left|\left\{(y, z) \in \mathbb{Z}^{2}: 4 n+1=(2 y)^{2}+(2 z+1)^{2}\right\}\right| \\
= & \frac{1}{2}\left|\left\{(y, z) \in \mathbb{Z}^{2}: n=y^{2}+2 t_{z}\right\}\right|=\left|\left\{(y, z) \in \mathbb{Z} \times \mathbb{N}: n=y^{2}+2 t_{z}\right\}\right| .
\end{aligned}
$$

Lemma 1 is actually equivalent to the following observation of Ramanujan (cf. Entry 25(iv) of [B, p. 40]): $\psi(q)^{2}=\varphi(q) \psi\left(q^{2}\right)$ for $|q|<1$, where

$$
\begin{equation*}
\varphi(q)=\sum_{n=-\infty}^{\infty} q^{n^{2}} \quad \text { and } \quad \psi(q)=\sum_{n=0}^{\infty} q^{t_{n}} \tag{4}
\end{equation*}
$$

Let $n \in \mathbb{N}$ and define
(6) $\quad r_{0}(n)=\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}: x^{2}+t_{y}+t_{z}=n\right.$ and $\left.2 \mid x\right\} \mid$,
(7) $\quad r_{1}(n)=\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}: x^{2}+t_{y}+t_{z}=n\right.$ and $\left.2 \nmid x\right\} \mid$.

Clearly $r_{0}(n)+r_{1}(n)=r(n)$. In the following lemma we investigate the difference $r_{0}(n)-r_{1}(n)$.

Lemma 2. For $m=0,1,2, \ldots$ we have

$$
\begin{equation*}
r_{0}\left(2 t_{m}\right)-r_{1}\left(2 t_{m}\right)=(-1)^{m}(2 m+1) \tag{8}
\end{equation*}
$$

Also, $r_{0}(n)=r_{1}(n)$ if $n \in \mathbb{N}$ is not a triangular number times 2 .
Proof. Let $|q|<1$. Recall the following three known identities implied by Jacobi's triple product identity (cf. [AAR, pp. 496-501]):

$$
\begin{aligned}
\varphi(-q) & =\prod_{n=1}^{\infty}\left(1-q^{2 n-1}\right)^{2}\left(1-q^{2 n}\right) \quad(\text { Gauss }) \\
\psi(q) & =\prod_{n=1}^{\infty} \frac{1-q^{2 n}}{1-q^{2 n-1}} \quad(\text { Gauss }) \\
\prod_{n=1}^{\infty}\left(1-q^{n}\right)^{3} & =\sum_{n=0}^{\infty}(-1)^{n}(2 n+1) q^{t_{n}}
\end{aligned} \quad(\text { Jacobi }) . ~ \$
$$

Observe that

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(r_{0}(n)-r_{1}(n)\right) q^{n} \\
&=\left(\sum_{x=-\infty}^{\infty}(-1)^{x} q^{x^{2}}\right)\left(\sum_{y=0}^{\infty} q^{t_{y}}\right)\left(\sum_{z=0}^{\infty} q^{t_{z}}\right)=\varphi(-q) \psi(q)^{2} \\
&=\left(\prod_{n=1}^{\infty}\left(1-q^{2 n-1}\right)^{2}\left(1-q^{2 n}\right)\right)\left(\prod_{n=1}^{\infty} \frac{1-q^{2 n}}{1-q^{2 n-1}}\right)^{2} \\
&=\prod_{n=1}^{\infty}\left(1-q^{2 n}\right)^{3}=\sum_{m=0}^{\infty}(-1)^{m}(2 m+1)\left(q^{2}\right)^{t_{m}}
\end{aligned}
$$

Comparing the coefficients of q^{n} on both sides, we obtain the desired result.

The following result was discovered by Hurwitz in 1907 (cf. [D2, p. 271]); an extension was established in [HS] via the theory of modular forms of half integer weight.

Lemma 3. Let $n>0$ be an odd integer, and let p_{1}, \ldots, p_{r} be all the distinct prime divisors of n congruent to $3 \bmod 4$. Write $n=n_{0} \prod_{0<i \leq r} p_{i}^{\alpha_{i}}$, where $n_{0}, \alpha_{1}, \ldots, \alpha_{r}$ are positive integers and n_{0} has no prime divisors congruent to $3 \bmod 4$. Then

$$
\begin{equation*}
\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=n^{2}\right\}\right|=6 n_{0} \prod_{0<i \leq r}\left(p_{i}^{\alpha_{i}}+2 \frac{p_{i}^{\alpha_{i}}-1}{p_{i}-1}\right) \tag{9}
\end{equation*}
$$

Proof. We deduce (9) in a new way and use some standard notations in number theory.

By (4.8) and (4.10) of [G],

$$
\begin{aligned}
\mid\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}\right. & \left.+z^{2}=n^{2}\right\} \mid \\
& =\sum_{d \mid n} \frac{24}{\pi} d \sum_{m=1}^{\infty} \frac{1}{m}\left(\frac{-4 d^{2}}{m}\right) \\
& =\frac{24}{\pi} \sum_{d \mid n} d \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2 k-1} \sum_{c \mid \operatorname{gcd}(2 k-1, d)} \mu(c) \\
& =\frac{24}{\pi} \sum_{d \mid n} d \sum_{c \mid d} \mu(c) \sum_{k=1}^{\infty} \frac{(-1)^{((2 k-1) c-1) / 2}}{(2 k-1) c} \\
& =\frac{24}{\pi} \sum_{d \mid n} d \sum_{c \mid d} \frac{\mu(c)}{c}(-1)^{(c-1) / 2} \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2 k-1} \\
& =6 \sum_{c \mid n}(-1)^{(c-1) / 2} \frac{\mu(c)}{c} \sum_{q \left\lvert\, \frac{n}{c}\right.} c q \\
& =6 \sum_{c \mid n}(-1)^{(c-1) / 2} \mu(c) \sigma\left(\frac{n}{c}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \frac{1}{6}\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=n^{2}\right\}\right| \\
& \quad=\sum_{d_{0} \mid n_{0}} \sum_{d_{1}\left|p_{1}^{\alpha_{1}}, \ldots, d_{r}\right| p_{r}^{\alpha_{r}}}\left(\frac{-1}{d_{0} d_{1} \cdots d_{r}}\right) \mu\left(d_{0} d_{1} \cdots d_{r}\right) \sigma\left(\frac{n_{0}}{d_{0}} \prod_{0<i \leq r} \frac{p_{i}^{\alpha_{i}}}{d_{i}}\right) \\
& \quad=\sum_{d_{0} \mid n_{0}}\left(\frac{-1}{d_{0}}\right) \mu\left(d_{0}\right) \sigma\left(\frac{n_{0}}{d_{0}}\right) \prod_{0<i \leq r} \sum_{d_{i} \mid p_{i}^{\alpha_{i}}}\left(\frac{-1}{d_{i}}\right) \mu\left(d_{i}\right) \sigma\left(\frac{p_{i}^{\alpha_{i}}}{d_{i}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d_{0} \mid n_{0}} \mu\left(d_{0}\right) \sigma\left(\frac{n_{0}}{d_{0}}\right) \prod_{0<i \leq r}\left(\sigma\left(p_{i}^{\alpha_{i}}\right)+\left(\frac{-1}{p_{i}}\right) \mu\left(p_{i}\right) \sigma\left(p_{i}^{\alpha_{i}-1}\right)\right) \\
& =n_{0} \prod_{0<i \leq r}\left(p_{i}^{\alpha_{i}}+2 \sigma\left(p_{i}^{\alpha_{i}-1}\right)\right)=n_{0} \prod_{0<i \leq r}\left(p_{i}^{\alpha_{i}}+2 \frac{p_{i}^{\alpha_{i}}-1}{p_{i}-1}\right)
\end{aligned}
$$

Proof of Theorem 1. (i) By the Gauss-Legendre theorem, $4 n+1$ is a sum of three squares and hence $4 n+1=(2 x)^{2}+(2 y)^{2}+(2 z+1)^{2}$ (i.e., $n=x^{2}+y^{2}+2 t_{z}$) for some $x, y, z \in \mathbb{Z}$. Combining this with Lemma 1 we obtain a simple proof of the known result

$$
r(n)=\left|\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}: x^{2}+t_{y}+t_{z}=n\right\}\right|>0
$$

Recall that $r_{0}(n)+r_{1}(n)=r(n)$. If $n / 2$ is not a triangular number, then $r_{0}(n)=r_{1}(n)=r(n) / 2>0$ by Lemma 2 . If $n=2 t_{m}$ for some $m \in \mathbb{N}$, then we also have $r_{0}(n)>0$ since $n=0^{2}+t_{m}+t_{m}$.
(ii) Note that

$$
n=x^{2}+y^{2}+t_{z} \Leftrightarrow 2 n=2\left(x^{2}+y^{2}\right)+2 t_{z}=(x+y)^{2}+(x-y)^{2}+2 t_{z}
$$

From this and Lemma 1, we get

$$
\begin{aligned}
\mid\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times & \left.\mathbb{N}: x^{2}+y^{2}+t_{z}=n\right\} \mid \\
& =\left|\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+2 t_{z}=2 n\right\}\right| \\
& =\left|\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}: x^{2}+t_{y}+t_{z}=2 n\right\}\right| \\
& =r(2 n)>0
\end{aligned}
$$

in the language of generating functions, it says that

$$
\varphi(q) \psi(q)^{2}+\varphi(-q) \psi(-q)^{2}=2 \varphi\left(q^{2}\right)^{2} \psi\left(q^{2}\right)
$$

Similarly,

$$
\begin{aligned}
& \mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+t_{z}=n \text { and } x \equiv y(\bmod 2)\right\} \mid \\
& \quad=\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+2 t_{z}=2 n \text { and } 2 \mid x\right\} \mid \\
& \quad=\mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{N} \times \mathbb{N}: x^{2}+t_{y}+t_{z}=2 n \text { and } 2 \mid x\right\} \mid=r_{0}(2 n)>0
\end{aligned}
$$

and

$$
\begin{align*}
& \mid\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+t_{z}=n \text { and } x \not \equiv y(\bmod 2)\right\} \mid \tag{10}\\
&= r_{1}(2 n)
\end{align*}
$$

If n is not a triangular number, then $r_{0}(2 n)=r_{1}(2 n)=r(2 n) / 2>0$ by Lemma 2, and hence (2) follows from the above.
(iii) By Theorem 1(ii), if n is not a triangular number then $n=x^{2}+y^{2}+t_{z}$ for some $x, y, z \in \mathbb{Z}$ with $2 \mid x$ and $2 \nmid y$.

Now assume that $n=t_{m}(m>0)$ is not a sum of an odd square, an even square and a triangular number. Then $r_{1}\left(2 t_{m}\right)=0$ by (10). In view of (ii) and (8),

$$
\begin{aligned}
& \left|\left\{(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{N}: x^{2}+y^{2}+t_{z}=t_{m}\right\}\right| \\
& \quad=r_{0}\left(2 t_{m}\right)+r_{1}\left(2 t_{m}\right)=r_{0}\left(2 t_{m}\right)-r_{1}\left(2 t_{m}\right)=(-1)^{m}(2 m+1)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
(-1)^{m} & (2 m+1)=\frac{1}{2}\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+t_{z}=t_{m}\right\}\right| \\
& =\frac{1}{2}\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: 2(2 x)^{2}+2(2 y)^{2}+(2 z+1)^{2}=8 t_{m}+1\right\}\right| \\
& =\frac{1}{2}\left|\left\{(x, y, z) \in \mathbb{Z}^{3}:(2 x+2 y)^{2}+(2 x-2 y)^{2}+(2 z+1)^{2}=8 t_{m}+1\right\}\right| \\
& =\frac{1}{2}\left|\left\{\left(x_{1}, y_{1}, z\right) \in \mathbb{Z}^{3}: 4\left(x_{1}^{2}+y_{1}^{2}\right)+(2 z+1)^{2}=(2 m+1)^{2}\right\}\right| \\
& =\frac{1}{6}\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=(2 m+1)^{2}\right\}\right|
\end{aligned}
$$

Since
$(-1)^{m} 6(2 m+1)=\left|\left\{(x, y, z) \in \mathbb{Z}^{3}: x^{2}+y^{2}+z^{2}=(2 m+1)^{2}\right\}\right| \ngtr 6(2 m+1)$,
by Lemma 3 the odd number $2 m+1$ cannot have a prime divisor congruent to $3 \bmod 4$. So all the prime divisors of $2 m+1$ are congruent to $1 \bmod 4$, and hence

$$
\mid\left\{(x, y) \in \mathbb{N}^{2}: x>0 \text { and } x^{2}+y^{2}=2 m+1\right\} \mid=\sum_{d \mid 2 m+1} 1>1
$$

by Proposition 17.6 .1 of [IR, p. 279]. Thus $2 m+1$ is a sum of two squares of positive integers. Choose positive integers x and y such that $x^{2}+y^{2}=2 m+1$ with $2 \mid x$ and $2 \nmid y$. Then

$$
8 t_{m}+1=(2 m+1)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}=8 t_{\left(x^{2}-y^{2}-1\right) / 2}+1+16\left(\frac{x}{2}\right)^{2} y^{2}
$$

and hence

$$
t_{m}=t_{\left(x^{2}-y^{2}-1\right) / 2}+\left(\frac{x}{2} y\right)^{2}+\left(\frac{x}{2} y\right)^{2}
$$

As $x^{2}=2 m+1-y^{2} \equiv 2 m(\bmod 8), m$ is even and

$$
\frac{m}{2} \equiv\left(\frac{x}{2}\right)^{2} \equiv \frac{x}{2} \equiv \frac{x}{2} y(\bmod 2)
$$

We are done.

3. Proofs of Theorems 2 and 3

Proof of Theorem 2. We distinguish four cases.
Case 1: $a=c=1$. Write $8=x_{0}^{2}+b y_{0}^{2}+t_{z_{0}}$ with $x_{0}, y_{0}, z_{0} \in \mathbb{Z}$. Then $y_{0} \neq 0$ and hence $8 \geq b$. Since $x^{2}+5 y^{2}+t_{z} \neq 13, x^{2}+6 y^{2}+t_{z} \neq 47$ and $x^{2}+7 y^{2}+t_{z} \neq 20$, we must have $b \in\{1,2,3,4,8\}$.

CASE 2: $a=1$ and $c=2$. Write $5=x_{0}^{2}+b y_{0}^{2}+2 t_{z_{0}}$ with $x_{0}, y_{0}, z_{0} \in \mathbb{Z}$. Then $y_{0} \neq 0$ and hence $5 \geq b$. Observe that $x^{2}+3 y^{2}+2 t_{z} \neq 8$ and $x^{2}+$ $5 y^{2}+2 t_{z} \neq 19$. Therefore $b \in\{1,2,4\}$.

CASE 3: $a=1$ and $c \geq 3$. Since $2=x^{2}+b y^{2}+c t_{z}$ for some $x, y, z \in \mathbb{Z}$, we must have $b \leq 2$. If $b=1$, then there are $x_{0}, y_{0}, z_{0} \in \mathbb{Z}$ such that $3=x_{0}^{2}+y_{0}^{2}+c t_{z_{0}} \geq c$ and hence $c=3$. But $x^{2}+y^{2}+3 t_{z} \neq 6$, therefore $b=2$. For some $x, y, z \in \mathbb{Z}$ we have $5=x^{2}+2 y^{2}+c t_{z} \geq c$. Since $x^{2}+2 y^{2}+3 t_{z} \neq 23$ and $x^{2}+2 y^{2}+5 t_{z} \neq 10, c$ must be 4 .

CASE 4: $a>1$. As $b \geq a \geq 2$ and $a x^{2}+b y^{2}+c t_{z}=1$ for some $x, y, z \in \mathbb{Z}$, we must have $c=1$. If $a>2$, then $a x^{2}+b y^{2}+t_{z} \neq 2$. Thus $a=2$. For some $x_{0}, y_{0}, z_{0} \in \mathbb{Z}$ we have $4=2 x_{0}^{2}+b y_{0}^{2}+t_{z_{0}} \geq b$. Note that $2 x^{2}+3 y^{2}+t_{z} \neq 7$ and $2 x^{2}+4 y^{2}+t_{z} \neq 20$. Therefore $b=2$.

In view of the above, Theorem 2 has been proven.
Proof of Theorem 3. Let us first consider the case $c>1$. Since $1=a x^{2}+$ $b t_{y}+c t_{z}$ for some $x, y, z \in \mathbb{Z}$, we must have $a=1$. Clearly $x^{2}+b t_{y}+c t_{z} \neq 2$ if $c \geq 3$. So $c=2$. For some $x_{0}, y_{0}, z_{0} \in \mathbb{Z}$ we have $5=x_{0}^{2}+b t_{y_{0}}+2 t_{z_{0}} \geq b$. It is easy to check that $x^{2}+3 t_{y}+2 t_{z} \neq 8$. Therefore $b \in\{2,4,5\}$.

Below we assume that $c=1$. If a and b are both greater than 2 , then $a x^{2}+b t_{y}+t_{z} \neq 2$. So $a \leq 2$ or $b \leq 2$.

Case 1: $a=1$. For some $x_{0}, y_{0}, z_{0} \in \mathbb{Z}$ we have $8=x_{0}^{2}+b t_{y_{0}}+t_{z_{0}} \geq b$. Note that $x^{2}+5 t_{y}+t_{z} \neq 13$ and $x^{2}+7 t_{y}+t_{z} \neq 20$. So $b \in\{1,2,3,4,6,8\}$.

CASE 2: $a=2$. For some $x_{0}, y_{0}, z_{0} \in \mathbb{Z}$ we have $4=2 x_{0}^{2}+b t_{y_{0}}+t_{z_{0}} \geq b$. Thus $b \in\{1,2,4\}$ since $2 x^{2}+3 t_{y}+t_{z} \neq 7$.

CASE 3: $a>2$. In this case $b \leq 2$. If $b=1$, then for some $x_{0}, y_{0}, z_{0} \in \mathbb{Z}$ we have $5=a x_{0}^{2}+t_{y_{0}}+t_{z_{0}} \geq a$, and hence $a=4$ since $3 x^{2}+t_{y}+t_{z} \neq 8$ and $5 x^{2}+t_{y}+t_{z} \neq 19$. If $b=2$, then for some $x, y, z \in \mathbb{Z}$ we have $4=$ $a x^{2}+2 t_{y}+t_{z} \geq a$ and so $a \in\{3,4\}$.

The proof of Theorem 3 is now complete.
4. Some conjectures and related discussion. In this section we raise three related conjectures.

Conjecture 1. Any positive integer n is a sum of a square, an odd square and a triangular number. In other words, each natural number can be written in the form $x^{2}+8 t_{y}+t_{z}$ with $x, y, z \in \mathbb{Z}$.

We have verified Conjecture 1 for $n \leq 15000$. By Theorem 1(iii), Conjecture 1 is valid when $n \neq t_{4}, t_{8}, t_{12}, \ldots$

Conjecture 2. Each $n \in \mathbb{N}$ can be written in any of the following forms with $x, y, z \in \mathbb{Z}$:
$x^{2}+3 y^{2}+t_{z}, x^{2}+3 t_{y}+t_{z}, x^{2}+6 t_{y}+t_{z}, 3 x^{2}+2 t_{y}+t_{z}, 4 x^{2}+2 t_{y}+t_{z}$.
Conjecture 3. Every $n \in \mathbb{N}$ can be written in the form $x^{2}+2 y^{2}+$ $3 t_{z}($ with $x, y, z \in \mathbb{Z})$ except $n=23$, in the form $x^{2}+5 y^{2}+2 t_{z}$ (or the equivalent form $5 x^{2}+t_{y}+t_{z}$) except $n=19$, in the form $x^{2}+6 y^{2}+t_{z}$ except $n=47$, and in the form $2 x^{2}+4 y^{2}+t_{z}$ except $n=20$.

Both Conjectures 2 and 3 have been verified for $n \leq 10000$.
The second statement in Conjecture 3 is related to an assertion of Ramanujan confirmed by Dickson [D1] which states that even natural numbers not of the form $4^{k}(16 l+6)$ (with $k, l \in \mathbb{N}$) can be written as $x^{2}+y^{2}+10 z^{2}$ with $x, y, z \in \mathbb{Z}$. Observe that
$n=x^{2}+5 y^{2}+2 t_{z}$ for some $x, y, z \in \mathbb{Z}$
$\Leftrightarrow 4 n+1=x^{2}+5 y^{2}+z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $2 \nmid z$
$\Leftrightarrow 8 n+2=2\left(x^{2}+y^{2}\right)+10 z^{2}=(x+y)^{2}+(x-y)^{2}+10 z^{2}$
for some $x, y, z \in \mathbb{Z}$ with $2 \nmid y$
$\Leftrightarrow 8 n+2=x^{2}+y^{2}+10 z^{2}$ for some $x, y, z \in \mathbb{Z}$ with $x \not \equiv y(\bmod 4)$.
Below we reduce the converses of Theorems 2 and 3 to Conjectures 1 and 2. For convenience, we call a ternary quadratic polynomial $f(x, y, z)$ essential if $\{f(x, y, z): x, y, z \in \mathbb{Z}\}=\mathbb{N}$. (Actually, in 1748 Goldbach (cf. [D2, p. 11]) already stated that $x^{2}+y^{2}+2 t_{z}, x^{2}+2 y^{2}+t_{z}, x^{2}+2 y^{2}+2 t_{z}$ and $2 x^{2}+2 t_{y}+t_{z}$ are essential.)

Step I. We show that the 10 quadratic polynomials listed in Theorem 2 are essential except for the form $x^{2}+3 y^{2}+t_{z}$ appearing in Conjecture 2 .

As $4 x^{2}+y^{2}+2 t_{z} \sim 4 x^{2}+t_{y}+t_{z}$, the form $x^{2}+(2 y)^{2}+2 t_{z}$ is essential by Theorem 1(i). Both $x^{2}+(2 y)^{2}+t_{z}$ and $2 x^{2}+2 y^{2}+t_{z}=(x+y)^{2}+(x-y)^{2}+t_{z}$ are essential by Theorem 1(ii) and the trivial fact $t_{z}=0^{2}+0^{2}+t_{z}$. We have pointed out in Section 1 that $x^{2}+2(2 y)^{2}+t_{z}$ is essential by [JP, Theorem 6], and we do not have an easy proof of this deep result.

Since

$$
x^{2}+2 y^{2}+4 t_{z} \sim x^{2}+2\left(t_{y}+t_{z}\right) \sim t_{x}+t_{y}+2 t_{z}
$$

the form $x^{2}+2 y^{2}+4 t_{z}$ is essential by Theorem B (of Liouville). By the Gauss-Legendre theorem, for each $n \in \mathbb{N}$ we can write $8 n+2=(4 x)^{2}+$ $(2 y+1)^{2}+(2 z+1)^{2}$ (i.e., $n=2 x^{2}+t_{y}+t_{z}$) with $x, y, z \in \mathbb{Z}$. Thus the form $x^{2}+2 y^{2}+2 t_{z}$ is essential since $2 x^{2}+y^{2}+2 t_{z} \sim 2 x^{2}+t_{y}+t_{z}$.

Step II. We analyze the 15 quadratic polynomials listed in Theorem 3. By Theorem 1(i), $(2 x)^{2}+t_{y}+t_{z}$ and $x^{2}+t_{y}+t_{z}$ are essential. Since

$$
\begin{aligned}
x^{2}+2 t_{y}+t_{z} & \sim t_{x}+t_{y}+t_{z} \\
x^{2}+2 t_{y}+2 t_{z} & \sim t_{x}+t_{y}+2 t_{z} \\
x^{2}+4 t_{y}+2 t_{z} & \sim t_{x}+4 t_{y}+t_{z} \\
x^{2}+5 t_{y}+2 t_{z} & \sim t_{x}+5 t_{y}+t_{z} \\
2 x^{2}+4 t_{y}+t_{z} & \sim 2 t_{x}+2 t_{y}+t_{z}
\end{aligned}
$$

the forms
$x^{2}+2 t_{y}+t_{z}, x^{2}+2 t_{y}+2 t_{z}, x^{2}+4 t_{y}+2 t_{z}, x^{2}+5 t_{y}+2 t_{z}, 2 x^{2}+4 t_{y}+t_{z}$ are all essential by Liouville's theorem. For $n \in \mathbb{N}$ we can write $2 n=x^{2}+$ $4 t_{y}+2 t_{z}$ with $x, y, z \in \mathbb{Z}$, and hence $n=2 x_{0}^{2}+2 t_{y}+t_{z}$ with $x_{0}=x / 2 \in \mathbb{Z}$. So the form $2 x^{2}+2 t_{y}+t_{z}$ is also essential.

Recall that $2 x^{2}+t_{y}+t_{z}$ and $2 x^{2}+y^{2}+2 t_{z}$ are essential by the last two sentences of Step I. For each $n \in \mathbb{N}$ we can choose $x, y, z \in \mathbb{Z}$ such that $2 n+1=2 x^{2}+(2 y+1)^{2}+2 t_{z}$ and hence $n=x^{2}+4 t_{y}+t_{z}$. So the form $x^{2}+4 t_{y}+t_{z}$ is essential.

The remaining forms listed in Theorem 3 are $x^{2}+8 t_{y}+t_{z}$ and four other forms, which appear in Conjectures 1 and 2 respectively. We are done.

Acknowledgement. The author is indebted to the referee for his/her helpful comments.

Added in proof (February 2007). The second conjecture in Section 4 has been confirmed by Song Guo, Hao Pan and the author.

References

[AAR] G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge Univ. Press, Cambridge, 1999.
[B] B. C. Berndt, Ramanujan's Notebooks, Part III, Springer, New York, 1991.
[D1] L. E. Dickson, Integers represented by positive ternary quadratic forms, Bull. Amer. Math. Soc. 33 (1927), 63-70.
[D2] -, History of the Theory of Numbers, Vol. II, AMS Chelsea Publ., 1999.
[Du] W. Duke, Some old problems and new results about quadratic forms, Notices Amer. Math. Soc. 44 (1997), 190-196.
[F] H. M. Farkas, Sums of squares and triangular numbers, Online J. Anal. Combin. 1 (2006), art. 1, 11 pp. (electronic).
[G] E. Grosswald, Representation of Integers as Sums of Squares, Springer, New York, 1985.
[HS] M. D. Hirschhorn and J. Sellers, On representations of a number as a sum of three squares, Discrete Math. 199 (1999), 85-101.
[IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, 2nd ed., Grad. Texts in Math. 84, Springer, New York, 1990.
[JP] B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70 (1939), 165-191.
[L] V. A. Lebesgue, Questions 1059, 1060, 1061 (Lionnet), Nouv. Ann. Math. 11 (1872), 516-519.
[N] M. B. Nathanson, Additive Number Theory: The Classical Bases, Grad. Texts in Math. 164, Springer, New York, 1996.
[P] L. Panaitopol, On the representation of natural numbers as sums of squares, Amer. Math. Monthly 112 (2005), 168-171.
[Ra] S. Ramanujan, On the expression of a number in the form $a x^{2}+b y^{2}+c z^{2}+d u^{2}$, in: Collected Papers of Srinivasa Ramanujan, Cambridge Univ. Press, 1927, 169-178.
[Re] M. S. Réalis, Scolies pour un théorème d'arithmétique, Nouv. Ann. Math. 12 (1873), 212-217.

Department of Mathematics
Nanjing University
Nanjing 210093, People's Republic of China
E-mail: zwsun@nju.edu.cn
and in revised form on 6.12.2006

[^0]: 2000 Mathematics Subject Classification: Primary 11E25; Secondary 05A30, 11D85, 11P99.

 Supported by the National Science Fund for Distinguished Young Scholars (Grant No. 10425103) in China.

