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Mixed sums of squares and triangular numbers
by

Zu1-WEel SunN (Nanjing)

1. Introduction. A classical result of Fermat asserts that any prime
=1 (mod4) is a sum of two squares of integers. Fermat also conjectured
that each n € N can be written as a sum of three triangular numbers, where
N is the set {0,1,2,...} of natural numbers, and triangular numbers are
those integers t, = z(x + 1)/2 with = € Z. An equivalent version of this
conjecture states that 8n + 3 is a sum of three squares (of odd integers).
This follows from the following profound theorem (see, e.g., [G, pp. 38-49]
or [N, pp. 17-23]).

GAUSS-LEGENDRE THEOREM. n € N can be written as a sum of three
squares of integers if and only if n is not of the form 4*(81+7) with k,l € N,

Building on some work of Euler, in 1772 Lagrange showed that every
natural number is a sum of four squares of integers.

For problems and results on representations of natural numbers by various
quadratic forms with coefficients in N, the reader may consult [Du] and [G].

Motivated by Ramanujan’s work [Ra], L. Panaitopol [P] proved the fol-
lowing interesting result in 2005.

THEOREM A. Let a,b,c be positive integers with a < b < c. Then every
odd natural number can be written in the form ax?®+4by*+cz? with x,y,z € Z
if and only if the vector (a,b,c) is (1,1,2) or (1,2,3) or (1,2,4).

According to L. E. Dickson [D2, p. 260], Euler already noted that any

odd integer n > 0 is representable by x? + y? + 222 with x,vy, 2 € Z.
In 1862 J. Liouville (cf. [D2, p. 23]) proved the following result.

THEOREM B. Let a,b, c be positive integers with a < b < c. Then every
n € N can be written as at, + bty + ct, with z,y, z € Z if and only if (a,b,c)
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is among the following vectors:
(L,1,1), (1,1,2), (1,1,4), (1, 1,5), (1,2,2), (1,2,3), (1,2,4).

Now we turn to representations of natural numbers by mixed sums of
squares (of integers) and triangular numbers.

Let n € N. By the Gauss—Legendre theorem, 8n + 1 is a sum of three
squares. It follows that 8n+1 = (2x)%+ (2y)%+ (22 +1)? for some z,y, z € Z
with z = y (mod 2); this yields the representation

2 2 2 2
7ty Tty T —y
= t, = t

as observed by Euler. According to Dickson [D2, p. 24], E. Lionnet stated,
and V. A. Lebesgue [L] and M. S. Réalis [Re] proved that n can also be
written in the form x2 + ty +t. with z,y,2z € Z. Quite recently, this was

reproved by H. M. Farkas [F| via the theory of theta functions.
Using the theory of ternary quadratic forms, in 1939 B. W. Jones and
G. Pall [JP, Theorem 6] proved that for any n € N we have 8 + 1 =
ax?® + by? + cz? for some z,y, z € Z if the vector (a, b, c) belongs to the set

{(1,1,16),(1,4,16),(1,16,16), (1,2,32),(1,8,32), (1,8,64)}.

As (22 +1)? = 8t, + 1, the result of Jones and Pall implies that each n € N
can be written in any of the following three forms with =, y, z € Z:

20 + 297+t = (v +y)2 + (z — ) +to, 2 + 42 + Lo, 27+ 8y + ..

In this paper we establish the following result by means of g-series.

THEOREM 1.

(i) Anyn € N is a sum of an even square and two triangular numbers.
Moreover, if n/2 is not a triangular number then

(1) {(2,y,2) EZxNxN:a2?+t,+t, =n and 21z}
={(z,y,2) EZxNxN:2>+t,+t, =n and 2| z}|.
(ii) If n € N is not a triangular number, then
(2) H(z,y,2) € ZxZ xN:z>+y*>+t,=n and z Zy (mod2)}|
= {(z,y,2) € ZXxZxN: 22 +y* +t, =n and x = y (mod 2)}| > 0.
(iii) A positive integer n is a sum of an odd square, an even square and
a triangular number, unless it is a triangular number t,, (m > 0)
for which all prime divisors of 2m + 1 are congruent to 1 mod 4

and hence t,, = x> + 2% + t, for some integers x > 0 and z with
z=m/2 (mod2).

REMARK. Note that to = 12 4+ 12 + ¢; but we cannot write t» = 3 as a
sum of an odd square, an even square and a triangular number.
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Here are two more theorems of this paper.

THEOREM 2. Let a,b,c be positive integers with a < b. Suppose that
every n € N can be written as ax? + by? + ct, with x,y,z € Z. Then (a, b, c)
is among the following vectors:

(1,1,1), (1,1,2), (1,2,1), (1,2,2), (1,2,4),
(1,3,1), (1,4,1), (1,4,2), (1,8,1), (2,2,1).
THEOREM 3. Let a,b,c be positive integers with b > c. Suppose that

every n € N can be written as ax? + bt, + ct, with x,y,z € Z. Then (a,b,c)
is among the following vectors:

(1,1,1), (1,2,1), (1,2,2), (1,3,1), (1,4,1), (1,4,2), (1,5,2),
(1,6,1), (1,8,1), (2,1,1), (2,2,1), (2,4,1), (3,2,1), (4,1,1), (4,2,1).

Theorem 1 and Theorems 2-3 will be proved in Sections 2 and 3 respec-
tively. In Section 4, we will pose three conjectures and discuss the converses
of Theorems 2 and 3.

2. Proof of Theorem 1. Given two integer-valued quadratic polyno-
mials f(z,y,2) and g(z,y, ), by writing f(x,y, 2) ~ g(x,y, z) we mean that

Clearly ~ is an equivalence relation on the set of all integer-valued ternary
quadratic polynomials.

The following lemma is a refinement of Euler’s observation t, +t, ~
y? + 2t, (cf. [D2, p. 11]).

LEMMA 1. For any n € N we have
(3)  Hy,2) eN?:t,+t, =n}| = |{(y,2) €EZ xN:y*+2t, =n}|
Proof. Note that t_,_1 =t,. Thus

1
{(w,2) EN? sty 1. =} = T {(,2) €27 1ty + 1. =}

e mri=@rar 1?22

4
1

=1 {(z1,22) €Z% 1 4n +1 = 2% + 23 and x1 # 29 (mod 2)}|
2

= H2) €% 1 n+ 1= (29)" + (22 + 1)}

1
=S {2 e in=yP + 2} = |{(y2) €Zx Nin=y> +20.}].
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Lemma 1 is actually equivalent to the following observation of Ramanu-
jan (cf. Entry 25(iv) of [B, p. 40]): ¥(q)? = v(q)¥(¢?) for |q| < 1, where

(4) pl@)= > ¢ and v(g) =3 ¢
n=0

Let n € N and define
(5) r(n) = {(z,y,2) EZxNx N:2?+t,+t, =n},
6 ro(n) = {(z,y, 2 €ZXxNxN:z?2+t,+t,=nand 2|z},
y
(7) ri(n) = {(z,y,2) €EZxNx N:a? +t, +t, =n and 2{z}|.

Clearly ro(n) + r1(n) = r(n). In the following lemma we investigate the
difference ro(n) — ri(n).

LEMMA 2. Form =0,1,2,... we have
(8) 70(2tm) — 71(2tm) = (=1)™(2m + 1).
Also, ro(n) =ri(n) if n € N is not a triangular number times 2.

Proof. Let |q| < 1. Recall the following three known identities implied
by Jacobi’s triple product identity (cf. [AAR, pp. 496-501]):

p(—q) = [Ja -1 —-¢"") (Gauss),
_ 2n
b(g)=]] % (Gauss),

[Ja =g =) (-1)"@n+ 1)g" (Jacobi).

n=1 n=0

Observe that

[e.9]

> (ro(n) — r1(n))q"

n=0 [ee) o0 [e%e]
> 15 ) (Y a) (D a) = el-ap(a)?
= y z=0

T=—00 =0
0 0 _2n 2
= (gu — "1 - ™) (g f_Tq)
= [Ta-¢? =" (=nm@Em+1)(¢*).
n=1 m=0

Comparing the coefficients of ¢" on both sides, we obtain the desired result. =
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The following result was discovered by Hurwitz in 1907 (cf. [D2, p. 271]);
an extension was established in [HS] via the theory of modular forms of half
integer weight.

LEMMA 3. Let n > 0 be an odd integer, and let p1,...,p, be all the
distinct prime divisors of n congruent to 3 mod 4. Write n = no [[yc;<, Pi",
where ng, ay, ..., q, are positive integers and ng has no prime divisors con-
gruent to 3 mod 4. Then

O ) eZsa?+y2+2 = =6u [] (o +22550)

0<i<r

Proof. We deduce (9) in a new way and use some standard notations in

number theory.
By (4.8) and (4.10) of [G],

H(x»y, Z) S Z3 : 3;‘2 —|—y2 + 252 — TZQ}’
24 1/ —4d>
-y ()
d‘n m=1
24 e (_1)k—1
D SO B LD DIV
dn k=1 clged(2k—1,d)
1)((2k—D)e— 1)/2

B Zdz Z 2k — 1)c

d|n cld
24 p(c) 12 - (D!
R IL0 Phralesl e D ey
din  c|d k=1
—62 (c 1)/2,u Zcq
alz

_GZ 1)le=1r2,, )<%>

and hence

1
H(wy,2) € 2% 1?42 + 22 = n?}]

=3 > (m>ﬂ(d0dl"'dr)a(% 11 pj)

- (2
dolno dq|pyt,....dr |PRT 0<i<r

= 2 (@ () 1L 3 (5w (5)

do|no 0<i<r g, ‘ g
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=y M(dg)d(Z—E) 11 <U<p?i)+ (%)M(pi)a(p?”))

do"no 0<i<r
1 Pyt —1
= o T G+ 20t ) = IT (o +25 ). o
0<i<r 0<i<r pi

Proof of Theorem 1. (i) By the Gauss-Legendre theorem, 4n + 1 is a
sum of three squares and hence 4n + 1 = (22)% + (2y)% + (22 + 1)? (i.e.,
n = 2% + y? + 2t,) for some x,y,z € Z. Combining this with Lemma 1 we
obtain a simple proof of the known result

r(n) = {(z,y,2) € Zx Nx N:a” +t, +t. =n}| >0,

Recall that ro(n) +ri(n) = r(n). If n/2 is not a triangular number, then
ro(n) = r1(n) = r(n)/2 > 0 by Lemma 2. If n = 2t,, for some m € N, then
we also have r(n) > 0 since n = 02+t + tom.

(ii) Note that

n=x*4+y*+t, & 2n=2"+y*)+2t. = (z+y)° + (z —y)* + 2t..
From this and Lemma 1, we get
{(z,y,2) € ZxZxN: 2>+ 19> +t, =n}|
= {(z,y,2) €EZ xZ x N:z* +y* +2t, = 2n}|
={(z,y,2) EZxNxN:a2?+t,+t, =2n}|
=r(2n) > 0;
in the language of generating functions, it says that
P(@)Y(a)* + o(~0)¥(—a)* = 20(¢*)*¥(d).
Similarly,
{(2,y,2) EZxZxN:2*> +y*+t, =n and x =y (mod 2)}|
= {(z,y,2) €EZXZ xN: 2?4+ 9>+ 2t, = 2n and 2| z}|
= {(z,y,2) €EZxNxN:z?+t,+t, =2n and 2|x}| = ro(2n) >0
and
(10)  {(z,y,2) €ZxZxN:2? +y*+t, =n and x # y (mod 2)}|
=7r1(2n).

If n is not a triangular number, then 7¢(2n) = r1(2n) = r(2n)/2 > 0 by
Lemma 2, and hence (2) follows from the above.

(iii) By Theorem 1(ii), if n is not a triangular number then n = z2+y%+t,
for some x,y,z € Z with 2|z and 21y.



Sums of squares and triangular numbers 109

Now assume that n = t,, (m > 0) is not a sum of an odd square, an
even square and a triangular number. Then r;(2¢,,) = 0 by (10). In view of

(ii) and (8),
{(x,y,2) € ZxZ xN: 22+ +t, =tm}
= 7“0(2tm) +r <2tm) = T’()(th) — 7’1(2tm) = (—1)m(2m + 1).

Therefore

1
(=D)™2m+1) = 5 H{(x,y,2) € 732+ y? 4t = tm

1 3 2 2 2

=5 {(@,,2) € 2% : 2(22)" + 2(2)" + (22 +1)” = 8t + 1}
1

=5 {(@,y,2) € 2% (204 2)" + (20— 2)" + (22 +1)” = 8t + 1}
1

=5 H(@y,2) € 73 422+ 2) + (22 +1)2 = 2m + 1)?}

1
=3 {(z,y,2) €Z° : a® + y* + 2* = 2m + 1)%}].
Since
(—1)"6(2m+1) = [{(2,9,2) € 25 : 2* +9? + 22 = (2m + 1)} ¥ 6(2m+ 1),

by Lemma 3 the odd number 2m + 1 cannot have a prime divisor congruent
to 3 mod 4. So all the prime divisors of 2m + 1 are congruent to 1 mod 4,
and hence

H{(z,y) e N*:2>0and 22 + 2 =2m +1}| = Z 1>1
d|2m+1

by Proposition 17.6.1 of [IR, p. 279]. Thus 2m + 1 is a sum of two squares of
positive integers. Choose positive integers = and y such that 22 4+3? = 2m+1
with 2|2 and 2ty. Then

2
X
8tm + 1= (2m +1)? = (2* —y*)? + 42®y® = 8t(,2 2 1)j2 +1+ 16 <§> y?

X 2 x 2
lm =ta2_y2_1)/2 + §y + §y .

As 22 =2m + 1 — y? = 2m (mod8), m is even and

2
m x r
5 = <—> :§:§y(m0d2)'

and hence

We are done. =
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3. Proofs of Theorems 2 and 3
Proof of Theorem 2. We distinguish four cases.

CASE 1: a = c=1. Write 8 = azg + by% + t,, with xo,y0,20 € Z. Then
yo # 0 and hence 8 > b. Since 22 + 5y? +t, # 13, 22 + 6y> +t. # 47 and
22 4 Ty? +t, # 20, we must have b € {1,2,3,4,8}.

CASE 2: a=1 and ¢=2. Write 5 = 933 + by% + 2t,, with g, yo, 20 € Z.
Then gy # 0 and hence 5 > b. Observe that z? + 3y? + 2t, # 8 and 22 +
5y? + 2t, # 19. Therefore b € {1,2,4}.

CASE 3: a = 1 and ¢ > 3. Since 2 = 22 + by? + ct,, for some z,y, z € Z,
we must have b < 2. If b = 1, then there are xg,¥yg,20 € Z such that
3= azg—i-yg—i—ctm > c and hence ¢ = 3. But 22 +y%+3t, # 6, therefore b = 2.
For some x,%, z € Z we have 5 = 22 +2y? 4 ct, > c. Since 22 +2y% +3t, # 23
and 22 + 2y% + 5t, # 10, ¢ must be 4.

CasE4:a>1. Asb>a > 2and ax?+by?+ct, = 1 for some z,y, 2 € Z,
we must have ¢ = 1. If a > 2, then az?+by? +t, # 2. Thus a = 2. For some
70, Yo, 20 € Z we have 4 = 223 + by2 +t,, > b. Note that 222 + 3y> +t, £ 7
and 222 4 412 + t, # 20. Therefore b = 2.

In view of the above, Theorem 2 has been proven. =

Proof of Theorem 3. Let us first consider the case ¢ > 1. Since 1 = az? +
bt, + ct, for some x,y, 2z € Z, we must have a = 1. Clearly 22 + bt, +ct, # 2
if ¢ > 3. So ¢ = 2. For some xq, Yo, 20 € Z we have 5 = x% + bty, + 2t;, > b.
It is easy to check that x2 + 3ty + 2t, # 8. Therefore b € {2,4,5}.

Below we assume that ¢ = 1. If @ and b are both greater than 2, then
am2+bty+tz752. Soa<2orb<2.

CASE 1: a = 1. For some xg, yo, 20 € Z we have 8 = x% + bty, + 1. > b.
Note that 2% + 5t, + t, # 13 and 2 + Tt, +t, # 20. So b € {1,2,3,4,6,8}.

CASE 2: a = 2. For some xg, 49, 20 € Z we have 4 = 256(2) +bty, +t., > b.
Thus b € {1,2,4} since 22% + 3t, +t, # 7.

CASE 3: a > 2. In this case b < 2. If b = 1, then for some xg, yo, 20 € Z
we have 5 = ax3 + t, + t,, > a, and hence a = 4 since 32 + t, +t, # 8
and 522 +t, +t, # 19. If b = 2, then for some z,y,z € Z we have 4 =
az® +2t, +t, > a and so a € {3,4}.

The proof of Theorem 3 is now complete. m

4. Some conjectures and related discussion. In this section we
raise three related conjectures.

CONJECTURE 1. Any positive integer n is a sum of a square, an odd
square and a triangular number. In other words, each natural number can
be written in the form x* + 8ty +t. with x,y,z € Z.
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We have verified Conjecture 1 for n < 15000. By Theorem 1(iii), Con-
jecture 1 is valid when n # t4,ts, ti2,. ...

CONJECTURE 2. Fach n € N can be written in any of the following
forms with z,y, z € Z:

a? +3y? +t,, 22+ 3ty +t,, 2246ty +t,, 322+ 2t +t,, 427 + 2t + .

CONJECTURE 3. Every n € N can be written in the form x* + 2y? +
3t, (with z,y,z € Z) except n = 23, in the form x? + 5y + 2t, (or the
equivalent form 5x> +t,+1.) except n =19, in the form 22 + 6y +t. except
n = 47, and in the form 22% + 4y® +t, except n = 20.

Both Conjectures 2 and 3 have been verified for n < 10000.

The second statement in Conjecture 3 is related to an assertion of Ra-
manujan confirmed by Dickson [D1] which states that even natural numbers
not of the form 4%(161 + 6) (with k,I € N) can be written as 22 4 32 + 1022
with z,y, z € Z. Observe that

n = 2 + 5y% + 2t, for some z,y,z € Z
& dn+ 1= 2% + 5y% + 22 for some z,y, z € Z with 2tz

& 8n+2=2a%+1%) +102> = (z +y)> + (z — y)* + 102>
for some z,y, z € Z with 21y
& 8n+ 2 =z% 4+ y? 4 1022 for some .y, z € Z with z # y (mod4).

Below we reduce the converses of Theorems 2 and 3 to Conjectures 1
and 2. For convenience, we call a ternary quadratic polynomial f(x,y,z2)
essential if {f(z,y,2) : x,y,z € Z} = N. (Actually, in 1748 Goldbach (cf.
[D2, p.11]) already stated that z2 + y? + 2t,, 2% + 2y® + t,, 2% + 2% + 2t,
and 2z% 4 2t, + t, are essential.)

STEP I. We show that the 10 quadratic polynomials listed in Theorem 2
are essential except for the form 22 + 3y? + ¢, appearing in Conjecture 2.

As 422 +y? +2t, ~ 4a? +t, +1t., the form 2% + (2y)? + 2t is essential by
Theorem 1(i). Both 224 (2y)2+t, and 222 +2y% +t, = (x+y)>+(z—y)? +L.
are essential by Theorem 1(ii) and the trivial fact ¢, = 0% +02? +¢,. We have
pointed out in Section 1 that 22 +2(2y)%+t, is essential by [JP, Theorem 6],
and we do not have an easy proof of this deep result.

Since

2%+ 22 Aty ~ 2P 4 2(ty ) ~ g+t + 2,

the form z? 4 2y? + 4t, is essential by Theorem B (of Liouville). By the
Gauss-Legendre theorem, for each n € N we can write 8n + 2 = (4z)? +
(2y+1)2+ (22 +1)? (ie., n = 222+ t, +t,) with z,y, 2 € Z. Thus the form
x? + 2y% + 2t is essential since 222 + y% + 2t, ~ 222 + ty +t,.
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STEP II. We analyze the 15 quadratic polynomials listed in Theorem 3.
By Theorem 1(i), (2x)% + t, + t, and 22 + t, + t, are essential. Since
a% + 2ty + b, ~ty by + s,
2% 4 2ty + 2, ~ by +ty + 2ts,
2% Aty + 2, ~ by + Aty + 1,
2% + 5ty + 2t, ~ ty + Bty + s,
202 + 4ty +t, ~ 2y + 2ty + s,
the forms
a? 4+ 2ty +t,, 2% + 2y, + 2t,, 2® +4t, + 2t,, 2° +5t, + 2t,, 207+ 4t, + 1,

are all essential by Liouville’s theorem. For n € N we can write 2n = 2 +
4t, + 2t, with z,y,2 € Z, and hence n = Qx% + 2ty +t, with 2o = z/2 € Z.
So the form 222 + 2t, +t is also essential.

Recall that 222 + ty +t. and 222 + y? + 2t are essential by the last
two sentences of Step I. For each n € N we can choose z,y, z € Z such that
on+1 =222+ (2y + 1)2 + 2t and hence n = z2 + 4t, +t.. So the form
2 4 4t, +t, is essential.

The remaining forms listed in Theorem 3 are 2% + 8ty +1. and four other
forms, which appear in Conjectures 1 and 2 respectively. We are done.

Acknowledgement. The author is indebted to the referee for his/her
helpful comments.

Added in proof (February 2007). The second conjecture in Section 4 has been
confirmed by Song Guo, Hao Pan and the author.
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