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Asymptotic formula for sum-free sets in abelian groups
by

R. BALASUBRAMANIAN (Chennai) and GYAN PRAKASH (Allahabad)

Let G be a finite abelian group of order n. A subset A of G is said to be
sum-free if there is no solution of the equation x 4+ y = z with z,y,2z € A.
Let SF(G) denote the set of all sum-free subsets of G, and ¢(G) denote the
number n~!log, |SF(G)|. In this article we improve the error term in the
asymptotic formula for o(G) which was recently obtained by Ben Green and
Imre Ruzsa [GRO5].

DEFINITION 1.

(I) Let u(G) denote the density of a largest sum-free subset of G, so
that any such subset has size u(G)n.

(IT) Given a set B C G we say that (z,y,2) € B3 is a Schur triple in B
fx+y==z

Observing that all subsets of a sum-free set are sum-free we have the
obvious inequality

1) SF(G)| > 21O,

From (1) it follows trivially that o(G) > u(G).

In this article we improve the results of Ben Green and Imre Ruzsa
[GRO5] and prove Theorems 2 and 3 below. Theorem 2 follows immediately
from Theorem 3 and [GRO05, Proposition 2.1']. The methods used to prove
Theorem 3 are a slight refinement of the methods in [GRO05].

THEOREM 2. When G is a finite abelian group of order n, then

o(G) = u(G) + O (W)

THEOREM 3. There exists an absolute positive constant dg such that if
F C G has at most dn® Schur triples, where § < &y, then

(2) |F| < (u(G) + e6"P)n,
where ¢ is an absolute positive constant.
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Earlier Ben Green and Ruzsa [GRO05] proved the following:

THEOREM 4 ([GRO05, Theorem 1.8]). Let G be a finite abelian group of
order n. Then

o(G) = n(G)+ O <W>

THEOREM 5 ([GRO5, Proposition 2.2]). Let G be a finite abelian group,
and suppose that F C G has at most 6n® Schur triples. Then

(3) [F| < (u(G) +2%6"/%)n.
The following theorem is also proven in [GRO5].

THEOREM 6 ([GRO5, Corollary 4.3]). Let G be an abelian group, and
suppose that F C G has at most én® Schur triples. Then

(4) |F| < (max(u(G),1/3) + 36'/3)n.

Theorem 3 follows immediately from Theorem 6 in the case u(G) > 1/3.
If u(G) < 1/3, Theorem 3 again follows from Theorem 6 provided ¢ is not
very small. For § small we require Lemma 12 with an estimate different from
those in [GRO5]. For the rest of results required to prove Theorem 3, the
methods used are completely identical as in [GRO5], but the results used are
not identical.

To prove Theorem 2 we use the following result from [GRO05].

THEOREM 7 ([GRO5, Proposition 2.1']). Let G be an abelian group of
cardinality n, where n is sufficiently large. Then there is a family F of
subsets of G with the following properties:

(I) log, | F| < n(lnn)~1/18,
(IT) Every A € SF(G) is contained in some F € F.
(IIT) If F € F then F has at most n*(Inn)~"9 Schur triples.

Theorem 2 follows immediately from Theorems 7 and 3. We shall re-
produce the proof given in [GRO5]. If n is sufficiently large as required by
Theorem 7 then associated to each A € SF(G) there is an F' € F for which
A C F. For a given F, the number of A’s which can arise in this way is at
most 2/¥!. Thus we have the bound

< Pl « |£]

SF(@)| < > 2Fl < |7 max 2171,
FeF

Hence

(5) o(G) < W(@) +C !

(Inn)1/27 + (Inn)1/18"

But from (1) we have o(G) > u(G). Hence Theorem 2 follows.
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In order to prove Theorem 3 we shall need the value of u(G), which is
now known for all finite abelian groups. In order to explain the results we
make the following definition.

DEFINITION 8. Suppose that G is a finite abelian group of order n. If n
is divisible by any prime p = 2 (mod 3) then we say that G is of type I. We
say that G is of type I(p) if it is of type I and if p is the least prime factor
of n of the form 3] + 2. If n is not divisible by any prime p = 2 (mod 3), but
3| n, then we say that G is of type II. Otherwise G is said to be of type III.
That is, G is of type III if and only if all divisors of n are congruent to 1
modulo 3.

The following theorem is due to P. H. Diananda and H. P. Yap [DY69]
for type I and type II groups, and to Green and Ruzsa [GRO5] for type III
groups.

THEOREM 9 ([GRO5, Theorem 1.5]). Let G be a finite abelian group of
order n. Then the following hold:

(1) If G is of type I(p) then u(G) =1/3 +1/3p.
(IT) If G is of type II then u(G) =1/3.
(III) If G is of type III then u(G) = 1/3—1/3m, where m is the exponent
of G.

1. Cardinality of almost sum-free sets. In case the group G is not
of type III it follows from Theorem 9 that x(G) > 1/3 and hence Theorem 3
follows immediately using Theorem 6. Therefore we have to prove Theorem 3
for type III groups only.

For the rest of this article G will be a finite abelian group of type III, and
m will denote the exponent of G. The following proposition is an immediate
corollary of Theorems 9 and 6.

PROPOSITION 10. Let G be an abelian group of type III with order n and
exponent m. If F C G has at most én® Schur triples then:

@) |F| < (W(G) +1/3m + 36'/3)n.
(I1) If 6Y/3m > 1 then |F| < (u(G) + 46Y/3)n, that is, Theorem 3 holds
in this case.

Therefore to prove Theorem 3 we are left with the following case: the
group G is an abelian group of type III with order n and exponent m. The
subset F C G has at most én? Schur triples and 6Y/3m < 1.

Let v be a character of G and let ¢ be the order of 7. For any j € Z/qZ,
we define H; = v~ 1(e?7/9). We also denote the set Hy = ker(7) by just H.
Notice that H is a subgroup of G, and H; are cosets of H with cardinality
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|H;| = |H| = n/q. For any set ' C G we also define F; = F' N H; and
aj = |Fj|/|Hjl.

PRrROPOSITION 11. Let G be a finite abelian group of order n. Let F be
a subset of G having at most dn> Schur triples where 6 > 0. Let v be any

character of G and q be its order. Also let F; and «; be as defined above.
Then the following holds:

(I) If x € F; and y € Fj then x 4y belongs to H; ;.

(IT) The number of Schur triples {x,y, z} in F with x € F, y € F; and
z € Fjqy is at least |Fy|(|F}| + |Fji| — |H|). In other words, there
are at least ay(aj+ g —1)(n/q)* Schur triples {z,y, z} in F with
x € Fj.

(ITI) Given anyl € Z/qZ such that oy > 0, we have

(6) aj+aji < 1+0¢%

for any j € Z/qZ.
(IV) Given any t € R we define

Lit)={i€Z/qZ : a; + ag; > 1 + t}.
Then
(7) Z a; < 5q2/t.

ieL(t)

Proof. (I) This follows immediately from the fact that 7 is a homomor-
phism.

(II) If | Fy|(|Fj| + |Fjsi| — |H]|) < 0, there is nothing to prove. Hence we
can assume that F; # (. Then for any x € Fj, we have  + F; C H;,. Since
also Fj1; C Hjyy and |Fj| + |Fjyy| — |H| > 0, it follows that

[(z + Fj) 0 Fjl = |Fj| + [Fi| = [(z + F) U Fja| = |Fj| + [Fja| — [HI.
Now for any z € (x + F}) N Fj4; there exists y € F} such that x +y = 2.
Hence the claim follows.

(III) From (II) there are at least ay(aj + a4y — 1)(n/q)? Schur triples
in F. Hence the claim follows by the assumed upper bound on the number
of those triples.

(IV) For any fixed ¢ € L(t), taking j =1 = ¢ in (II), we see that there
are at least a;(n/q)*t Schur triples {x,y, 2} in F with = € F;. Now for any
i1,i2 € L(t) such that i; # iy, the sets F;, and F;, are disjoint. Therefore
there are at least (n/q)%t_ ;. L) @ Schur triples in F". Hence the claim
follows. =

Since the order of any character of an abelian group G divides the order
of the group and G is of type I, the order ¢ of any character v of G is odd
and congruent to 1 modulo 3. Therefore ¢ = 6k 4+ 1 for some k£ € N. Let
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I,H,M,T C Z/qZ denote the images of the intervals {k+1,k+2,...,5k—1,
Sk}, Ak +1,k+2,...,2k — 1,2k}, {2k + 1,2k + 2,...,4k — 1,4k}, {4k + 1,
4k + 2,...,5k — 1,5k} in Z/qZ. Then the set I is divided into 2k disjoint
pairs of the form (7,2i) where i € HUT.

LEMMA 12. Let G be a finite abelian group of type III and order n.
Suppose that F C G has at most on> Schur triples. Let v be a character
of G. Let the order of v be ¢ = 6k + 1. Then

5k
(8) Z o < 2k + 2012432,
i=k+1

Proof. Theset I ={k+1,k+2,...,5k} is divided into 2k disjoint pairs
of the form (7, 2i) where i € H UT. Therefore

5k
(9) Z o = Z (ai+a2i)-

i=k+1 i€ HUT
Given a t > 0 we divide H U T into two disjoint sets,
S={ie HUT : a; + ag; < 1+t},
L={ic HUT: o; + ag; > 1 + t}.

Therefore
(10) Z (o + ag;) = Z(ai + ag;) + Z(ai + ).
i€ HUT i€S €L
From (7) we have
Z o; < 5q2/t.
el

Since for any | € Z/qZ, the inequality oy < 1 holds trivially, it follows that

(11) > (o + am) < |L| +6¢%/t.
i€L
Also
(12) Z(ai + ag;) < |S]+[S]t
€8
just by the definition of the set S. Now from (9), it follows that
5k
(13) D o <L+ 6¢%/t+ |S| + |S|t < 2k + gt + 667/t
i=k+1

Choosing t = (3¢)'/? completes the proof of the lemma. w

REMARK. The sum appearing in the last lemma was estimated by 2k +
61/2¢% in [GRO5]. There the estimate a; + ag; < 6%/2¢ was used to estimate
the right hand side of (9).
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Notice that Lemma 12 holds for any character « of a group G of type III.
We would like to show that given F' C G having at most dn? Schur triples
and also assuming that 6*/3m < 1 where m is the exponent of G, there is a
character v such that o; < ¢(3¢)"/? for i € {0,1,...,k} U {5k +1,...,6k}
where c is an absolute positive constant, ¢ is the order of v and k = (¢ — 1) /6.
To do this we recall the concept of special direction as defined in [GRO5].
The method of proof of this part is identical as in [GRO05], though the results
are not.

Given any set B C G and a character v of G we define B(v) = > ben V(D).

Fix a character v, such that Re B(v) is minimal. We follow the terminology
in [GRO5] and call v a special direction of B.

The following lemma is proven in [GRO05], but we shall reproduce the
proof here for the sake of completeness.

LEMMA 13 ([GRO5, Lemmas 7.1 and 7.3(iv)]). Let G be an abelian group
of type III. Suppose F C G has at most én® Schur triples. Let s be a special
direction of F. Set a = |F|/|G|. Then the following hold:

1) ReP0) < (s = o I

(IT) If 6 < n/5, then either |F| < u(G)n or

~1
T 25\ | (u(Z/qZ))
(14) q 1 jEO Qj COS<7> + W < 66.

Proof. (I) There are exactly n~! Zv(ﬁ(y))zﬁ('y) Schur triples in the
set F. This follows after straightforward calculation, using the fact that

(15) S () = {0 o0

n ifb=0,
S

where 0 denotes the identity element of the group G. Therefore using the
assumed upper bound on the number of Schur triples in F' it follows that

n Y (F@)PE(M) =0t Y (F(3))F() +n (F(1)*F(1) < on?,
v 71

~

where v = 1 is the trivial character of G. Since n~1(F(1))2F(1) = a3n?, it
follows that

Re F(75) Y (F()? <n 'Y (F(4)*F(7) < (6 — a®)n?,
v#1 v#1

Since from (15) it follows that 277&1(13(7))2 = a(1—a?)n?, the claim follows.
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(II) We have Re F(v,) = |H| >_jajcos(2mj/q). Therefore in the case
|F'| > u(G), from (I) it follows that

-1
1% o] 5 a?
(16) q 1;)ajCOS<T>Sa(l_a)—a(l_a),
~1
R 27j\ | ((@))? J
(17) q 1jgoajcos(7>+1_ﬂ(G)§a(1_a).

Since from Theorem 9 we know that u(G) > pu(Z/qZ) it follows that

(W(@G)? _ (uz/qz))?
1—pu(G) = 1—p(Z/qZ)
The claim follows from this and the fact that 1/2 > u(G) > 1/4, which
implies that 6/a(1l — ) < 6. =
LEMMA 14. Let G be an abelian group of type III with order n and
exponent m. Suppose F C G has at most dn? Schur triples and §'/3m < 1.
Let |F| > pu(G)n. Let s be a special direction of F' and q the order of 7s. Let

q = 6k+1 and o; be as defined above. There exist absolute positive constants
qo and 01 such that if ¢ > qo and § < &1, then

(18) i <c(6g)Y?  forallie{0,1,....,k}U{Bk+1,...,6k—1},
where ¢ is an absolute positive constant.

Proof. If ' C G is as in the statement, then so is —F C G. Moreover
|Fj| = |(—=F)—;|. Therefore to prove the proposition it is sufficient to show
that

o; < c(6q)?  forallie{0,1,...,k}

for some absolute positive constant c.
Let

q—1 . 2
N o cos[ 2T (1(Z/qZ))
5=a jz:% ! <Q>+1—M(Z/qZ)'

Then from Lemma 13 we have

(19) S < 66.

Now suppose that a; > ¢(6¢)'/? for some | € {0,1,...,k} (where c is a
positive number to be chosen later). We shall show that this violates (19),
provided ¢ and c are sufficiently large and ¢ is sufficiently small. For this we

shall find the lower bound of M = ¢~! Z?;é ajcos(2mj/q).
Set vj = (o + cj11)/2. Then we have
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That is,

R T = (@it
20 M= el 2 (=5

Notice that cos(wl/q) is not well defined if we consider [ as an element of
Z/qZ. This is because the function cos(wt/q) as a function of ¢ is periodic,
but with period 2¢ and not ¢. But we have assumed that [ € {0,1,...,k},
so the above computation is valid.

Since §1/2¢3/2 < §1/2m3/2 < 1 by assumption, recalling Lemma 11 it
follows that

1 1
(21) 2yj=oaj+aj <1+ 261/2(]3/2 <1+ - for any j € Z/qZ

and

(22) Z%‘ = Z aj = p(G)n = 2k.

The inequality (22) follows from the assumption that |F'| > u(G)n.
Set t. = 1+ 1/c. Let E(c,q) denote the minimum of the expression
;1;(1) v;jcos((2j +1)m/q) subject to the constraints 0 < ~; < t./2 and
Zj Vi > 2k.
The function f : Z — R given by f(x) = cos((¢ + z)7/q) is even with
period 2¢ and

(23) F0) < f(1) <--- < fla):

Now to determine E(c,q), we should choose v; to be as large as we can
when cos((2j + 1)7/q) is small. We have two cases to discuss: when [ is even
and when [ is odd. The image of the function g : Z/qZ — R defined by
9(j) = cos((2j +1)m/q) is equal to {f(x) : = is even} if | is odd, and to
{f(z) : = is odd} if [ is even. From this it is also easy to observe that
the number of j € Z/qZ such that cos((2j +[)7/q) is negative is at most
(¢ +1)/2. Now let

qg—1 . _qg—1
T G I e — |
2 =)=
so that —¢ < 2j +1 < ¢. For [ odd consider the case when v; = t./2 if
ko1 ko1
2i+l=q—|——=|,...,q—2,q, 1,..., —— =
J + q |:tc 2} q q,q+ Q+[tc 2]

and 7; = 0 otherwise. The condition 2[k/t.—1/2]4+1 > (¢ + 1)/2 ensures that
in the above configuration for all possible negative values of cos((2j5 + I)7/q)
the maximum possible weight ¢./2 is chosen. This condition can be ensured
if ¢ > 11 by choosing ¢ > ¢; where ¢; is a sufficiently large absolute positive
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constant. Therefore a small calculation shows that for ¢ > ¢q,

B sin(2w[k/t. — 1/2]/q) 1
(24) E(C, Q) > tc 2(] SiH(ﬂ'/(]) COS(TFZ/(]) q ’

For [ even and ¢ > ¢, choosing v; = t./2 if

k k
2j+1l=q— [t—},...,q—l,q—i-l,...,q—i- [t_}

and ~; = 0 otherwise, we get

i@kt + 1)/g) o te
(25) E(c) > —t. 2 sin(r/q) 1 q

Using this we get

6 5> g, ST/ (n(E/e))
2qsin(r/q) cos(rl/q) | 1— p(Z/qZ)
. B 2
(1) §>¢ 0Okt = 1/2/a) 1 WZ/GE)" i pda
2gsin(m/q) cos(nl/q) ¢ 1 —p(Z/qZ)
Now as ¢ — oo the right hand side of (26) as well as (27) converges to
., osin(2m/3t) 1
“2mcos(nl/q) 6
Let n = 2720 Then choosing ¢ > ¢y and ¢ > ¢p and noticing that [ < ¢/6
we get

when [ is even,

1 1
(28) SZ—%‘FE—U:S(Sl say.

When 6 < §1, the lower bound on S given by (28) is in contradiction to the
upper bound on S given by (19). Hence the lemma follows. m

To complete the proof of Theorem 3, we require the following result
from [GRO5].

LEMMA 15 ([GRO5, Proposition 7.2]). Let G be an abelian group of type
IIT and n, m be its order and exponent respectively. Suppose F C G has
at most on? Schur triples, with 8/3m < 1. Let q be the order of a special
direction such that q < qg, where qg is an absolute positive constant as in
Lemma 14. Also assume that § < 1n/q®> = 82, where n = 27°°. Then either
|F| < u(G)n or a; < 646363 for any i € {0,1,..., kY U{Bk+1,...,6k}.

Let 01 and 62 be as in Lemmas 14 and 15 respectively. Then we take
0o = min(dy,d2) in Theorem 3. Combining Lemmas 12, 14 and 15 yields
Theorem 3 in case 6%/3m < 1. In case 6%/3m > 1, Theorem 3 follows from
Proposition 10.
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