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Asymptotic formula for sum-free sets in abelian groups

by

R. Balasubramanian (Chennai) and Gyan Prakash (Allahabad)

Let G be a finite abelian group of order n. A subset A of G is said to be
sum-free if there is no solution of the equation x + y = z with x, y, z ∈ A.
Let SF(G) denote the set of all sum-free subsets of G, and σ(G) denote the
number n−1 log2 |SF(G)|. In this article we improve the error term in the
asymptotic formula for σ(G) which was recently obtained by Ben Green and
Imre Ruzsa [GR05].

Definition 1.

(I) Let µ(G) denote the density of a largest sum-free subset of G, so
that any such subset has size µ(G)n.

(II) Given a set B ⊂ G we say that (x, y, z) ∈ B3 is a Schur triple in B
if x + y = z.

Observing that all subsets of a sum-free set are sum-free we have the
obvious inequality

(1) |SF(G)| ≥ 2µ(G)n.

From (1) it follows trivially that σ(G) ≥ µ(G).
In this article we improve the results of Ben Green and Imre Ruzsa

[GR05] and prove Theorems 2 and 3 below. Theorem 2 follows immediately
from Theorem 3 and [GR05, Proposition 2.1′]. The methods used to prove
Theorem 3 are a slight refinement of the methods in [GR05].

Theorem 2. When G is a finite abelian group of order n, then

σ(G) = µ(G) + O

(
1

(lnn)1/27

)
.

Theorem 3. There exists an absolute positive constant δ0 such that if

F ⊂ G has at most δn2 Schur triples, where δ ≤ δ0, then

(2) |F | ≤ (µ(G) + cδ1/3)n,

where c is an absolute positive constant.
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Earlier Ben Green and Ruzsa [GR05] proved the following:

Theorem 4 ([GR05, Theorem 1.8]). Let G be a finite abelian group of

order n. Then

σ(G) = µ(G) + O

(
1

(lnn)1/45

)
.

Theorem 5 ([GR05, Proposition 2.2]). Let G be a finite abelian group,
and suppose that F ⊆ G has at most δn2 Schur triples. Then

(3) |F | ≤ (µ(G) + 220δ1/5)n.

The following theorem is also proven in [GR05].

Theorem 6 ([GR05, Corollary 4.3]). Let G be an abelian group, and

suppose that F ⊆ G has at most δn2 Schur triples. Then

(4) |F | ≤ (max(µ(G), 1/3) + 3δ1/3)n.

Theorem 3 follows immediately from Theorem 6 in the case µ(G) ≥ 1/3.
If µ(G) < 1/3, Theorem 3 again follows from Theorem 6 provided δ is not
very small. For δ small we require Lemma 12 with an estimate different from
those in [GR05]. For the rest of results required to prove Theorem 3, the
methods used are completely identical as in [GR05], but the results used are
not identical.

To prove Theorem 2 we use the following result from [GR05].

Theorem 7 ([GR05, Proposition 2.1′]). Let G be an abelian group of

cardinality n, where n is sufficiently large. Then there is a family F of

subsets of G with the following properties:

(I) log2 |F| ≤ n(lnn)−1/18.

(II) Every A ∈ SF(G) is contained in some F ∈ F .

(III) If F ∈ F then F has at most n2(lnn)−1/9 Schur triples.

Theorem 2 follows immediately from Theorems 7 and 3. We shall re-
produce the proof given in [GR05]. If n is sufficiently large as required by
Theorem 7 then associated to each A ∈ SF(G) there is an F ∈ F for which
A ⊂ F . For a given F , the number of A’s which can arise in this way is at
most 2|F |. Thus we have the bound

|SF(G)| ≤
∑

F∈F

2|F | ≤ |F|max
F∈F

2|F |.

Hence

(5) σ(G) ≤ µ(G) + C
1

(lnn)1/27
+

1

(lnn)1/18
.

But from (1) we have σ(G) ≥ µ(G). Hence Theorem 2 follows.
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In order to prove Theorem 3 we shall need the value of µ(G), which is
now known for all finite abelian groups. In order to explain the results we
make the following definition.

Definition 8. Suppose that G is a finite abelian group of order n. If n
is divisible by any prime p ≡ 2 (mod3) then we say that G is of type I. We
say that G is of type I(p) if it is of type I and if p is the least prime factor
of n of the form 3l + 2. If n is not divisible by any prime p ≡ 2 (mod3), but
3 |n, then we say that G is of type II. Otherwise G is said to be of type III.
That is, G is of type III if and only if all divisors of n are congruent to 1
modulo 3.

The following theorem is due to P. H. Diananda and H. P. Yap [DY69]
for type I and type II groups, and to Green and Ruzsa [GR05] for type III
groups.

Theorem 9 ([GR05, Theorem 1.5]). Let G be a finite abelian group of

order n. Then the following hold :

(I) If G is of type I(p) then µ(G) = 1/3 + 1/3p.
(II) If G is of type II then µ(G) = 1/3.

(III) If G is of type III then µ(G) = 1/3−1/3m, where m is the exponent

of G.

1. Cardinality of almost sum-free sets. In case the group G is not
of type III it follows from Theorem 9 that µ(G) ≥ 1/3 and hence Theorem 3
follows immediately using Theorem 6. Therefore we have to prove Theorem 3
for type III groups only.

For the rest of this article G will be a finite abelian group of type III, and
m will denote the exponent of G. The following proposition is an immediate
corollary of Theorems 9 and 6.

Proposition 10. Let G be an abelian group of type III with order n and

exponent m. If F ⊂ G has at most δn2 Schur triples then:

(I) |F | ≤ (µ(G) + 1/3m + 3δ1/3)n.

(II) If δ1/3m ≥ 1 then |F | ≤ (µ(G) + 4δ1/3)n, that is, Theorem 3 holds

in this case.

Therefore to prove Theorem 3 we are left with the following case: the
group G is an abelian group of type III with order n and exponent m. The
subset F ⊂ G has at most δn2 Schur triples and δ1/3m < 1.

Let γ be a character of G and let q be the order of γ. For any j ∈ Z/qZ,
we define Hj = γ−1(e2πij/q). We also denote the set H0 = ker(γ) by just H.
Notice that H is a subgroup of G, and Hj are cosets of H with cardinality
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|Hj | = |H| = n/q. For any set F ⊂ G we also define Fj = F ∩ Hj and
αj = |Fj|/|Hj|.

Proposition 11. Let G be a finite abelian group of order n. Let F be

a subset of G having at most δn2 Schur triples where δ ≥ 0. Let γ be any

character of G and q be its order. Also let Fi and αi be as defined above.

Then the following holds:

(I) If x ∈ Fi and y ∈ Fj then x + y belongs to Hi+j.

(II) The number of Schur triples {x, y, z} in F with x ∈ Fl, y ∈ Fj and

z ∈ Fj+l is at least |Fl|(|Fj| + |Fj+l| − |H|). In other words, there

are at least αl(αj +αj+l−1)(n/q)2 Schur triples {x, y, z} in F with

x ∈ Fl.

(III) Given any l ∈ Z/qZ such that αl > 0, we have

(6) αj + αj+l ≤ 1 + δq2/αl

for any j ∈ Z/qZ.

(IV) Given any t ∈ R we define

L(t) = {i ∈ Z/qZ : αi + α2i ≥ 1 + t}.

Then

(7)
∑

i∈L(t)

αi ≤ δq2/t.

Proof. (I) This follows immediately from the fact that γ is a homomor-
phism.

(II) If |Fl|(|Fj| + |Fj+l| − |H|) ≤ 0, there is nothing to prove. Hence we
can assume that Fl 6= ∅. Then for any x ∈ Fl, we have x + Fj ⊂ Hj+l. Since
also Fj+l ⊂ Hj+l and |Fj | + |Fj+l| − |H| > 0, it follows that

|(x + Fj) ∩ Fj+l| = |Fj | + |Fj+l| − |(x + Fj) ∪ Fj+l| ≥ |Fj| + |Fj+l| − |H|.

Now for any z ∈ (x + Fj) ∩ Fj+l there exists y ∈ Fj such that x + y = z.
Hence the claim follows.

(III) From (II) there are at least αl(αj + αj+l − 1)(n/q)2 Schur triples
in F . Hence the claim follows by the assumed upper bound on the number
of those triples.

(IV) For any fixed i ∈ L(t), taking j = l = i in (II), we see that there
are at least αi(n/q)2t Schur triples {x, y, z} in F with x ∈ Fi. Now for any
i1, i2 ∈ L(t) such that i1 6= i2, the sets Fi1 and Fi2 are disjoint. Therefore
there are at least (n/q)2t

∑
i∈L(t) αi Schur triples in F . Hence the claim

follows.

Since the order of any character of an abelian group G divides the order
of the group and G is of type III, the order q of any character γ of G is odd
and congruent to 1 modulo 3. Therefore q = 6k + 1 for some k ∈ N. Let
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I, H, M, T ⊂ Z/qZ denote the images of the intervals {k+1, k+2, . . . , 5k−1,
5k}, {k + 1, k + 2, . . . , 2k − 1, 2k}, {2k + 1, 2k + 2, . . . , 4k − 1, 4k}, {4k + 1,
4k + 2, . . . , 5k − 1, 5k} in Z/qZ. Then the set I is divided into 2k disjoint
pairs of the form (i, 2i) where i ∈ H ∪ T .

Lemma 12. Let G be a finite abelian group of type III and order n.

Suppose that F ⊂ G has at most δn2 Schur triples. Let γ be a character

of G. Let the order of γ be q = 6k + 1. Then

(8)
5k∑

i=k+1

αi ≤ 2k + 2δ1/2q3/2.

Proof. The set I = {k +1, k +2, . . . , 5k} is divided into 2k disjoint pairs
of the form (i, 2i) where i ∈ H ∪ T . Therefore

(9)
5k∑

i=k+1

αi =
∑

i∈H∪T

(αi + α2i).

Given a t > 0 we divide H ∪ T into two disjoint sets,

S = {i ∈ H ∪ T : αi + α2i ≤ 1 + t},

L = {i ∈ H ∪ T : αi + α2i > 1 + t}.

Therefore

(10)
∑

i∈H∪T

(αi + α2i) =
∑

i∈S

(αi + α2i) +
∑

i∈L

(αi + α2i).

From (7) we have ∑

i∈L

αi ≤ δq2/t.

Since for any l ∈ Z/qZ, the inequality αl ≤ 1 holds trivially, it follows that

(11)
∑

i∈L

(αi + α2i) ≤ |L| + δq2/t.

Also

(12)
∑

i∈S

(αi + α2i) ≤ |S| + |S|t

just by the definition of the set S. Now from (9), it follows that

(13)
5k∑

i=k+1

αi ≤ |L| + δq2/t + |S| + |S|t ≤ 2k + qt + δq2/t.

Choosing t = (δq)1/2 completes the proof of the lemma.

Remark. The sum appearing in the last lemma was estimated by 2k +
δ1/2q2 in [GR05]. There the estimate αi + α2i ≤ δ1/2q was used to estimate
the right hand side of (9).
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Notice that Lemma 12 holds for any character γ of a group G of type III.
We would like to show that given F ⊂ G having at most δn2 Schur triples
and also assuming that δ1/3m < 1 where m is the exponent of G, there is a
character γ such that αi ≤ c(δq)1/2 for i ∈ {0, 1, . . . , k} ∪ {5k + 1, . . . , 6k}
where c is an absolute positive constant, q is the order of γ and k = (q − 1)/6.
To do this we recall the concept of special direction as defined in [GR05].
The method of proof of this part is identical as in [GR05], though the results
are not.

Given any set B ⊂ G and a character γ of G we define B̂(γ) =
∑

b∈B γ(b).

Fix a character γs such that Re B̂(γ) is minimal. We follow the terminology
in [GR05] and call γs a special direction of B.

The following lemma is proven in [GR05], but we shall reproduce the
proof here for the sake of completeness.

Lemma 13 ([GR05, Lemmas 7.1 and 7.3(iv)]). Let G be an abelian group

of type III. Suppose F ⊂ G has at most δn2 Schur triples. Let γs be a special

direction of F . Set α = |F |/|G|. Then the following hold :

(I) Re F̂ (γs) ≤

(
δ

α(1 − α)
−

α2

α(1 − α)

)
n.

(II) If δ ≤ η/5, then either |F | ≤ µ(G)n or

(14) q−1
q−1∑

j=0

αj cos

(
2πj

q

)
+

(µ(Z/qZ))2

1 − µ(Z/qZ)
< 6δ.

Proof. (I) There are exactly n−1
∑

γ(F̂ (γ))2F̂ (γ) Schur triples in the
set F . This follows after straightforward calculation, using the fact that

(15)
∑

γ

γ(b) =

{
0 if b 6= 0,

n if b = 0,

where 0 denotes the identity element of the group G. Therefore using the
assumed upper bound on the number of Schur triples in F it follows that

n−1
∑

γ

(F̂ (γ))2F̂ (γ) = n−1
∑

γ 6=1

(F̂ (γ))2F̂ (γ) + n−1(F̂ (1))2F̂ (1) ≤ δn2,

where γ = 1 is the trivial character of G. Since n−1(F̂ (1))2F̂ (1) = α3n2, it
follows that

Re F̂ (γs)
∑

γ 6=1

(F̂ (γ))2 ≤ n−1
∑

γ 6=1

(F̂ (γ))2F̂ (γ) ≤ (δ − α3)n2.

Since from (15) it follows that
∑

γ 6=1(F̂ (γ))2 = α(1−α2)n2, the claim follows.
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(II) We have Re F̂ (γs) = |H|
∑

j αj cos(2πj/q). Therefore in the case
|F | ≥ µ(G), from (I) it follows that

q−1
q−1∑

j=0

αj cos

(
2πj

q

)
≤

δ

α(1 − α)
−

α2

α(1 − α)
,(16)

q−1
q−1∑

j=0

αj cos

(
2πj

q

)
+

(µ(G))2

1 − µ(G)
≤

δ

α(1 − α)
.(17)

Since from Theorem 9 we know that µ(G) ≥ µ(Z/qZ) it follows that

(µ(G))2

1 − µ(G)
≥

(µ(Z/qZ))2

1 − µ(Z/qZ)
.

The claim follows from this and the fact that 1/2 ≥ µ(G) ≥ 1/4, which
implies that δ/α(1 − α) ≤ 6δ.

Lemma 14. Let G be an abelian group of type III with order n and

exponent m. Suppose F ⊂ G has at most δn2 Schur triples and δ1/3m ≤ 1.
Let |F | ≥ µ(G)n. Let γs be a special direction of F and q the order of γs. Let

q = 6k+1 and αi be as defined above. There exist absolute positive constants

q0 and δ1 such that if q ≥ q0 and δ ≤ δ1, then

(18) αi ≤ c(δq)1/2 for all i ∈ {0, 1, . . . , k} ∪ {5k + 1, . . . , 6k − 1},

where c is an absolute positive constant.

Proof. If F ⊂ G is as in the statement, then so is −F ⊂ G. Moreover
|Fj | = |(−F )−j|. Therefore to prove the proposition it is sufficient to show
that

αi ≤ c(δq)1/2 for all i ∈ {0, 1, . . . , k}

for some absolute positive constant c.
Let

S = q−1
q−1∑

j=0

αj cos

(
2πj

q

)
+

(µ(Z/qZ))2

1 − µ(Z/qZ)
.

Then from Lemma 13 we have

(19) S ≤ 6δ.

Now suppose that αl > c(δq)1/2 for some l ∈ {0, 1, . . . , k} (where c is a
positive number to be chosen later). We shall show that this violates (19),
provided q and c are sufficiently large and δ is sufficiently small. For this we
shall find the lower bound of M = q−1

∑q−1
j=0 αj cos(2πj/q).

Set γj = (αj + αj+l)/2. Then we have

M =
1

2q cos(πl/q)

q−1∑

j=0

αj

(
cos

(
(2j + l)π

q

)
+ cos

(
(2j − l)π

q

))
.
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That is,

(20) M =
1

q cos(πl/q)

q−1∑

j=0

γj cos

(
(2j + l)π

q

)
.

Notice that cos(πl/q) is not well defined if we consider l as an element of
Z/qZ. This is because the function cos(πt/q) as a function of t is periodic,
but with period 2q and not q. But we have assumed that l ∈ {0, 1, . . . , k},
so the above computation is valid.

Since δ1/2q3/2 ≤ δ1/2m3/2 < 1 by assumption, recalling Lemma 11 it
follows that

2γj = αj + αj+l ≤ 1 +
1

c
δ1/2q3/2 ≤ 1 +

1

c
for any j ∈ Z/qZ(21)

and

(22)
∑

j

γj =
∑

j

αj ≥ µ(G)n ≥ 2k.

The inequality (22) follows from the assumption that |F | ≥ µ(G)n.

Set tc = 1 + 1/c. Let E(c, q) denote the minimum of the expression∑q−1
j=0 γj cos((2j + l)π/q) subject to the constraints 0 ≤ γj ≤ tc/2 and∑
j γj ≥ 2k.

The function f : Z → R given by f(x) = cos((q + x)π/q) is even with
period 2q and

(23) f(0) < f(1) < · · · < f(q).

Now to determine E(c, q), we should choose γj to be as large as we can
when cos((2j + l)π/q) is small. We have two cases to discuss: when l is even
and when l is odd. The image of the function g : Z/qZ → R defined by
g(j) = cos((2j + l)π/q) is equal to {f(x) : x is even} if l is odd, and to
{f(x) : x is odd} if l is even. From this it is also easy to observe that
the number of j ∈ Z/qZ such that cos((2j + l)π/q) is negative is at most
(q + 1)/2. Now let

−
q − 1

2
− l ≤ j ≤

q − 1

2
− l

so that −q ≤ 2j + l ≤ q. For l odd consider the case when γj = tc/2 if

2j + l = q −

[
k

tc
−

1

2

]
, . . . , q − 2, q, q + 1, . . . , q +

[
k

tc
−

1

2

]

and γj = 0 otherwise. The condition 2[k/tc−1/2]+1 ≥ (q + 1)/2 ensures that
in the above configuration for all possible negative values of cos((2j + l)π/q)
the maximum possible weight tc/2 is chosen. This condition can be ensured
if q ≥ 11 by choosing c ≥ c1 where c1 is a sufficiently large absolute positive
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constant. Therefore a small calculation shows that for c ≥ c1,

(24) E(c, q) ≥ −tc
sin(2π[k/tc − 1/2]/q)

2q sin(π/q) cos(πl/q)
−

1

q
.

For l even and c ≥ c1, choosing γj = tc/2 if

2j + l = q −

[
k

tc

]
, . . . , q − 1, q + 1, . . . , q +

[
k

tc

]

and γj = 0 otherwise, we get

(25) E(c) ≥ −tc
sin((2π[k/tc] + 1)/q)

2q sin(π/q)
cos πq −

tc
q

.

Using this we get

S ≥ −tc
sin(2π[k/tc]/q)

2q sin(π/q) cos(πl/q)
+

(µ(Z/qZ))2

1 − µ(Z/qZ)
when l is even,(26)

S ≥ tc
sin(2π[k/tc − 1/2]/q)

2q sin(π/q) cos(πl/q)
−

1

q
+

(µ(Z/qZ))2

1 − µ(Z/qZ)
when l is odd.(27)

Now as q → ∞ the right hand side of (26) as well as (27) converges to

−tc
sin(2π/3tc)

2π cos(πl/q)
+

1

6
.

Let η = 2−20. Then choosing c ≥ c2 and q ≥ q0 and noticing that l ≤ q/6
we get

(28) S ≥ −
1

2π
+

1

6
− η = 8δ1 say.

When δ ≤ δ1, the lower bound on S given by (28) is in contradiction to the
upper bound on S given by (19). Hence the lemma follows.

To complete the proof of Theorem 3, we require the following result
from [GR05].

Lemma 15 ([GR05, Proposition 7.2]). Let G be an abelian group of type

III and n, m be its order and exponent respectively. Suppose F ⊂ G has

at most δn2 Schur triples, with δ1/3m < 1. Let q be the order of a special

direction such that q ≤ q0, where q0 is an absolute positive constant as in

Lemma 14. Also assume that δ ≤ η/q5 = δ2, where η = 2−50. Then either

|F | ≤ µ(G)n or αi ≤ 64δ1/3q2/3 for any i ∈ {0, 1, . . . , k} ∪ {5k + 1, . . . , 6k}.

Let δ1 and δ2 be as in Lemmas 14 and 15 respectively. Then we take
δ0 = min(δ1, δ2) in Theorem 3. Combining Lemmas 12, 14 and 15 yields
Theorem 3 in case δ1/3m < 1. In case δ1/3m > 1, Theorem 3 follows from
Proposition 10.
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