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On the equation x2
+ dy2

= Fn

by

Christian Ballot (Caen) and Florian Luca (Morelia)

1. Introduction. Let (Fn)n≥0 be the Fibonacci sequence given by
F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0. Let d be any fixed
rational integer. Using standard sieve methods it is easy to establish that,
for

√
−d not an integer, most positive integers m are not representable as

m = |x2 + dy2| with x and y integers. In this paper, we look at those posi-
tive integers m which are both members of the Fibonacci sequence and are
representable as |x2 +dy2| for some integers x and y. That is, we investigate
the set

(1) Nd = {n > 0 : Fn = |x2 + dy2| for some integers x and y}.
Clearly, N0 consists of the positive integers n such that Fn is a perfect square
and Cohn [1] showed that N0 = {1, 2, 12}. When d = 1, using the formula

(2) F2n+1 = F 2
n + F 2

n+1,

we see that N1 contains all odd positive integers. Furthermore, since Fn

and Fn+1 are coprime, every odd prime factor of F2n+1 is congruent to 1
modulo 4. In [2], it was shown that for most even positive integers n, Fn

admits a prime factor q ≡ 3 (mod4). Here, we go one step further. In order
to settle the case of N1, we first prove the following result.

Proposition 1. For all even positive integers n except a set of asymp-

totic density zero, there exists a prime q ≡ 3 (mod4) such that q |Fn and

the exact power of q that divides Fn is odd.

Since for q ≡ 3 (mod4), −1 is a quadratic nonresidue (mod q), Proposi-
tion 1 immediately implies that the asymptotic density of N1 is precisely 1/2.

Note also that if d is a perfect square, then Nd has positive lower asymp-
totic density. Indeed, if we write ̺(d) for the rank of appearance of d in
(Fn)n≥0, i.e., ̺(d) is the minimal positive integer k such that d |Fk, then
formula (2) implies that if d is a perfect square, then the set Nd contains
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the set

{2n + 1 : n ≡ 0,−1 (mod̺(d))},
which is of positive asymptotic density. But Nd also has positive lower
asymptotic density if d is the opposite of a perfect square. Indeed, Nd then
contains

{n : ̺(4d) |n}.
If we put d = −t2, then Fn/t2 is an integer multiple of 4 for n divisible
by ̺(4d). As such, Fn/t2 can be written as (x − y)(x + y). Hence Fn =
(tx)2 − (ty)2 = (tx)2 + dy2. Therefore we have shown the following result.

Theorem 2. For any d which is plus or minus a perfect square, the

set Nd has positive lower asymptotic density. The asymptotic density of N1

is 1/2.

We put

D = {d ∈ Z : Nd has positive lower asymptotic density}.
Theorem 2 implies that D is an infinite set. However, in this paper, we show
that most integers do not belong to D. For a positive real number x we write
D(x) for the set of d ∈ D with |d| ≤ x.

Theorem 3. There exists a positive constant C such that if x > 1 is

any real number then

#D(x) ≤ C
x

(log x)3
.

By a standard procedure of partial summation, Theorem 3 implies that
∑

d∈D

1

|d| < ∞

(note that 0 6∈ D).
We would like to make the following conjecture.

Conjecture 4. D contains only finitely many integers not a square or

the negative of a square.

For integers a and b with b > 0 odd, we write
(

a
b

)

for the Jacobi symbol
of a with respect to b. We state another related conjecture.

Conjecture 5. For all but finitely many of the integers d not a square

or the negative of a square, there is a prime q ≥ 5 such that
(

d

Fq

)

= −1.

The argument used in the proof of Lemma 9 below shows that Conjec-
ture 5 implies Conjecture 4. If true, Conjecture 4 would imply a stronger
bound on the cardinality of D(x) than the one provided by Theorem 3. We
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would like to leave these conjectures as problems to the reader. In fact, it
may be that Conjecture 5 is true without exceptions.

Throughout this paper, we assume familiarity with basic properties of
Fibonacci and Lucas numbers. The nth Lucas number is denoted by Ln.
We recall here that for a prime p, the rank of appearance ̺(p) of p in the
Fibonacci sequence divides p − ep, where ep is the Legendre symbol of 5
with respect to p. Also, we use the Vinogradov symbols ≫ and ≪ and
the Landau symbols O and o with their regular meanings. The constants
implied in them are absolute. For a positive real number x, we use log x for
the maximum between the natural logarithm of x and 1. We write π(x) for
the number of primes p ≤ x, and for coprime integers 1 ≤ a ≤ b we write
π(x; a, b) for the number of primes p ≤ x congruent to a modulo b. We use
p, q and r to denote prime numbers. For a set A of positive integers we put
A(x) = A ∩ [1, x].

Acknowledgements. This paper was written in part during a very
enjoyable visit by the second author to the Laboratoire Nicolas Oresme of
the University of Caen; he wishes to express his thanks to that institution for
the hospitality and support. During the preparation of this paper, F. L. was
also partly supported by grants SEP-CONACYT 46755, PAPIIT IN104505
and a Guggenheim Fellowship.

2. The proofs. For any positive integer n we let P (n) denote the largest
prime factor of n, and for real numbers x ≥ y ≥ 1 we put Ψ(x, y) = {n ≤
x : P (n) ≤ y}. The numbers belonging to Ψ(x, y) are usually referred to as
smooth numbers. The following estimate for the number of smooth numbers
(see Section III.5.4 of Tenenbaum’s book [3]) will play a crucial rôle in our
proofs.

Lemma 6. Let ε > 0 be fixed. Uniformly for

exp((log log x)5/3+ε) ≤ y ≤ x

we have

#Ψ(x, y) = x exp(−(1 + o(1))u log u), where u =
log x

log y
.

Let 1 ≤ a ≤ b be fixed coprime integers. For a positive real number x we
put

A(x; a, b) = {n ≤ x : if p |n and p > log x, then p 6≡ a (mod b)},
that is, n is in A(x; a, b) if no prime factor of n larger than log x is congruent
to a (mod b).

We will need the following estimate.
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Lemma 7. If 1 ≤ a ≤ b are coprime, then there exists xa,b such that

#A(x; a, b) ≪ x(log log x)2

(log x)1/φ(b)
for x > xa,b.

Proof. Let x be a large real number and let y=x1/log log x, u=log x/log y
= log log x. We put A1(x) = A(x; a, b) ∩ Ψ(x, y). Then, by Lemma 6,

(3) #A1(x) ≤ #Ψ(x, y) = x exp(−u(1 + o(1)) log u) <
x

log x

for large x. We now put A2(x) = A(x; a, b) \ A1(x). To bound #A2(x), let
n ∈ A2(x) and write n = Pm, where P = P (n) > y. Then m < x/y. Thus,
fixing m, we see that the number of choices for P is

≤ π(x/m) ≪ x

m log(x/m)
≪ x

m log y
=

x log log x

m log x
.

Note that m ≤ x is an integer which is free of primes p ≡ a (mod b) larger
than log x. Write M(x) for the set of such positive integers m. Then, sum-
ming up over all possible choices of m ∈ M(x), we get

(4) #A2(x) ≪ x log log x

log x

∑

m∈M(x)

1

m

≤ x log log x

log x

∏

p≤x
p6≡a (mod b)

(

∑

α≥0

1

pα

)

∏

p≤log x
p≡a (mod b)

(

∑

α≥0

1

pα

)

=
x log log x

log x

∏

p≤x
p6≡a (mod b)

(

1 − 1

p

)−1
∏

p≤log x
p≡a (mod b)

(

1 − 1

p

)−1

=
x log log x

log x
exp

(

∑

p≤x
p6≡a (mod b)

1

p
+

∑

p≤log x
p≡a (mod b)

1

p
+ O(1)

)

=
x log log x

log x
exp

(

φ(b) − 1

φ(b)
log log x +

1

φ(b)
log log log x + O(1)

)

≪ x(log log x)2

(log x)1/φ(b)
,

where we used the fact that for any fixed A > 0, the estimate

(5)
∑

p≤y
p≡c (mod b)

1

p
=

log log y

φ(b)
+ O

(

log b

b

)

holds uniformly in the range y ≥ 3 and 1 ≤ c ≤ b < (log y)A with c and b
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coprime. In particular, the above estimate also holds when b is fixed. This
completes the proof of the lemma.

We will also need the following lemma.

Lemma 8. Let B(x) be the set of integers n ≤ x divisible by a product

of primes pq, where p > log x and q ≡ ±1 (modp). Then

#B(x) ≪ x log log x

log x
.

Proof. Let x be large and fix two primes p and q such that p > log x,
q ≡ ±1 (mod p) and pq < x. The number of positive integers n ≤ x such
that pq |n is ≤ x/pq. Summing up over all possible choices of p and q, we
get

(6) #B(x) ≤ x
∑

log x<p≤x

∑

q≤x
q≡±1 (mod p)

1

pq
= x(S1 + S2),

where S1 is the contribution to the double sum from primes p < (log x)3,
and S2 is the contribution from primes p ≥ (log x)3. Let

Tp =
∑

q≤x
q≡±1 (mod p)

1

pq
.

Using estimate (5) with A = 3 when p < (log x)3, we get

Tp ≪ log log x

p2
.

We use the trivial estimate

Tp ≤ 1

p

∑

k≤x/p

(

1

pk + 1
+

1

pk − 1

)

≪ 1

p2

∑

k≤x

1

k
≪ log x

p2
,

when p ≥ (log x)3. Thus

S1 + S2 ≤
∑

log x<p<(log x)3

Tp +
∑

(log x)3≤p≤x

Tp(7)

≤
∑

log x<p

log log x

p2
+

∑

(log x)3≤p

log x

p2

≪ log log x

log x
,

where we used the trivial bound

∑

t≤p

1

p2
≤

∑

t≤n

1

n2
≪

∞\
t

ds

s2
=

1

t
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with t = log x and with t = (log x)3. Estimates (6) and (7) now lead to the
desired conclusion.

Proof of Proposition 1. Let x be a large real number and let

C(x) = {n ≤ x : if q ≡ 3 (mod4) and qα ‖F2n, then α is even}.
Lemmas 7 and 8 yield #A(x; 5, 6) + #B(x) = o(x). We now show that

C(x) ⊂ A(x; 5, 6) ∪ B(x),

which, together with the previous estimate, will prove the proposition. Let
n ∈ C(x) and assume n 6∈ A(x; 5, 6). Then there exists a prime p > log x
with p ≡ 5 (mod6) such that p |n. But 2p | 2n, and 2p ≡ 4 (mod6). Since
the Fibonacci sequence is periodic modulo 4 with period 6, and F4 = 3, we
find that F2p ≡ 3 (mod4). Thus, there exists a prime q ≡ 3 (mod4) such
that qa ‖F2p, where a is odd. Since 2p | 2n, we infer that qa |F2n. Now since
n ∈ C(x), we must have qa+1 |F2n. Now q |F2n/F2p with q |F2p implies, by
the well-known law of appearance of powers of primes in Lucas sequences,
that q |n/p. However, since q |F2p, the rank ̺(q) is either p or 2p, which in
both cases implies that q ≡ ±1 (mod p). Hence, pq |n, q ≡ ±1 (modp), and
p > log x. Therefore, n ∈ B(x). This completes our proof.

The following lemma will be useful for the proof of Theorem 3.

Lemma 9. Let d be a nonzero integer. Suppose that p is a prime number

not dividing 12̺(d) such that
(

d

Fp

)

= −1.

Then Nd is of asymptotic density zero.

Proof. Note that p 6= 3, so that Fp is odd and the Jacobi symbol of d
with respect to Fp is well-defined. Let q = 12̺(d)k+p for some nonnegative
integer k. By the addition formula 2Fm+n = FmLn + LmFn, we have

2Fq = F12̺(d)kLp + L12̺(d)kFp.

Clearly, 16 |F12 |F12̺(d)k and d |F̺(d) |F12̺(d)k. Furthermore, since L2n =

5F 2
n + 2(−1)n,

L12̺(d)k = 5F 2
6̺(d)k + 2

is congruent to 2 both modulo 16 and modulo d. The above arguments show
that

2Fq ≡ 2Fp (mod lcm[16, d]),

therefore

Fq ≡ Fp (mod lcm[8, d]).
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These congruences imply the Jacobi symbols’ identity
(

d

Fq

)

=

(

d

Fp

)

.

We now show that Nd(x) ⊂ A(x; p, 12̺(d)) ∪ B(x), which will prove that
#Nd(x) = o(x).

Let n ∈ Nd(x) and assume that n 6∈ A(x; p, 12̺(d)), so that there exists
a prime q > log x with q |n and q = 12̺(d)k + p for some k ≥ 0. Assume
also that n 6∈ B(x), so that we now seek a contradiction.

Write Fq = δqλ
2
q , where δq and λq are positive integers with δq square-

free. Note that δq is odd and > 1 because Fq is odd and not a square. Any
prime r dividing δq satisfies rαr ‖Fq for some odd exponent αr. If rαr+1 |Fn,
then r |Fn/Fq, and hence r |n/q, so that qr |n and r ≡ ±1 (mod q) (because
̺(r) = q and, assuming log x ≥ 5, we cannot have r = q = p = 5). Thus,
n ∈ B(x), a contradiction. Therefore rαr ‖Fn. So, there exist m, y, z ∈ N

such that

(8) y2 + dz2 = mλ2
qδq = Fn, where gcd(m, δq) = 1.

If g = gcd(δq, yz), then, having in mind that δq is square-free and
gcd(δq, d) = 1 (since

(

d
Fq

)

= −1 6= 0), we get g | gcd(y, z, λq).

Hence, dividing out relation (8) by g2 yields

(9) y2
1 + dz2

1 = mµ2
qδq,

for some integers y1, z1, µq with gcd(δq, y1z1) = 1. But equation (9) implies
that

(

−d
δq

)

= 1. Because Fq is odd and Fq = F 2
(q−1)/2 + F 2

(q+1)/2, we have

Fq ≡ 1 (mod4). Therefore

−1 =

(

d

Fp

)

=

(

d

Fq

)

=

(−d

Fq

)

=

(−d

δq

)

= 1,

which is a contradiction, and our proof is complete.

Remark. For d ∈ {±2,±3,±5,±6,±7,±8,±10}, Nd is of asymptotic
density 0 since

(

2

F5

)

=

(

3

F5

)

=

(

7

F5

)

=

(

5

F7

)

=

(

6

F7

)

=

(

10

F19

)

= −1.

In what follows, we put

D1 = {d ∈ D : d is square-free}.
We approach the proof of Theorem 3 by first proving the following somewhat
weaker statement.
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Theorem 10. The estimate

#D1(x) ≪ x

(log x)3

holds for all sufficiently large values of x.

Proof. Let x be large and y = x1/log log x, u = log x/log y = log log x. Let
D2(x) = {d ∈ D1(x) : |d| ∈ Ψ(x, y)}. By Lemma 6,

(10) #D2(x) ≤ 2#Ψ(x, y) = 2x exp(−(1 + o(1))u log u) <
x

(log x)3
,

when x is large.
For a positive integer k, we write ω(k) for the number of distinct prime

factors of k. Let v = 25(log log x)2 and put

D3(x) = {d ∈ D1(x) : ω(̺(d)) ≥ v}.
We now bound D3(x). Let d ∈ D3(x). Because d |Fn if and only if ̺(d) |n,
we deduce that ̺(d) | ∏

p|d ̺(p). Therefore

̺(d)
∣

∣

∏

p|d

(p − ep),

where ep =
(

5
p

)

. Since ω(̺(d)) ≥ v, it follows that either d has at least

w = 5 log log x distinct prime factors, or there exists p | d such that p − ep

has at least w distinct prime factors. In the first case, the number of such
numbers d does not exceed

2
∑

m≤x
ω(m)≥w

1 < 2
∑

m≤x
ω(m)≥w

x

m
≤ 2x

∑

k≥w

∑

m<x
ω(m)=k

1

m
.

In the second case, let p < x be a prime such that p − ep has at least w
prime factors. The number of numbers d with |d| ≤ x which are multiples
of p does not exceed

2x

p
≤ 4x

p − ep
.

Summing up over all such primes and noting that for every m the equation
p − ep = m can have at most two solutions p, we find that in this case the
number of acceptable d’s is

≤ 8x
∑

k≥w

∑

m≤x
ω(m)=k

1

m
.

Hence, if we write

S(x; k) =
∑

m≤x
ω(m)=k

1

m
,
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then

(11) #D3(x) ≪ x
∑

k≥w

S(x; k).

Using the multinomial formula, we get a bound for S(x; k):

S(x; k) ≤ 1

k!

(

∑

p≤x

∑

α≥1

1

pα

)k

=
1

k!

(

∑

p≤x

1

p
+ O(1)

)k

(12)

=
1

k!
(log log x + O(1))k.

Furthermore,

(log log x + O(1))k/k!

(log log x + O(1))k+1/(k + 1)!
=

k + 1

(log log x + O(1))
> 2

if k ≥ w and x is large, therefore by estimates (11) and (12), and Stirling’s
formula, we get

#D3(x) ≪ x
∑

k≥w

S(x; k) ≪ x

⌊w⌋! (log log x + O(1))⌊w⌋(13)

≪ x

(

e log log x + O(1)

w

)w

≪ x

(

e

5

)5 log log x

<
x

(log x)3

for large x because 5 log(5/e) = 3.047 . . . > 3.
Let D4(x) = D1(x) \ (D2(x) ∪ D3(x)). Let d ∈ D4(x) and write it as

d = εPm, where P = P (d) > y, m is a positive integer < x/y, and ε ∈ {±1}.
We fix the number m and let Dm

4 (x) be the subset of D4(x) that contains
the d’s for which d = ±mP (d). Assume Dm

4 (x) is not empty.
Let z = 300(log log x)2 log log log x and let P = {p : p ≤ z}. For x large,

the cardinality of P satisfies

π(z) = (1 + o(1))
z

log z
= 150(1 + o(1))(log log x)2

> 125(log log x)2 = 5v.

Let Q be a fixed subset of P having precisely 5⌊v⌋ primes in it. Because
Dm

4 (x) is not empty, there is a subset T of Q of cardinality 4⌊v⌋ such that
every prime number in T is coprime to 12̺(m). Indeed, since there is a d in
D4(x) such that m | d, we know that ̺(m) divides ̺(d), so that any p coprime
to 12̺(d) is coprime to 12̺(m). Thus, let Qm be the set of subsets of Q of
cardinality 4⌊v⌋ whose (prime) elements are all prime to 12̺(m). Choose a

T in Qm and put Dm,T
4 (x) = {d ∈ Dm

4 (x) : gcd(p, 12̺(d)) = 1, ∀p ∈ T }. We
will bound D4(x) by using the crude estimate

#D4(x) ≤
∑

m≤x

∑

T ∈Qm

#Dm,T
4 (x).
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By Lemma 9, we have, for d ∈ Dm,T
4 (x),

(

d

Fp

)

= 1 for all p ∈ T .

The above condition means that
(

εm

Fp

)(

P

Fp

)

= 1.

But again because p is not 3, Fp is odd. And since Fp is the sum of two
squares we have Fp ≡ 1 (mod4), so that

(

P

Fp

)

=

(

m

Fp

)

.

In the above relation, m is fixed, and p is a prime in the fixed set T . Let
again Fp = δpλ

2
p. The above relation puts P into half of all possible φ(δp)

arithmetic progressions with common differences δp, which are all odd and
> 1. Using the fact that the Fp’s are mutually coprime as p varies in T , we
conclude that P lies in 1/2#T of all admissible progressions of the form AT

(modBT ), where

BT =
∏

p∈T

δp ≤
∏

p∈T

Fp ≤ exp(#T z)(14)

= exp(30000(log log x)4 log log log x).

Here, we used the fact that Fn < en for all positive integers n. By the
Brun–Titchmarsh theorem, the number of such primes P ≤ x/m does not
exceed

2x/m

2#T log(x/mBT )
≤ 4x log log x

24⌊v⌋m log x
,

where we used estimate (14) to conclude that x/m > y > (BT )2 for large x,
therefore that x/mBT > y1/2. The number of subsets T ∈ Qm is less than
(5⌊v⌋
4⌊v⌋

)

so that the number of acceptable primes P when m is fixed is

≤ 1

24⌊v⌋

(

5⌊v⌋
4⌊v⌋

)

4x log log x

m log x
,

and summing up over all possible values of m we get

#D4(x) ≤ 4x log log x

log x
· 1

24⌊v⌋

(

5⌊v⌋
4⌊v⌋

)

∑

m≤x

1

m
≪ x log log x · 1

24⌊v⌋

(

5⌊v⌋
4⌊v⌋

)

.

By Stirling’s formula, the above inequality leads, for x large, to

(15) #D4(x) ≪ x log log x

(

55

44 · 24

)⌊v⌋

<
x

(log x)3
,
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where we used the fact that

25 log(55/(44 · 24)) = −6.7644 . . . < −3.

The conclusion of the theorem now follows from estimates (10), (13) and
(15).

Proof of Theorem 3. Let d ∈ D, and write it as d = d1 · d2
0, where d1 is

square-free. It is clear that Nd ⊂ Nd1
, therefore d1 ∈ D as well. Thus, if x

is large, then

#D(x) ≤
∑

d0≥1

#D1(x/d2
0).

By Theorem 10,

#D(x/d2
0) ≪

x

d2
0(log(x/d2

0))
3
.

When d0 < x1/3, we have x/d2
0 > x1/3, therefore

#D(x/d2
0) ≪

x

d2
0(log x)3

.

Otherwise, we use the trivial inequality #D1(x/d2
0) ≤ 2x/d2

0 to get

#D(x) ≪
∑

1≤d0≤x1/3

x

d2
0(log x)3

+ 2
∑

x1/3≤d0

x

d2
0

≪ x

(log x)3

∑

d0≥1

1

d2
0

+ 2x

∞\
x1/3

dt

t2
≪ x

(log x)3
,

which completes the proof of the theorem.
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Université de Caen
F-14032 Caen Cedex, France
E-mail: Christian.Ballot@math.unicaen.fr

Instituto de Matemáticas
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