On the equation $x^{2}+d y^{2}=F_{n}$

by

Christian Ballot (Caen) and Florian Luca (Morelia)

1. Introduction. Let $\left(F_{n}\right)_{n \geq 0}$ be the Fibonacci sequence given by $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$ for all $n \geq 0$. Let d be any fixed rational integer. Using standard sieve methods it is easy to establish that, for $\sqrt{-d}$ not an integer, most positive integers m are not representable as $m=\left|x^{2}+d y^{2}\right|$ with x and y integers. In this paper, we look at those positive integers m which are both members of the Fibonacci sequence and are representable as $\left|x^{2}+d y^{2}\right|$ for some integers x and y. That is, we investigate the set

$$
\begin{equation*}
\mathcal{N}_{d}=\left\{n>0: F_{n}=\left|x^{2}+d y^{2}\right| \text { for some integers } x \text { and } y\right\} . \tag{1}
\end{equation*}
$$

Clearly, \mathcal{N}_{0} consists of the positive integers n such that F_{n} is a perfect square and Cohn [1] showed that $\mathcal{N}_{0}=\{1,2,12\}$. When $d=1$, using the formula

$$
\begin{equation*}
F_{2 n+1}=F_{n}^{2}+F_{n+1}^{2} \tag{2}
\end{equation*}
$$

we see that \mathcal{N}_{1} contains all odd positive integers. Furthermore, since F_{n} and F_{n+1} are coprime, every odd prime factor of $F_{2 n+1}$ is congruent to 1 modulo 4. In [2], it was shown that for most even positive integers n, F_{n} admits a prime factor $q \equiv 3(\bmod 4)$. Here, we go one step further. In order to settle the case of \mathcal{N}_{1}, we first prove the following result.

Proposition 1. For all even positive integers n except a set of asymptotic density zero, there exists a prime $q \equiv 3(\bmod 4)$ such that $q \mid F_{n}$ and the exact power of q that divides F_{n} is odd.

Since for $q \equiv 3(\bmod 4),-1$ is a quadratic nonresidue $(\bmod q)$, Proposition 1 immediately implies that the asymptotic density of \mathcal{N}_{1} is precisely $1 / 2$.

Note also that if d is a perfect square, then \mathcal{N}_{d} has positive lower asymptotic density. Indeed, if we write $\varrho(d)$ for the rank of appearance of d in $\left(F_{n}\right)_{n \geq 0}$, i.e., $\varrho(d)$ is the minimal positive integer k such that $d \mid F_{k}$, then formula (2) implies that if d is a perfect square, then the set \mathcal{N}_{d} contains
the set

$$
\{2 n+1: n \equiv 0,-1(\bmod \varrho(d))\}
$$

which is of positive asymptotic density. But \mathcal{N}_{d} also has positive lower asymptotic density if d is the opposite of a perfect square. Indeed, \mathcal{N}_{d} then contains

$$
\{n: \varrho(4 d) \mid n\}
$$

If we put $d=-t^{2}$, then F_{n} / t^{2} is an integer multiple of 4 for n divisible by $\varrho(4 d)$. As such, F_{n} / t^{2} can be written as $(x-y)(x+y)$. Hence $F_{n}=$ $(t x)^{2}-(t y)^{2}=(t x)^{2}+d y^{2}$. Therefore we have shown the following result.

Theorem 2. For any d which is plus or minus a perfect square, the set \mathcal{N}_{d} has positive lower asymptotic density. The asymptotic density of \mathcal{N}_{1} is $1 / 2$.

We put

$$
\mathcal{D}=\left\{d \in \mathbb{Z}: \mathcal{N}_{d} \text { has positive lower asymptotic density }\right\}
$$

Theorem 2 implies that \mathcal{D} is an infinite set. However, in this paper, we show that most integers do not belong to \mathcal{D}. For a positive real number x we write $\mathcal{D}(x)$ for the set of $d \in \mathcal{D}$ with $|d| \leq x$.

Theorem 3. There exists a positive constant C such that if $x>1$ is any real number then

$$
\# \mathcal{D}(x) \leq C \frac{x}{(\log x)^{3}}
$$

By a standard procedure of partial summation, Theorem 3 implies that

$$
\sum_{d \in \mathcal{D}} \frac{1}{|d|}<\infty
$$

(note that $0 \notin \mathcal{D}$).
We would like to make the following conjecture.
Conjecture 4. \mathcal{D} contains only finitely many integers not a square or the negative of a square.

For integers a and b with $b>0$ odd, we write $\left(\frac{a}{b}\right)$ for the Jacobi symbol of a with respect to b. We state another related conjecture.

Conjecture 5. For all but finitely many of the integers d not a square or the negative of a square, there is a prime $q \geq 5$ such that

$$
\left(\frac{d}{F_{q}}\right)=-1
$$

The argument used in the proof of Lemma 9 below shows that Conjecture 5 implies Conjecture 4 . If true, Conjecture 4 would imply a stronger bound on the cardinality of $\mathcal{D}(x)$ than the one provided by Theorem 3 . We
would like to leave these conjectures as problems to the reader. In fact, it may be that Conjecture 5 is true without exceptions.

Throughout this paper, we assume familiarity with basic properties of Fibonacci and Lucas numbers. The nth Lucas number is denoted by L_{n}. We recall here that for a prime p, the rank of appearance $\varrho(p)$ of p in the Fibonacci sequence divides $p-e_{p}$, where e_{p} is the Legendre symbol of 5 with respect to p. Also, we use the Vinogradov symbols \gg and \ll and the Landau symbols O and o with their regular meanings. The constants implied in them are absolute. For a positive real number x, we use $\log x$ for the maximum between the natural logarithm of x and 1 . We write $\pi(x)$ for the number of primes $p \leq x$, and for coprime integers $1 \leq a \leq b$ we write $\pi(x ; a, b)$ for the number of primes $p \leq x$ congruent to a modulo b. We use p, q and r to denote prime numbers. For a set \mathcal{A} of positive integers we put $\mathcal{A}(x)=\mathcal{A} \cap[1, x]$.

Acknowledgements. This paper was written in part during a very enjoyable visit by the second author to the Laboratoire Nicolas Oresme of the University of Caen; he wishes to express his thanks to that institution for the hospitality and support. During the preparation of this paper, F. L. was also partly supported by grants SEP-CONACYT 46755, PAPIIT IN104505 and a Guggenheim Fellowship.
2. The proofs. For any positive integer n we let $P(n)$ denote the largest prime factor of n, and for real numbers $x \geq y \geq 1$ we put $\Psi(x, y)=\{n \leq$ $x: P(n) \leq y\}$. The numbers belonging to $\Psi(x, y)$ are usually referred to as smooth numbers. The following estimate for the number of smooth numbers (see Section III.5.4 of Tenenbaum's book [3]) will play a crucial rôle in our proofs.

Lemma 6. Let $\varepsilon>0$ be fixed. Uniformly for

$$
\exp \left((\log \log x)^{5 / 3+\varepsilon}\right) \leq y \leq x
$$

we have

$$
\# \Psi(x, y)=x \exp (-(1+o(1)) u \log u), \quad \text { where } \quad u=\frac{\log x}{\log y}
$$

Let $1 \leq a \leq b$ be fixed coprime integers. For a positive real number x we put

$$
\mathcal{A}(x ; a, b)=\{n \leq x: \text { if } p \mid n \text { and } p>\log x, \text { then } p \not \equiv a(\bmod b)\}
$$

that is, n is in $\mathcal{A}(x ; a, b)$ if no prime factor of n larger than $\log x$ is congruent to $a(\bmod b)$.

We will need the following estimate.

Lemma 7. If $1 \leq a \leq b$ are coprime, then there exists $x_{a, b}$ such that

$$
\# \mathcal{A}(x ; a, b) \ll \frac{x(\log \log x)^{2}}{(\log x)^{1 / \phi(b)}} \quad \text { for } x>x_{a, b}
$$

Proof. Let x be a large real number and let $y=x^{1 / \log \log x}, u=\log x / \log y$ $=\log \log x$. We put $\mathcal{A}_{1}(x)=\mathcal{A}(x ; a, b) \cap \Psi(x, y)$. Then, by Lemma 6 ,

$$
\begin{equation*}
\# \mathcal{A}_{1}(x) \leq \# \Psi(x, y)=x \exp (-u(1+o(1)) \log u)<\frac{x}{\log x} \tag{3}
\end{equation*}
$$

for large x. We now put $\mathcal{A}_{2}(x)=\mathcal{A}(x ; a, b) \backslash \mathcal{A}_{1}(x)$. To bound $\# \mathcal{A}_{2}(x)$, let $n \in \mathcal{A}_{2}(x)$ and write $n=P m$, where $P=P(n)>y$. Then $m<x / y$. Thus, fixing m, we see that the number of choices for P is

$$
\leq \pi(x / m) \ll \frac{x}{m \log (x / m)} \ll \frac{x}{m \log y}=\frac{x \log \log x}{m \log x}
$$

Note that $m \leq x$ is an integer which is free of primes $p \equiv a(\bmod b)$ larger than $\log x$. Write $\mathcal{M}(x)$ for the set of such positive integers m. Then, summing up over all possible choices of $m \in \mathcal{M}(x)$, we get

$$
\begin{align*}
& \# \mathcal{A}_{2}(x) \ll \frac{x \log \log x}{\log x} \sum_{m \in \mathcal{M}(x)} \frac{1}{m} \tag{4}\\
& \quad \leq \frac{x \log \log x}{\log x} \prod_{\substack{p \leq x \\
p \neq a(\bmod b)}}\left(\sum_{\alpha \geq 0} \frac{1}{p^{\alpha}}\right) \prod_{\substack{p \leq \log x \\
p \equiv a(\bmod b)}}\left(\sum_{\alpha \geq 0} \frac{1}{p^{\alpha}}\right) \\
& \quad=\frac{x \log \log x}{\log x} \prod_{\substack{p \leq x \\
p \neq a(\bmod b)}}\left(1-\frac{1}{p}\right)^{-1} \prod_{\substack{p \leq \log x \\
p \equiv a(\bmod b)}}\left(1-\frac{1}{p}\right)^{-1} \\
& \quad=\frac{x \log \log x}{\log x} \exp \left(\sum_{p \leq x}^{p} \frac{1}{p}+\sum_{\substack{p \leq \log x \\
p \equiv a(\bmod b)}} \frac{1}{p}+O(1)\right) \\
& \quad=\frac{x \log \log x}{\log x} \exp \left(\frac{\phi(b)-1}{\phi(b)} \log \log x+\frac{1}{\phi(b)} \log \log \log x+O(1)\right) \\
&
\end{align*} \quad<\frac{x(\log \log x)^{2}}{(\log x)^{1 / \phi(b)},} 1
$$

where we used the fact that for any fixed $A>0$, the estimate

$$
\begin{equation*}
\sum_{\substack{p \leq y \\ p \equiv c(\bmod b)}} \frac{1}{p}=\frac{\log \log y}{\phi(b)}+O\left(\frac{\log b}{b}\right) \tag{5}
\end{equation*}
$$

holds uniformly in the range $y \geq 3$ and $1 \leq c \leq b<(\log y)^{A}$ with c and b
coprime. In particular, the above estimate also holds when b is fixed. This completes the proof of the lemma.

We will also need the following lemma.
Lemma 8. Let $\mathcal{B}(x)$ be the set of integers $n \leq x$ divisible by a product of primes $p q$, where $p>\log x$ and $q \equiv \pm 1(\bmod p)$. Then

$$
\# \mathcal{B}(x) \ll \frac{x \log \log x}{\log x}
$$

Proof. Let x be large and fix two primes p and q such that $p>\log x$, $q \equiv \pm 1(\bmod p)$ and $p q<x$. The number of positive integers $n \leq x$ such that $p q \mid n$ is $\leq x / p q$. Summing up over all possible choices of p and q, we get

$$
\begin{equation*}
\# \mathcal{B}(x) \leq x \sum_{\log x<p \leq x} \sum_{\substack{q \leq x \\ q \equiv \pm 1(\bmod p)}} \frac{1}{p q}=x\left(S_{1}+S_{2}\right) \tag{6}
\end{equation*}
$$

where S_{1} is the contribution to the double sum from primes $p<(\log x)^{3}$, and S_{2} is the contribution from primes $p \geq(\log x)^{3}$. Let

$$
T_{p}=\sum_{\substack{q \leq x \\ q \equiv \pm 1(\bmod p)}} \frac{1}{p q} .
$$

Using estimate (5) with $A=3$ when $p<(\log x)^{3}$, we get

$$
T_{p} \ll \frac{\log \log x}{p^{2}}
$$

We use the trivial estimate

$$
T_{p} \leq \frac{1}{p} \sum_{k \leq x / p}\left(\frac{1}{p k+1}+\frac{1}{p k-1}\right) \ll \frac{1}{p^{2}} \sum_{k \leq x} \frac{1}{k} \ll \frac{\log x}{p^{2}}
$$

when $p \geq(\log x)^{3}$. Thus

$$
\begin{align*}
S_{1}+S_{2} & \leq \sum_{\log x<p<(\log x)^{3}} T_{p}+\sum_{(\log x)^{3} \leq p \leq x} T_{p} \tag{7}\\
& \leq \sum_{\log x<p} \frac{\log \log x}{p^{2}}+\sum_{(\log x)^{3} \leq p} \frac{\log x}{p^{2}} \\
& \ll \frac{\log \log x}{\log x}
\end{align*}
$$

where we used the trivial bound

$$
\sum_{t \leq p} \frac{1}{p^{2}} \leq \sum_{t \leq n} \frac{1}{n^{2}} \ll \int_{t}^{\infty} \frac{d s}{s^{2}}=\frac{1}{t}
$$

with $t=\log x$ and with $t=(\log x)^{3}$. Estimates (6) and (7) now lead to the desired conclusion.

Proof of Proposition 1. Let x be a large real number and let

$$
\mathcal{C}(x)=\left\{n \leq x: \text { if } q \equiv 3(\bmod 4) \text { and } q^{\alpha} \| F_{2 n}, \text { then } \alpha \text { is even }\right\}
$$

Lemmas 7 and 8 yield $\# \mathcal{A}(x ; 5,6)+\# \mathcal{B}(x)=o(x)$. We now show that

$$
\mathcal{C}(x) \subset \mathcal{A}(x ; 5,6) \cup \mathcal{B}(x)
$$

which, together with the previous estimate, will prove the proposition. Let $n \in \mathcal{C}(x)$ and assume $n \notin \mathcal{A}(x ; 5,6)$. Then there exists a prime $p>\log x$ with $p \equiv 5(\bmod 6)$ such that $p \mid n$. But $2 p \mid 2 n$, and $2 p \equiv 4(\bmod 6)$. Since the Fibonacci sequence is periodic modulo 4 with period 6 , and $F_{4}=3$, we find that $F_{2 p} \equiv 3(\bmod 4)$. Thus, there exists a prime $q \equiv 3(\bmod 4)$ such that $q^{a} \| F_{2 p}$, where a is odd. Since $2 p \mid 2 n$, we infer that $q^{a} \mid F_{2 n}$. Now since $n \in \mathcal{C}(x)$, we must have $q^{a+1} \mid F_{2 n}$. Now $q \mid F_{2 n} / F_{2 p}$ with $q \mid F_{2 p}$ implies, by the well-known law of appearance of powers of primes in Lucas sequences, that $q \mid n / p$. However, since $q \mid F_{2 p}$, the rank $\varrho(q)$ is either p or $2 p$, which in both cases implies that $q \equiv \pm 1(\bmod p)$. Hence, $p q \mid n, q \equiv \pm 1(\bmod p)$, and $p>\log x$. Therefore, $n \in \mathcal{B}(x)$. This completes our proof.

The following lemma will be useful for the proof of Theorem 3.
Lemma 9. Let d be a nonzero integer. Suppose that p is a prime number not dividing $12 \varrho(d)$ such that

$$
\left(\frac{d}{F_{p}}\right)=-1
$$

Then \mathcal{N}_{d} is of asymptotic density zero.
Proof. Note that $p \neq 3$, so that F_{p} is odd and the Jacobi symbol of d with respect to F_{p} is well-defined. Let $q=12 \varrho(d) k+p$ for some nonnegative integer k. By the addition formula $2 F_{m+n}=F_{m} L_{n}+L_{m} F_{n}$, we have

$$
2 F_{q}=F_{12 \varrho(d) k} L_{p}+L_{12 \varrho(d) k} F_{p}
$$

Clearly, $16\left|F_{12}\right| F_{12 \varrho(d) k}$ and $d\left|F_{\varrho(d)}\right| F_{12 \varrho(d) k}$. Furthermore, since $L_{2 n}=$ $5 F_{n}^{2}+2(-1)^{n}$,

$$
L_{12 \varrho(d) k}=5 F_{6 \varrho(d) k}^{2}+2
$$

is congruent to 2 both modulo 16 and modulo d. The above arguments show that

$$
2 F_{q} \equiv 2 F_{p}(\bmod \operatorname{lcm}[16, d])
$$

therefore

$$
F_{q} \equiv F_{p}(\bmod \operatorname{lcm}[8, d])
$$

These congruences imply the Jacobi symbols' identity

$$
\left(\frac{d}{F_{q}}\right)=\left(\frac{d}{F_{p}}\right) .
$$

We now show that $\mathcal{N}_{d}(x) \subset \mathcal{A}(x ; p, 12 \varrho(d)) \cup \mathcal{B}(x)$, which will prove that $\# \mathcal{N}_{d}(x)=o(x)$.

Let $n \in \mathcal{N}_{d}(x)$ and assume that $n \notin \mathcal{A}(x ; p, 12 \varrho(d))$, so that there exists a prime $q>\log x$ with $q \mid n$ and $q=12 \varrho(d) k+p$ for some $k \geq 0$. Assume also that $n \notin \mathcal{B}(x)$, so that we now seek a contradiction.

Write $F_{q}=\delta_{q} \lambda_{q}^{2}$, where δ_{q} and λ_{q} are positive integers with δ_{q} squarefree. Note that δ_{q} is odd and >1 because F_{q} is odd and not a square. Any prime r dividing δ_{q} satisfies $r^{\alpha_{r}} \| F_{q}$ for some odd exponent α_{r}. If $r^{\alpha_{r}+1} \mid F_{n}$, then $r \mid F_{n} / F_{q}$, and hence $r \mid n / q$, so that $q r \mid n$ and $r \equiv \pm 1(\bmod q)$ (because $\varrho(r)=q$ and, assuming $\log x \geq 5$, we cannot have $r=q=p=5)$. Thus, $n \in \mathcal{B}(x)$, a contradiction. Therefore $r^{\alpha_{r}} \| F_{n}$. So, there exist $m, y, z \in \mathbb{N}$ such that

$$
\begin{equation*}
y^{2}+d z^{2}=m \lambda_{q}^{2} \delta_{q}=F_{n}, \quad \text { where } \quad \operatorname{gcd}\left(m, \delta_{q}\right)=1 . \tag{8}
\end{equation*}
$$

If $g=\operatorname{gcd}\left(\delta_{q}, y z\right)$, then, having in mind that δ_{q} is square-free and $\operatorname{gcd}\left(\delta_{q}, d\right)=1\left(\right.$ since $\left.\left(\frac{d}{F_{q}}\right)=-1 \neq 0\right)$, we get $g \mid \operatorname{gcd}\left(y, z, \lambda_{q}\right)$.

Hence, dividing out relation (8) by g^{2} yields

$$
\begin{equation*}
y_{1}^{2}+d z_{1}^{2}=m \mu_{q}^{2} \delta_{q}, \tag{9}
\end{equation*}
$$

for some integers y_{1}, z_{1}, μ_{q} with $\operatorname{gcd}\left(\delta_{q}, y_{1} z_{1}\right)=1$. But equation (9) implies that $\left(\frac{-d}{\delta_{q}}\right)=1$. Because F_{q} is odd and $F_{q}=F_{(q-1) / 2}^{2}+F_{(q+1) / 2}^{2}$, we have $F_{q} \equiv 1(\bmod 4)$. Therefore

$$
-1=\left(\frac{d}{F_{p}}\right)=\left(\frac{d}{F_{q}}\right)=\left(\frac{-d}{F_{q}}\right)=\left(\frac{-d}{\delta_{q}}\right)=1,
$$

which is a contradiction, and our proof is complete.
Remark. For $d \in\{ \pm 2, \pm 3, \pm 5, \pm 6, \pm 7, \pm 8, \pm 10\}, \mathcal{N}_{d}$ is of asymptotic density 0 since

$$
\left(\frac{2}{F_{5}}\right)=\left(\frac{3}{F_{5}}\right)=\left(\frac{7}{F_{5}}\right)=\left(\frac{5}{F_{7}}\right)=\left(\frac{6}{F_{7}}\right)=\left(\frac{10}{F_{19}}\right)=-1 .
$$

In what follows, we put

$$
\mathcal{D}_{1}=\{d \in \mathcal{D}: d \text { is square-free }\} .
$$

We approach the proof of Theorem 3 by first proving the following somewhat weaker statement.

Theorem 10. The estimate

$$
\# \mathcal{D}_{1}(x) \ll \frac{x}{(\log x)^{3}}
$$

holds for all sufficiently large values of x.
Proof. Let x be large and $y=x^{1 / \log \log x}, u=\log x / \log y=\log \log x$. Let $\mathcal{D}_{2}(x)=\left\{d \in \mathcal{D}_{1}(x):|d| \in \Psi(x, y)\right\}$. By Lemma 6 ,

$$
\begin{equation*}
\# \mathcal{D}_{2}(x) \leq 2 \# \Psi(x, y)=2 x \exp (-(1+o(1)) u \log u)<\frac{x}{(\log x)^{3}} \tag{10}
\end{equation*}
$$

when x is large.
For a positive integer k, we write $\omega(k)$ for the number of distinct prime factors of k. Let $v=25(\log \log x)^{2}$ and put

$$
\mathcal{D}_{3}(x)=\left\{d \in \mathcal{D}_{1}(x): \omega(\varrho(d)) \geq v\right\} .
$$

We now bound $\mathcal{D}_{3}(x)$. Let $d \in \mathcal{D}_{3}(x)$. Because $d \mid F_{n}$ if and only if $\varrho(d) \mid n$, we deduce that $\varrho(d) \mid \prod_{p \mid d} \varrho(p)$. Therefore

$$
\varrho(d) \mid \prod_{p \mid d}\left(p-e_{p}\right),
$$

where $e_{p}=\left(\frac{5}{p}\right)$. Since $\omega(\varrho(d)) \geq v$, it follows that either d has at least $w=5 \log \log x$ distinct prime factors, or there exists $p \mid d$ such that $p-e_{p}$ has at least w distinct prime factors. In the first case, the number of such numbers d does not exceed

$$
2 \sum_{\substack{m \leq x \\ \omega(m) \geq w}} 1<2 \sum_{\substack{m \leq x \\ \omega(m) \geq w}} \frac{x}{m} \leq 2 x \sum_{k \geq w} \sum_{\substack{m<x \\ \omega(m)=k}} \frac{1}{m} .
$$

In the second case, let $p<x$ be a prime such that $p-e_{p}$ has at least w prime factors. The number of numbers d with $|d| \leq x$ which are multiples of p does not exceed

$$
\frac{2 x}{p} \leq \frac{4 x}{p-e_{p}}
$$

Summing up over all such primes and noting that for every m the equation $p-e_{p}=m$ can have at most two solutions p, we find that in this case the number of acceptable d 's is

$$
\leq 8 x \sum_{k \geq w} \sum_{\substack{m \leq x \\ \omega(m)=k}} \frac{1}{m} .
$$

Hence, if we write

$$
\mathcal{S}(x ; k)=\sum_{\substack{m \leq x \\ \omega(m)=k}} \frac{1}{m},
$$

then

$$
\begin{equation*}
\# \mathcal{D}_{3}(x) \ll x \sum_{k \geq w} \mathcal{S}(x ; k) \tag{11}
\end{equation*}
$$

Using the multinomial formula, we get a bound for $\mathcal{S}(x ; k)$:

$$
\begin{align*}
\mathcal{S}(x ; k) & \leq \frac{1}{k!}\left(\sum_{p \leq x} \sum_{\alpha \geq 1} \frac{1}{p^{\alpha}}\right)^{k}=\frac{1}{k!}\left(\sum_{p \leq x} \frac{1}{p}+O(1)\right)^{k} \tag{12}\\
& =\frac{1}{k!}(\log \log x+O(1))^{k}
\end{align*}
$$

Furthermore,

$$
\frac{(\log \log x+O(1))^{k} / k!}{(\log \log x+O(1))^{k+1} /(k+1)!}=\frac{k+1}{(\log \log x+O(1))}>2
$$

if $k \geq w$ and x is large, therefore by estimates (11) and (12), and Stirling's formula, we get

$$
\begin{align*}
\# \mathcal{D}_{3}(x) & \ll x \sum_{k \geq w} \mathcal{S}(x ; k) \ll \frac{x}{\lfloor w\rfloor!}(\log \log x+O(1))^{\lfloor w\rfloor} \tag{13}\\
& \ll x\left(\frac{e \log \log x+O(1)}{w}\right)^{w} \ll x\left(\frac{e}{5}\right)^{5 \log \log x}<\frac{x}{(\log x)^{3}}
\end{align*}
$$

for large x because $5 \log (5 / e)=3.047 \ldots>3$.
Let $\mathcal{D}_{4}(x)=\mathcal{D}_{1}(x) \backslash\left(\mathcal{D}_{2}(x) \cup \mathcal{D}_{3}(x)\right)$. Let $d \in \mathcal{D}_{4}(x)$ and write it as $d=\varepsilon P m$, where $P=P(d)>y, m$ is a positive integer $<x / y$, and $\varepsilon \in\{ \pm 1\}$. We fix the number m and let $\mathcal{D}_{4}^{m}(x)$ be the subset of $\mathcal{D}_{4}(x)$ that contains the d 's for which $d= \pm m P(d)$. Assume $\mathcal{D}_{4}^{m}(x)$ is not empty.

Let $z=300(\log \log x)^{2} \log \log \log x$ and let $\mathcal{P}=\{p: p \leq z\}$. For x large, the cardinality of \mathcal{P} satisfies

$$
\begin{aligned}
\pi(z) & =(1+o(1)) \frac{z}{\log z}=150(1+o(1))(\log \log x)^{2} \\
& >125(\log \log x)^{2}=5 v
\end{aligned}
$$

Let \mathcal{Q} be a fixed subset of \mathcal{P} having precisely $5\lfloor v\rfloor$ primes in it. Because $\mathcal{D}_{4}^{m}(x)$ is not empty, there is a subset \mathcal{T} of \mathcal{Q} of cardinality $4\lfloor v\rfloor$ such that every prime number in \mathcal{T} is coprime to $12 \varrho(m)$. Indeed, since there is a d in $\mathcal{D}_{4}(x)$ such that $m \mid d$, we know that $\varrho(m)$ divides $\varrho(d)$, so that any p coprime to $12 \varrho(d)$ is coprime to $12 \varrho(m)$. Thus, let \mathcal{Q}_{m} be the set of subsets of \mathcal{Q} of cardinality $4\lfloor v\rfloor$ whose (prime) elements are all prime to $12 \varrho(m)$. Choose a \mathcal{T} in \mathcal{Q}_{m} and put $\mathcal{D}_{4}^{m, \mathcal{T}}(x)=\left\{d \in \mathcal{D}_{4}^{m}(x): \operatorname{gcd}(p, 12 \varrho(d))=1, \forall p \in \mathcal{T}\right\}$. We will bound $\mathcal{D}_{4}(x)$ by using the crude estimate

$$
\# \mathcal{D}_{4}(x) \leq \sum_{m \leq x} \sum_{\mathcal{T} \in \mathcal{Q}_{m}} \# \mathcal{D}_{4}^{m, \mathcal{T}}(x)
$$

By Lemma 9 , we have, for $d \in \mathcal{D}_{4}^{m, \mathcal{T}}(x)$,

$$
\left(\frac{d}{F_{p}}\right)=1 \quad \text { for all } p \in \mathcal{T}
$$

The above condition means that

$$
\left(\frac{\varepsilon m}{F_{p}}\right)\left(\frac{P}{F_{p}}\right)=1
$$

But again because p is not $3, F_{p}$ is odd. And since F_{p} is the sum of two squares we have $F_{p} \equiv 1(\bmod 4)$, so that

$$
\left(\frac{P}{F_{p}}\right)=\left(\frac{m}{F_{p}}\right)
$$

In the above relation, m is fixed, and p is a prime in the fixed set \mathcal{T}. Let again $F_{p}=\delta_{p} \lambda_{p}^{2}$. The above relation puts P into half of all possible $\phi\left(\delta_{p}\right)$ arithmetic progressions with common differences δ_{p}, which are all odd and >1. Using the fact that the F_{p} 's are mutually coprime as p varies in \mathcal{T}, we conclude that P lies in $1 / 2^{\# \mathcal{T}}$ of all admissible progressions of the form $A_{\mathcal{T}}$ $\left(\bmod B_{\mathcal{T}}\right)$, where

$$
\begin{align*}
B_{\mathcal{T}}=\prod_{p \in \mathcal{T}} \delta_{p} & \leq \prod_{p \in \mathcal{T}} F_{p} \leq \exp (\# \mathcal{T} z) \tag{14}\\
& =\exp \left(30000(\log \log x)^{4} \log \log \log x\right)
\end{align*}
$$

Here, we used the fact that $F_{n}<e^{n}$ for all positive integers n. By the Brun-Titchmarsh theorem, the number of such primes $P \leq x / m$ does not exceed

$$
\frac{2 x / m}{2^{\# \mathcal{T}} \log \left(x / m B_{\mathcal{T}}\right)} \leq \frac{4 x \log \log x}{2^{4\lfloor v\rfloor} m \log x}
$$

where we used estimate (14) to conclude that $x / m>y>\left(B_{\mathcal{T}}\right)^{2}$ for large x, therefore that $x / m B_{\mathcal{T}}>y^{1 / 2}$. The number of subsets $\mathcal{T} \in \mathcal{Q}_{m}$ is less than $\binom{5\lfloor v\rfloor}{ 4\lfloor v\rfloor}$ so that the number of acceptable primes P when m is fixed is

$$
\leq \frac{1}{2^{4\lfloor v\rfloor}}\binom{5\lfloor v\rfloor}{ 4\lfloor v\rfloor} \frac{4 x \log \log x}{m \log x}
$$

and summing up over all possible values of m we get

$$
\# \mathcal{D}_{4}(x) \leq \frac{4 x \log \log x}{\log x} \cdot \frac{1}{2^{4\lfloor v\rfloor}}\binom{5\lfloor v\rfloor}{ 4\lfloor v\rfloor} \sum_{m \leq x} \frac{1}{m} \ll x \log \log x \cdot \frac{1}{2^{4\lfloor v\rfloor}}\binom{5\lfloor v\rfloor}{ 4\lfloor v\rfloor}
$$

By Stirling's formula, the above inequality leads, for x large, to

$$
\begin{equation*}
\# \mathcal{D}_{4}(x) \ll x \log \log x\left(\frac{5^{5}}{4^{4} \cdot 2^{4}}\right)^{\lfloor v\rfloor}<\frac{x}{(\log x)^{3}} \tag{15}
\end{equation*}
$$

where we used the fact that

$$
25 \log \left(5^{5} /\left(4^{4} \cdot 2^{4}\right)\right)=-6.7644 \ldots<-3
$$

The conclusion of the theorem now follows from estimates (10), (13) and (15).

Proof of Theorem 3. Let $d \in \mathcal{D}$, and write it as $d=d_{1} \cdot d_{0}^{2}$, where d_{1} is square-free. It is clear that $\mathcal{N}_{d} \subset \mathcal{N}_{d_{1}}$, therefore $d_{1} \in \mathcal{D}$ as well. Thus, if x is large, then

$$
\# \mathcal{D}(x) \leq \sum_{d_{0} \geq 1} \# \mathcal{D}_{1}\left(x / d_{0}^{2}\right)
$$

By Theorem 10,

$$
\# \mathcal{D}\left(x / d_{0}^{2}\right) \ll \frac{x}{d_{0}^{2}\left(\log \left(x / d_{0}^{2}\right)\right)^{3}}
$$

When $d_{0}<x^{1 / 3}$, we have $x / d_{0}^{2}>x^{1 / 3}$, therefore

$$
\# \mathcal{D}\left(x / d_{0}^{2}\right) \ll \frac{x}{d_{0}^{2}(\log x)^{3}} .
$$

Otherwise, we use the trivial inequality $\# \mathcal{D}_{1}\left(x / d_{0}^{2}\right) \leq 2 x / d_{0}^{2}$ to get

$$
\begin{aligned}
\# \mathcal{D}(x) & \ll \sum_{1 \leq d_{0} \leq x^{1 / 3}} \frac{x}{d_{0}^{2}(\log x)^{3}}+2 \sum_{x^{1 / 3} \leq d_{0}} \frac{x}{d_{0}^{2}} \\
& \ll \frac{x}{(\log x)^{3}} \sum_{d_{0} \geq 1} \frac{1}{d_{0}^{2}}+2 x \int_{x^{1 / 3}}^{\infty} \frac{d t}{t^{2}} \ll \frac{x}{(\log x)^{3}},
\end{aligned}
$$

which completes the proof of the theorem.

References

[1] J. H. E. Cohn, Square Fibonacci numbers, etc., Fibonacci Quart. 2 (1964), 109-113.
[2] F. Luca, Prime factors of Fibonacci numbers, solution to Advanced Problem H546, ibid. 42 (2004).
[3] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge Univ. Press, 1995.

Laboratoire Nicolas Oresme
Université de Caen
F-14032 Caen Cedex, France
E-mail: Christian.Ballot@math.unicaen.fr

Instituto de Matemáticas
Universidad Nacional Autónoma de México
C.P. 58089, Morelia, Michoacán, México

E-mail: fluca@matmor.unam.mx

