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1. Introduction. Let (F,),>0 be the Fibonacci sequence given by
Fo=0, F1 =1 and F,419 = Fy41 + F, for all n > 0. Let d be any fixed
rational integer. Using standard sieve methods it is easy to establish that,
for v/—d not an integer, most positive integers m are not representable as
m = |22 + dy?| with x and y integers. In this paper, we look at those posi-
tive integers m which are both members of the Fibonacci sequence and are
representable as |22 + dy?| for some integers = and y. That is, we investigate
the set

(1) Nyg={n>0:F, =|z* + dy?| for some integers = and y}.

Clearly, Ny consists of the positive integers n such that F,, is a perfect square
and Cohn [1] showed that Ny = {1,2,12}. When d = 1, using the formula

(2) F2n+1 = Fg + F,%H,

we see that N7 contains all odd positive integers. Furthermore, since F},
and Fj, 41 are coprime, every odd prime factor of Fs,11 is congruent to 1
modulo 4. In [2], it was shown that for most even positive integers n, F),
admits a prime factor ¢ = 3 (mod4). Here, we go one step further. In order
to settle the case of N7, we first prove the following result.

PROPOSITION 1. For all even positive integers n except a set of asymp-
totic density zero, there exists a prime ¢ = 3 (mod4) such that q|F,, and
the exact power of q that divides F, is odd.

Since for ¢ = 3 (mod 4), —1 is a quadratic nonresidue (mod ¢), Proposi-
tion 1 immediately implies that the asymptotic density of A7 is precisely 1/2.
Note also that if d is a perfect square, then N has positive lower asymp-
totic density. Indeed, if we write o(d) for the rank of appearance of d in
(Fy)n>0, i.e., o(d) is the minimal positive integer k such that d| Fj, then
formula (2) implies that if d is a perfect square, then the set Ny contains
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the set
{2n+1:n=0,-1 (mod o(d))},

which is of positive asymptotic density. But Ny also has positive lower
asymptotic density if d is the opposite of a perfect square. Indeed, Ny then
contains

{n: o(4d) | n}.
If we put d = —t2, then F,/t? is an integer multiple of 4 for n divisible

by o(4d). As such, F,/t? can be written as (z — y)(z + y). Hence F,, =
(tz)? — (ty)? = (tx)? 4 dy?®. Therefore we have shown the following result.

THEOREM 2. For any d which is plus or minus a perfect square, the
set Ny has positive lower asymptotic density. The asymptotic density of N1
is 1/2.

We put

D = {d € Z : Ny has positive lower asymptotic density}.

Theorem 2 implies that D is an infinite set. However, in this paper, we show
that most integers do not belong to D. For a positive real number x we write
D(z) for the set of d € D with |d| < z.

THEOREM 3. There exists a positive constant C' such that if x > 1 is

any real number then
x

#4D(z) < C log T

By a standard procedure of partial summation, Theorem 3 implies that

(note that 0 € D).
We would like to make the following conjecture.

CONJECTURE 4. D contains only finitely many integers not a square or
the negative of a square.

For integers a and b with b > 0 odd, we write (%) for the Jacobi symbol
of a with respect to b. We state another related conjecture.

CONJECTURE 5. For all but finitely many of the integers d not a square
or the negative of a square, there is a prime q > 5 such that

(3)--

The argument used in the proof of Lemma 9 below shows that Conjec-
ture 5 implies Conjecture 4. If true, Conjecture 4 would imply a stronger
bound on the cardinality of D(x) than the one provided by Theorem 3. We
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would like to leave these conjectures as problems to the reader. In fact, it
may be that Conjecture 5 is true without exceptions.

Throughout this paper, we assume familiarity with basic properties of
Fibonacci and Lucas numbers. The nth Lucas number is denoted by L,.
We recall here that for a prime p, the rank of appearance o(p) of p in the
Fibonacci sequence divides p — e,, where e, is the Legendre symbol of 5
with respect to p. Also, we use the Vinogradov symbols > and < and
the Landau symbols O and o with their regular meanings. The constants
implied in them are absolute. For a positive real number z, we use log x for
the maximum between the natural logarithm of = and 1. We write m(z) for
the number of primes p < z, and for coprime integers 1 < a < b we write
m(x;a,b) for the number of primes p < x congruent to a modulo b. We use
p, ¢ and r to denote prime numbers. For a set A of positive integers we put

A(x) = ANl z].
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2. The proofs. For any positive integer n we let P(n) denote the largest
prime factor of n, and for real numbers x > y > 1 we put ¥(z,y) = {n <
x : P(n) < y}. The numbers belonging to ¥(x,y) are usually referred to as
smooth numbers. The following estimate for the number of smooth numbers
(see Section III.5.4 of Tenenbaum’s book [3]) will play a crucial rdle in our
proofs.

LEMMA 6. Let e > 0 be fized. Uniformly for
exp((loglog z)°/38) <y < &
we have
log x
logy’

Let 1 < a < b be fixed coprime integers. For a positive real number x we
put

#U(x,y) = xexp(—(1+ o(l))ulogu), where wu=

A(z;a,b) ={n <z :if p|n and p > logz, then p # a (modb)},

that is, n is in A(x; a, b) if no prime factor of n larger than log x is congruent
to a (modb).
We will need the following estimate.
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LeEMMA 7. If1 < a < b are coprime, then there ewists x5 such that

z(loglog z)?
(log g;')l/d)(b)

Proof. Let x be a large real number and let y=xz'/108108% 4 —]og x/logy
= loglogz. We put A;(x) = A(z;a,b) N¥(x,y). Then, by Lemma 6,
() #A) < #(y) = vesp(-ull +o1) ogu) < 1
for large z. We now put As(z) = A(z;a,b) \ Ai(x). To bound #Az(z), let
n € Az(x) and write n = Pm, where P = P(n) > y. Then m < x/y. Thus,
fixing m, we see that the number of choices for P is

#A(z;0,b) <

forx > x4y

T r  zloglogx

< = .
< m(z/m) < mlog(x/m) < mlogy mlogx

Note that m < x is an integer which is free of primes p = a (modb) larger
than log x. Write M (z) for the set of such positive integers m. Then, sum-
ming up over all possible choices of m € M(x), we get

log1
(4) #A2($)<<M Z %

logz meM(zx)
xloglogx H Z 1 H Z 1
logz < ~oP “ <l >0 P :
p<z a> p<llogz a>
pZa (mod b) p=a (mod b)
xloglogx 1—[ ( 1>_1 ( 1)_1
=2 5 °% 1—2= H 1- =
logz p<w p p<logz p
pZa (mod b) p=a (mod b)
xloglogx 1 1
:%exp< Z -+ Z _+O(1)>
& p<z p p<logz p
pZa (mod b) p=a (mod b)
zloglog x (qb(b) -1 1
= exp loglog x + ——= logloglogx + O(1
log s o(0) 70 .
z(loglog z)?

(log x)1/¢(b) ’
where we used the fact that for any fixed A > 0, the estimate

1 loglogy logb
®) IDNFEE Rdey

Py
p=c (mod b)

holds uniformly in the range y > 3 and 1 < ¢ < b < (logy)? with ¢ and b
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coprime. In particular, the above estimate also holds when b is fixed. This
completes the proof of the lemma. u

We will also need the following lemma.

LEMMA 8. Let B(z) be the set of integers n < x divisible by a product
of primes pq, where p >logx and ¢ = +1 (mod p). Then

#B(zr) <

Proof. Let x be large and fix two primes p and ¢ such that p > logx,
g = £1 (modp) and pg < x. The number of positive integers n < z such
that pg|n is < x/pg. Summing up over all possible choices of p and ¢, we
get

1
(6) #B(x) <z Y = =x(S+ %),
log x<p<z q<z Pq
g==1 (modp)

zloglog x
logz

where S is the contribution to the double sum from primes p < (logx)3,
and Sy is the contribution from primes p > (logz)3. Let

1
T,= >  —.
a<z pq
g==+1 (modp)
Using estimate (5) with A = 3 when p < (log )3, we get
loglog x

We use the trivial estimate

1 1 1 1 1 log x
T, < = — — —
<L Y () < m T <2
k<z/p k<zx

when p > (logz)3. Thus

(7) S+%< Y B+ YT

log z<p<(log )3 (log 2)3<p<z
log log log x
< > 2 > %
log z<p (log )3<p
loglo
< 28087
log x

where we used the trivial bound

1 1 Tds 1
Ypcra<iE=;

t<p t<n
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with ¢ = logz and with ¢t = (logz)3. Estimates (6) and (7) now lead to the
desired conclusion. =

Proof of Proposition 1. Let x be a large real number and let
Cx)={n<z:if ¢ =3 (mod4) and ¢“ || F2,, then « is even}.
Lemmas 7 and 8 yield #.A(x;5,6) + #B(x) = o(x). We now show that
C(x) C A(x;5,6) U B(x),

which, together with the previous estimate, will prove the proposition. Let
n € C(z) and assume n ¢ A(x;5,6). Then there exists a prime p > logx
with p = 5 (mod 6) such that p|n. But 2p|2n, and 2p = 4 (mod6). Since
the Fibonacci sequence is periodic modulo 4 with period 6, and Fy = 3, we
find that Fy, = 3 (mod4). Thus, there exists a prime ¢ = 3 (mod4) such
that ¢ || Fyp, where a is odd. Since 2p|2n, we infer that ¢* | F5,. Now since
n € C(x), we must have ¢**1 | Fy,. Now q | Fa,/Fy, with g | Fy, implies, by
the well-known law of appearance of powers of primes in Lucas sequences,
that ¢|n/p. However, since ¢ | Fyp, the rank o(q) is either p or 2p, which in
both cases implies that ¢ = +1 (mod p). Hence, pg|n, ¢ = +1 (mod p), and
p > log x. Therefore, n € B(x). This completes our proof. m

The following lemma will be useful for the proof of Theorem 3.

LEMMA 9. Let d be a nonzero integer. Suppose that p is a prime number
not dividing 120(d) such that
d
()
Fy

Then Ny is of asymptotic density zero.

Proof. Note that p # 3, so that F}, is odd and the Jacobi symbol of d
with respect to F, is well-defined. Let ¢ = 120(d)k + p for some nonnegative

integer k. By the addition formula 2F, 4+, = F;n Ly + L Fy, we have
2Fy = Fuap(ayeLlp + Lizg(ayr Fp-
Clearly, 16| F12 | Fiopayr and d| Fyy | Fioe(a)k- Furthermore, since Lo, =
5F2 +2(—1),
Liag(ayr = 5F629(d)k + 2

is congruent to 2 both modulo 16 and modulo d. The above arguments show
that

2F, = 2F, (modlcm[16,d)),

therefore
F, = F, (modlecm[8,d]).
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These congruences imply the Jacobi symbols’ identity

dy_ (4
F,)  \F)
We now show that NVy(z) C A(z;p,120(d)) U B(x), which will prove that
#Na(z) = o(x).
Let n € NVy(z) and assume that n ¢ A(x;p,120(d)), so that there exists

a prime g > logx with ¢|n and ¢ = 12¢(d)k + p for some k > 0. Assume

also that n ¢ B(x), so that we now seek a contradiction.
Write Fy, = 5q)\g, where §, and A, are positive integers with d, square-
free. Note that J, is odd and > 1 because F; is odd and not a square. Any

prime r dividing §, satisfies %" || F,, for some odd exponent a.. If r& 1| F, |
then r | F},/Fy, and hence r | n/q, so that gr |[n and r = £1 (mod gq) (because
o(r) = ¢ and, assuming logx > 5, we cannot have r = ¢ = p = 5). Thus,
n € B(x), a contradiction. Therefore r®" || F},. So, there exist m,y,z € N
such that

(8) 3/2 +dz? = m>\25q = F,, where ng(mv‘Sq) =L

If g = ged(dq,y2), then, having in mind that §, is square-free and
ged(dq,d) =1 (since (Fiq) = —1+#0), we get g|gcd(y, 2, Ag).

Hence, dividing out relation (8) by ¢ yields
9) Yt + dzt = mugdq,

for some integers yi, 21, pqg with ged(dq, y121) = 1. But equation (9) implies
that (E—qd) = 1. Because Fj is odd and F, = F(Qq_l)/2 + F(Qqﬂ)/27 we have
F, =1 (mod4). Therefore

(A (A (=Y _ (=) _,
_Fp_Fq_Fq_(sq_’
which is a contradiction, and our proof is complete. m

REMARK. For d € {£2,43,+5,£6,+7, £8, 10}, N is of asymptotic
density 0 since

(&)= (&)~ (%) -(&)- (&) - ()
F;5 Fy F5 Iy Fr Fig .
In what follows, we put

D) ={d € D : d is square-free}.

We approach the proof of Theorem 3 by first proving the following somewhat
weaker statement.
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THEOREM 10. The estimate

4Dy (1) < —2

(log )3
holds for all sufficiently large values of x.

Proof. Let x be large and y = z1/1081087 4 — ]og x/logy = loglog x. Let
Do(z) ={d € Di(z) : |d| € ¥(x,y)}. By Lemma 6,

(10) #Do(x) < 2#U (z,y) = 2z exp(—(1 + o(1))ulogu) <

(log z)’
when z is large.

For a positive integer k, we write w(k) for the number of distinct prime
factors of k. Let v = 25(loglog z)? and put

Dy(x) = {d € Di(2) : w(o(d)) > v}.

We now bound D3(z). Let d € D3(z). Because d| F, if and only if o(d) | n,
we deduce that o(d) | [],4 o(p). Therefore

o(d) | H(p — €p),
pld
where e, = (%) Since w(p(d)) > v, it follows that either d has at least
w = 5loglogz distinct prime factors, or there exists p|d such that p — e,
has at least w distinct prime factors. In the first case, the number of such
numbers d does not exceed

2 Y 1< Y Teny YL

m<x m<x k>w m<z

w(m)2>w w(m)>w w(m)=k

In the second case, let p < x be a prime such that p — e, has at least w
prime factors. The number of numbers d with |d| < z which are multiples
of p does not exceed

2x 4x

=< )

p pP—¢p
Summing up over all such primes and noting that for every m the equation
p — e, = m can have at most two solutions p, we find that in this case the

number of acceptable d’s is
1
cwy Y L
m

k>w m<lx
w(m)=k
Hence, if we write
1
S(z: — _
(wk)= > —.
m<x

w(m)=k
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then
(11) #Ds(x) <<xZS(:U;k).

k>w

Using the multinomial formula, we get a bound for S(x; k):

(12) S(x;k)S%(ZZ}%)IC:%<Z%+O(1)>IC

p<w o>l p<z
= %(log log z 4+ O(1))k.
Furthermore,
(loglogz + O(1))*/k! k+1

(loglogz + O(1))k*+1/(k + 1)! - (loglogx + O(1)) > 2

if K > w and z is large, therefore by estimates (11) and (12), and Stirling’s
formula, we get

(13) #Ds3(x) < x Z Sz k) < L (loglog z + O(1))1*]
= |w]!
eloglogz + O(1)\" e\ Plosloe® T
33'< w Lz g < (log;(})?’

for large x because 5log(5/e) = 3.047... > 3.

Let Dy(x) = Di(z) \ (D2(x) U Ds(x)). Let d € Dy(x) and write it as
d = ePm, where P = P(d) > y, m is a positive integer < x/y, and ¢ € {£1}.
We fix the number m and let D}*(x) be the subset of Dy(x) that contains
the d’s for which d = £mP(d). Assume DJ'(x) is not empty.

Let z = 300(loglog z)%logloglogz and let P = {p : p < z}. For z large,
the cardinality of P satisfies

m(z) = (14 0(1)) @ = 150(1 4 o(1))(loglog z)?

> 125(loglog z)? = 5.

Let Q be a fixed subset of P having precisely 5|v]| primes in it. Because
Dj*(x) is not empty, there is a subset 7 of Q of cardinality 4|v| such that
every prime number in 7 is coprime to 120(m). Indeed, since there is a d in
Dy(z) such that m | d, we know that o(m) divides o(d), so that any p coprime
to 12p0(d) is coprime to 12p(m). Thus, let Q,, be the set of subsets of Q of
cardinality 4|v] whose (prime) elements are all prime to 12p(m). Choose a
T in Q,, and put D7 (z) = {d € D*(z) : ged(p, 120(d)) = 1, Vp € T}. We
will bound Dy (z) by using the crude estimate

#D4(z) <Y > #D ().

m<zTEQm
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By Lemma 9, we have, for d € DT’T(JU),

d
(E) =1 forallpeT.

The above condition means that

(&)%)

But again because p is not 3, F), is odd. And since F), is the sum of two
squares we have Fj, = 1 (mod4), so that

(%)= (&)

In the above relation, m is fixed, and p is a prime in the fixed set 7. Let
again Fj, = 5p)\%. The above relation puts P into half of all possible ¢(d,)
arithmetic progressions with common differences ¢, which are all odd and
> 1. Using the fact that the F),’s are mutually coprime as p varies in 7, we
conclude that P lies in 1/2#7 of all admissible progressions of the form Az
(mod Br), where

(14) Br = H dp < H F, < exp(#7z)
peT peT
= exp(30000(log log z)* loglog log z).
Here, we used the fact that F,, < e" for all positive integers n. By the

Brun-Titchmarsh theorem, the number of such primes P < x/m does not
exceed

2z/m - 4z log log x
2#T log(x/mBr) — 24lvlmlogx’

where we used estimate (14) to conclude that x/m >y > (Br)? for large z,
therefore that x/mBs > yl/ 2. The number of subsets 7 € Q,, is less than

(ZBJ) so that the number of acceptable primes P when m is fixed is
1 (5|v]\ 4zloglogx
— 24lJ \4|v|) mlogx

and summing up over all possible values of m we get

drloglogz 1 [(5|v] 1 1 /5|v]
< . = . )
#Da() < log x 24[v] (4 |v] ngm m ST loglog @ 24[v] \ 4|v]|

By Stirling’s formula, the above inequality leads, for x large, to

X

55 [v]
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where we used the fact that
25log(5°/(4* - 21)) = —6.7644 ... < —3.

The conclusion of the theorem now follows from estimates (10), (13) and
(15). m

Proof of Theorem 3. Let d € D, and write it as d = d; - d3, where d; is
square-free. It is clear that Ny C N, therefore d; € D as well. Thus, if =
is large, then

#D(x) < Y #Di(x/df).
do>1

By Theorem 10,
x

dg(log(x/dg))?
When dy < z'/3, we have a:/d(% > z1/3, therefore

#D(x/dg) <

#D(x/dj) <

x
d2(log z)3"
Otherwise, we use the trivial inequality #D1(x/d3) < 2z/d3 to get

i X
#D(x) < Y 7d§(logm)3+2 > 2

1<dp<z1/3 z1/3<dy
x 1 T dt x
L —= — + 2z S - <KL —
3 § : 2 2 37
(log x) = dg s t (log x)

which completes the proof of the theorem. =
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