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Note on a product formula for the Bayad function
and a law of quadratic reciprocity

by

Heima Hayashi (Kumamoto)

1. Introduction. This study is basically motivated by a study of Bayad
[1] who constructed some elliptic functions and proved product formulas
for them. Moreover, he used these product formulas to prove an explicit
quadratic reciprocity law in an imaginary quadratic number field. However,
Bayad’s argument contains some flawed parts, and his quadratic reciprocity
law also requires a modification.

Our first aim is to prove a generalized product formula for the elliptic
function fΩ treated in [1], correcting the flaws in Bayad’s argument (see
Theorem 3.1). Here we investigate certain quantities ξΩ and εΩ defined in
relation to our product formula for fΩ. The fundamental properties of the
Klein function KΩ and the Jacobi form DΩ listed in Section 2 enable us to
give explicit expressions of ξΩ and εΩ using the values of KΩ. In this way,
we prove that εΩ has a cocycle property (see Theorem 4.3). In a certain case
εΩ defines a character of order 2 or 4 in a ring of integers of an imaginary
quadratic number field.

Next, we use our product formula to prove an explicit quadratic reci-
procity law (see Theorem 6.1), which also corrects and refines Bayad’s reci-
procity law of [1]. Our method uses the classical results of Eisenstein ([4],
[5]). It is remarkable that our reciprocity law has a quite similar form to
a formula established by Hajir–Villegas [6], and the comparison of these
formulas raises some interesting problems (see Theorems 6.3 and 6.4).

2. Terminology and reformulation of the Bayad function. By a
C-lattice we mean a free Z-module of rank 2 which spans C over R. For a
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C-lattice Ω with Z-basis {ω1, ω2} such that Im(ω1/ω2) > 0,

a(Ω) :=
1
2i

∣∣∣∣ω1 ω2

ω1 ω2

∣∣∣∣ = |ω2|2Im
(
ω1

ω2

)
is a positive real number representing the area of a fundamental parallelo-
gram of Ω which depends only on Ω. Let EΩ be the R-bilinear form defined
by

EΩ(u, v) :=
1

2ia(Ω)
(uv − uv) for (u, v) ∈ C× C.

Then EΩ is integral-valued on Ω×Ω and in particular EΩ(ω1, ω2) = −1 for
any basis {ω1, ω2} of Ω such that Im(ω1/ω2) > 0.

Here we review briefly the Klein function KΩ, the Jacobi form DΩ and
their fundamental properties, quoting mainly from Bayad–Ayala [2]. For
details, one should also refer to Kubert [7], Kubert–Lang [8] and Lang [10].
The Klein function KΩ attached to a C-lattice Ω is defined by the infinite
product

KΩ(z) = ze−
1
2
zη(z,Ω)

∏
ω∈Ω\{0}

(
1− z

ω

)
e
z
ω

+ 1
2
( z
ω

)2

for any z ∈ C, where η(z,Ω) denotes the Weierstrass–Legendre eta function
attached to Ω. The function KΩ has the following fundamental properties:

(K1) For ρ ∈ Ω, KΩ(z + ρ) = χΩ(ρ)e(EΩ(ρ, z)/2)KΩ(z), where

χΩ(ρ) =
{

1 if ρ ∈ 2Ω,
−1 if ρ ∈ Ω \ 2Ω,

and e(x) = e2πix for x ∈ R.
(K2) KΩ(z) is homogeneous of degree 1, that is,

KλΩ(λz) = λKΩ(z) for λ ∈ C× = C \ {0}.
In particular, KΩ(−z) = −KΩ(z).

(K3) KΩ(z) has principal part z as z tends to 0, that is,

lim
z→0

KΩ(z)
z

= 1.

Let Ω and Λ be two C-lattices such that Ω ⊂ Λ, and R be any complete
system of representatives of Λ/Ω. Then the following product formula holds:

(K4) KΛ(z) = e
(
EΩ

(
z,
∑
x∈R
x/∈Ω

x
)
/2
)
KΩ(z)

∏
x∈R
x/∈Ω

KΩ(z + x)
KΩ(x)

.

The Jacobi form DΩ associated with KΩ is defined by

DΩ(z;ϕ) = e(EΩ(z, ϕ)/2)
KΩ(z + ϕ)
KΩ(z)KΩ(ϕ)

for z, ϕ ∈ C \Ω.
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DΩ(z;ϕ) has the following fundamental properties:

(D1) DΩ(z;ϕ+ ρ) = DΩ(z;ϕ) for any ρ ∈ Ω.
(D2) DΩ(z + ρ;ϕ) = e(EΩ(ρ, ϕ))DΩ(z;ϕ) for any ρ ∈ Ω.
(D3) DΩ(z;ϕ) = e(EΩ(z, ϕ))DΩ(ϕ; z).
(D4) DΩ(z;ϕ) is homogeneous of degree −1, that is,

DλΩ(λz;λϕ) = λ−1DΩ(z;ϕ) for λ ∈ C×.
(D5) DΩ(z;ϕ) has principal part 1/z as z tends to 0, that is,

lim
z→0

zDΩ(z;ϕ) = 1.

Let Ω, Λ and R be as before. Then the main theorem in [2] gives the
following product formulas:

(D6) For any z and ϕ ∈ C \ Λ,

DΛ(z;ϕ) =
KΩ(ϕ)[Λ:Ω]

KΛ(ϕ)

∏
x∈R

DΩ(z + x;ϕ)e(−EΩ(x, ϕ)).

(D7) For any z ∈ C \ Λ,∏
x∈R, x/∈Ω

DΩ(z;x)−1 =
KΩ(z)[Λ:Ω]

KΛ(z)
.

In relation to the Weierstrass ℘-function, the following formulas hold:

(D8) For any z, ϕ ∈ C \Ω, ℘Ω(z)− ℘Ω(ϕ) = DΩ(z;ϕ)DΩ(z;−ϕ).
(D9) For any z ∈ C \ Ω, ℘′Ω(z) = −2

∏
ϕDΩ(z;ϕ), where ϕ runs over

the set of representatives of 1
2Ω/Ω such that ϕ /∈ Ω.

The Bayad function fΩ attached to a C-lattice Ω with basis {ω1, ω2} is
originally defined by

fΩ(z) = C
℘Ω(z)− ℘Ω((ω1 + ω2)/2)

℘′Ω(z)
with a constant C such that

C2 =
2℘′′Ω(ω2/2)

℘Ω(ω2/2)− ℘Ω((ω1 + ω2)/2)
(see [1]). Of course the definition of fΩ depends on the choice of a basis
{ω1, ω2} of Ω. Using (D7) and (D8), fΩ(z) can be rewritten as follows:

fΩ(z) = −C
2

DΩ(z; (ω1 + ω2)/2)
DΩ(z;ω1/2)DΩ(z;ω2/2)

= −C
2
KΩ(ω1/2)KΩ(ω2/2)
KΩ((ω1 + ω2)/2)

· KΩ(z + (ω1 + ω2)/2)KΩ(z)
KΩ(z + ω1/2)KΩ(z + ω2/2)

:= C1
KΩ(z + (ω1 + ω2)/2)KΩ(z)
KΩ(z + ω1/2)KΩ(z + ω2/2)

.
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A short calculation (using (D8) and (D9)) gives C1 = ±e
(

1
8EΩ(ω2, ω1)

)
.

Hence we may adopt

(2.1) fΩ(z) = e

(
1
8
EΩ(ω2, ω1)

)
KΩ(z + (ω1 + ω2)/2)KΩ(z)
KΩ(z + ω1/2)KΩ(z + ω2/2)

.

as the definition of the Bayad function. As is easily seen, fΩ is an Ω-elliptic
function and its divisor on C/Ω is

(2.2) (fΩ) =
(
ω1 + ω2

2

)
+ (0)−

(
ω1

2

)
−
(
ω2

2

)
.

The following lemma is immediate from the definition (2.1) and the formula
(K1) (see also Theorem 1.8 in [1]).

Lemma 2.1. Under the above notation, we have

(1) fΩ(z) · fΩ(z + ω1/2) = 1, (2) fΩ(z) · fΩ(z + ω2/2) = −1.

3. Product formula for fΩ. Hereafter we consider the case where Ω
admits complex multiplication. Let O be an order in an imaginary quadratic
number field Σ and let Ω be a fixed proper O-ideal. For any fixed element
α in O, we define

Ker(α) = KerΩ(α) := {x ∈ C/Ω | αx = 0}.
We call an element x in Ker(α) an α-division point of Ω. In particular, x ∈
Ker(α) is called a primitive α-division point of Ω if α1x 6= 0 for any α1 ∈ O
such that α1 /∈ αO. Plainly Ker(α) = α−1Ω/Ω and this is a finite group of
order Nα, where Nα is the absolute norm of α. Moreover, if xα is a fixed
primitive α-division point of Ω, then Ker(α) = {rxα | r mod αO, r ∈ O}.
Sometimes, we use the notation Ker(α) identifying it with a complete set of
representatives of α−1Ω/Ω.

Let J∗(2) be the set {α ∈ O | α coprime to 2O}. Bayad stated a product
formula for fΩ ([1, Theorem 1.8]). However, his formula is valid only under
the additional assumption α ≡ 1 (mod 2O), not stated in [1]. Here we give a
more general product formula for fΩ, which corrects and refines the formula
of Bayad.

Theorem 3.1. For any α in J∗(2),

fΩ(αz)
D2
Ω(αz;α(ω1 + ω2)/2)
D2
Ω(αz; (ω1 + ω2)/2)

= ξΩ(α)
∏

x∈Ker(α)

fΩ(z + x),

where ξΩ(α) is given by

ξΩ(α) = α
∏

x∈Ker(α)
x 6=0

(fΩ(x))−1 = α
∏

x∈Ker(α)
x 6=0

fΩ(x+ ω1/2).

In particular, if α ≡ 1 (mod 2O), then ξΩ(α) = ±1.
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Proof. By the formulas (D1) and (D8),

D2
Ω(αz;α(ω1 + ω2)/2)
D2
Ω(αz; (ω1 + ω2)/2)

=
℘Ω(αz)− ℘Ω(α(ω1 + ω2)/2)
℘Ω(αz)− ℘Ω((ω1 + ω2)/2)

for any α ∈ J∗(2), and this is an Ω-elliptic function. By a tedious check
using (2.2), we see that the two Ω-elliptic functions

z 7→ fΩ(αz)
D2
Ω(αz;α(ω1 + ω2)/2)
D2
Ω(αz; (ω1 + ω2)/2)

and z 7→
∏

x∈Ker(α)

fΩ(z + x)

have the common divisor∑
x∈Ker(α)

[(
ω1 + ω2

2
+ x

)
+ (x)−

(
ω1

2
+ x

)
−
(
ω2

2
+ x

)]
on C/Ω, and therefore they differ at most by a non-zero constant multiple.
Put

fΩ(αz)
D2
Ω(αz;α(ω1 + ω2)/2)
D2
Ω(αz; (ω1 + ω2)/2)

= c
∏

x∈Ker(α)

fΩ(z + x),

for some c in C×. Then (D5) and the fact that limz→0 f(αz)/f(z) = α show
that c = ξΩ(α). In particular, if α ≡ 1 (mod 2O), then the quotient factor
D2
Ω(αz;α(ω1 + ω2)/2)/D2

Ω(αz; (ω1 + ω2)/2) can be removed and we have
ξ2Ω(α) = 1 as in [1].

In the rest of this section, we consider the value ξΩ(α) more precisely.
Let −d = −dΣf2 be the discriminant of O, where −dΣ is the discriminant
of the maximal order OΣ of Σ and f = [OΣ : O]. Now there are three
possibilities for the multiplicative group (O/2O)×:

(a) (O/2O)× ∼= {1}, when d ≡ 7 (mod 8).
(b) (O/2O)× is a cyclic group of order 2, when d ≡ 0 (mod 4).
(c) (O/2O)× is a cyclic group of order 3, when d ≡ 3 (mod 8).

In case (a), since α ∈ J∗(2)⇔ α ≡ 1 (mod 2O), we have ξΩ(α) = ±1.
In case (b), we may choose a basis {ω1, ω2} of Ω so that ω1/2 and ω2/2

represent two distinct primitive 2-division points of Ω, and (ω1 + ω2)/2
another non-zero 2-division point. Then for any α ∈ J∗(2) such that α 6≡ 1
(mod 2O), as elements of C/Ω,

α
ω1

2
=
ω2

2
, α

ω2

2
=
ω1

2
, α

ω1 + ω2

2
=
ω1 + ω2

2
,

and also in this case the DΩ-factor in Theorem 3.1 can be deleted. However,
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note that ξΩ(α) = ±
√
−1, because by Lemma 2.1 and Theorem 3.1,

−1 = fΩ(αz)fΩ(αz + ω2/2) = fΩ(αz)fΩ(α(z + ω1/2))

= ξ2Ω(α)
∏

v∈Ker(α)

fΩ(z + v)fΩ(z + v + ω1/2) = ξ2Ω(α).

In case (c), the set {ω1/2, ω2/2, (ω1 + ω2)/2} represents all primitive
2-division points of Ω. Then for any α ∈ J∗(2) such that α 6≡ 1 (mod 2O),
two subcases are possible:

(I) α
ω1 + ω2

2
=
ω1

2
, α

ω1

2
=
ω2

2
, α

ω2

2
=
ω1 + ω2

2
,

(II) α
ω1 + ω2

2
=
ω2

2
, α

ω2

2
=
ω1

2
, α

ω1

2
=
ω1 + ω2

2
.

In subcase (I), by Lemma 2.1 and Theorem 3.1, we have

−1 = fΩ(αz)fΩ(αz + ω2/2) = fΩ(αz)fΩ(α(z + ω1/2))

= ξ2Ω(α)
D2
Ω(αz; (ω1 + ω2)/2)

D2
Ω(αz;α(ω1 + ω2)/2)

·
D2
Ω(α(z + ω1/2); (ω1 + ω2)/2)

D2
Ω(α(z + ω1/2);α(ω1 + ω2)/2)

×
∏

v∈Ker(α)

fΩ(z + v)f(z + v + ω1/2)

= ξ2Ω(α)
D2
Ω(αz; (ω1 + ω2)/2)

D2
Ω(αz;α(ω1 + ω2)/2)

·
D2
Ω(α(z + ω1/2); (ω1 + ω2)/2)

D2
Ω(α(z + ω1/2);α(ω1 + ω2)/2)

.

Moreover, taking the limit z → 0, we have

ξ2Ω(α) = −
D2
Ω(αω1/2;α(ω1 + ω2)/2)
D2
Ω(αω1/2; (ω1 + ω2)/2)

.

Similarly, in subcase (II), we have

ξ2Ω(α) = −
D2
Ω(αω2/2;α(ω1 + ω2)/2)
D2
Ω(αω2/2; (ω1 + ω2)/2)

.

Hence by a simple check (using (D1) and (D2)), we can summarize that in
case (c),

(3.1) ξ2Ω(α) = −
D2
Ω(α2(ω1 + ω2)/2;α(ω1 + ω2)/2)
D2
Ω(α2(ω1 + ω2)/2; (ω1 + ω2)/2)

.

4. The characters εΩ and ε̃Ω. Let O and Ω be as in Section 3, and
fix a basis {ω1, ω2} of Ω. Then, using (2.1), (K2) and (K4), we have
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x∈Ker(α)
x 6=0

fΩ(x)

= e

(
1
8

(Nα− 1)EΩ(ω2, ω1)
) ∏
x∈Ker(α)
x 6=0

KΩ(x)KΩ(x+ (ω1 + ω2)/2)
KΩ(x+ ω1/2)KΩ(x+ ω2/2)

= e

(
1
8

(Nα− 1)EΩ(ω2, ω1)
)

×
∏

x∈Ker(α)
x 6=0

KΩ(x+ (ω1 + ω2)/2)
KΩ(x)

KΩ(x)
KΩ(x+ ω1/2)

KΩ(x)
KΩ(x+ ω2/2)

=e

(
1
8

(Nα−1)EΩ(ω2, ω1)
)
Kα−1Ω((ω1 + ω2)/2)
KΩ((ω1 + ω2)/2)

KΩ(ω1/2)
Kα−1Ω(ω1/2)

KΩ(ω2/2)
Kα−1Ω(ω2/2)

=e

(
1
8

(Nα−1)EΩ(ω2, ω1)
)
α
KΩ(α(ω1 + ω2)/2)
KΩ((ω1 + ω2)/2)

KΩ(ω1/2)
KΩ(αω1/2)

KΩ(ω2/2)
KΩ(αω2/2)

.

Hence

ξΩ(α) = α
( ∏
x∈Ker(α)
x 6=0

fΩ(x)
)−1

= e

(
1
8

(Nα− 1)EΩ(ω1, ω2)
)
KΩ((ω1 + ω2)/2)
KΩ(α(ω1 + ω2)/2)

KΩ(αω1/2)
KΩ(ω1/2)

KΩ(αω2/2)
KΩ(ω2/2)

.

Here we define εΩ by

(4.1) εΩ(α) := e

(
1
8

(Nα− 1)EΩ(ω1, ω2)
)∏

ρ

KΩ(αρ)
KΩ(ρ)

for α ∈ J∗(2), where ρ runs over the set {ω1/2, ω2/2, (ω1 +ω2)/2}. Then we
have

(4.2) ξΩ(α) = εΩ(α)
K2
Ω((ω1 + ω2)/2)

K2
Ω(α(ω1 + ω2)/2)

.

From the definition, it is easy to see that ε4Ω(α) = 1. Of course, the definition
of εΩ depends on the basis {ω1, ω2} of Ω. Indeed, by a short calculation, we
have the following

Lemma 4.1. Any of three substitutions (ω1, ω2) → (ω2, ω1), (ω1, ω2) →
(ω2,−ω1) and (ω1, ω2)→ (ω1, ω1 + ω2) multiplies εΩ(α) by the quantity

χ4 ◦N(α) = χ4(Nα) = (−1)
1
2
(Nα−1).

Remark. χ4 ◦ N is a quadratic character of (O/4O)×. In particular,
when N(α) ≡ 1 (mod 4) for any α ∈ J∗(2), the definition of εΩ does not
depend on the choice of a basis {ω1, ω2} of Ω.



328 H. Hayashi

In case (a) where (O/2O)× ∼= {1}, since α ≡ 1 (mod 2O) for any α ∈
J∗(2), we have ε2Ω(α) = ξ2Ω(α) = 1.

In case (b) where (O/2O)× is a group of order 2, we first choose a basis
{ω1, ω2} of Ω such that ω1/2 and ω2/2 represent two distinct primitive
2-division points of Ω. Then for any α ∈ J∗(2), we have α(ω1 + ω2)/2 ≡
(ω1 + ω2)/2 (mod Ω) and ε2Ω(α) = ξ2Ω(α) by (4.2). In particular, if α 6≡ 1
(mod 2O), then ε2Ω(α) = −1 (see Sec. 2). Moreover, by Lemma 4.1, the same
assertion holds without any restriction on the choice of a basis {ω1, ω2} of Ω.

In case (c) where (O/2O)× is a group of order 3, (α2 +α+ 1)(ω1 +ω2)/2
≡ 0 (mod Ω) for any α ∈ J∗(2) such that α 6≡ 1 (mod 2O). For simplicity,
we let τ = (ω1 + ω2)/2 and (α2 + α + 1)τ = u with some u ∈ Ω. Then
from (3.1),

ξ2Ω(α) = −
D2
Ω(α2τ ;ατ)
D2
Ω(α2τ ; τ)

= −e(EΩ(α2τ, ατ)− EΩ(α2τ, τ))
K2
Ω((α2 + α)τ)

K2
Ω(α2τ)K2

Ω(ατ)
K2
Ω(α2τ)K2

Ω(τ)
K2
Ω((α2 + 1)τ)

= −e(EΩ(α2τ, (α− 1)τ))
K2
Ω(−τ + u)K2

Ω(τ)
K2
Ω(ατ)K2

Ω(−ατ + u)

= −e(2EΩ(ατ, τ))
K4
Ω(τ)

K4
Ω(ατ)

.

Here

2EΩ(ατ, τ) = EΩ(α(ω1 + ω2)/2, ω1 + ω2)
≡ EΩ(ω1/2, ω1 + ω2) or EΩ(ω2/2, ω1 + ω2) (mod Z)

≡ 1
2

(mod Z),

and hence e(2EΩ(ατ, τ)) = −1. Then

ξ2Ω(α) =
K4
Ω((ω1 + ω2)/2)

K4
Ω(α(ω1 + ω2)/2)

,

and by (4.2), we have ε2Ω(α) = 1.
Consequently, in both cases (a) and (c) the values of εΩ are ±1, and in

case (b) they are ±1 and ±
√
−1 . Moreover we have the following

Proposition 4.2. εΩ(α) depends only on the class of α modulo 4O.

Proof. Assume that α1 ≡ α (mod 4O), i.e. α1 = α+4u with some u ∈ O.
Then, on one hand, since

Nα1 = Nα+ 4 Tr(αu) + 16Nu,
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we have

e

(
1
8

(Nα1 − 1)EΩ(ω1, ω2)
)

= e

(
1
8

(Nα− 1)EΩ(ω1, ω2)
)
· e
(

1
2

Tr(αu)EΩ(ω1, ω2)
)
,

where Tr is the usual trace. On the other hand, by (K1),∏
ρ

KΩ(α1ρ) =
∏
ρ

KΩ(αρ+ 4uρ) = e(M)
∏
ρ

KΩ(αρ),

where ρ runs over {ω1/2, ω2/2, (ω1 + ω2)/2} and M is given by

M = 2
(∑

ρ

Nρ
)
· EΩ(u, α).

Moreover a short calculation shows that

M ≡ 1
2

(ω1ω2 + ω1ω2)EΩ(u, α) (mod Z)

≡ 1
2

(uα+ uα)EΩ(ω1, ω2) (mod Z)

=
1
2

Tr(uα)EΩ(ω1, ω2).

Hence εΩ(α1) = εΩ(α).

Remark. In the same way as in the proof of Proposition 4.2, we find
that ε2Ω(α) depends only on the class of α modulo 2O.

Proposition 4.2 suggests that εΩ could be a character of (O/4O)×. How-
ever, that is not true in general. Namely, in the next section, we shall prove

Theorem 4.3. εΩ(αβ) = εΩ(α)NβεΩ(β) = εΩ(α)εΩ(β)Nα for any α, β
in J∗(2).

Theorem 4.3 illustrates an action of Gal(Σab/H) on εΩ(α), where H
is the ring class field over Σ corresponding to the order O. Namely, let
σ(β) := (βO,Σab/H) be the Artin automorphism belonging to the principal
O-ideal βO. Then

εΩ(α)σ(β) = εΩ(α)Nβ =
εΩ(αβ)
εΩ(β)

.

At any rate, as a consequence of Theorem 4.3, we conclude that in both
cases (a) and (c), εΩ defines a character of (O/4O)× of order 2. Also in
case (b), if Nα ≡ 1 (mod 4) for any α ∈ J∗(2), then εΩ defines a character
of (O/4O)× of order 4. We are in case (b) if and only if 4 | d. Moreover,
if d = 4d0 and d0 ≡ 0, 1 (mod 4), then always Nα ≡ 1 (mod 4) for any
α ∈ J∗(2). However in the cases where d = 4d0 and d0 ≡ 2, 3 (mod 4), we see
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that Nα ≡ −1 (mod 4) for any α ∈ J∗(2) such that α 6≡ 1 (mod 2O). Hence
in this case, εΩ cannot be a character of (O/4O)×. Indeed, by Theorem 4.3,

εΩ(αβ)
εΩ(α)εΩ(β)

= εΩ(α)Nβ−1 = −1

for any α, β ∈ J∗(2) such that α 6≡ 1, β 6≡ 1 (mod 2O).
Here we make a slight modification. In the case where 4 | d and d0 ≡ 2, 3

(mod 4), in place of εΩ, we consider ε̃Ω defined by

ε̃Ω(α) := e

(
1
8

(Nα− 1)
)
εΩ(α).

Then ε̃Ω also has the cocycle property, i.e.

ε̃Ω(αβ) = ε̃Ω(α)Nβ ε̃Ω(β) = ε̃Ω(α)ε̃Ω(β)Nα

for any α, β ∈ J∗(2). Moreover ε̃Ω(α) depends only on the class of α mod-
ulo 4O and further ε̃2Ω(α) = 1 for any α ∈ J∗(2). Indeed, by Remark to
Proposition 4.2, ε2Ω(α) = −1 if and only if α 6≡ 1 (mod 2O) and equivalently
Nα 6≡ 1 (mod 4). Thus ε̃Ω defines a character of (O/4O)× of order 2. We
will use this modified character in Section 6.

5. Proof of Theorem 4.3. Let the notation be as in Section 4. For a
complete proof of Theorem 4.3, it suffices to prove

εΩ(αβ) = εΩ(α)εΩ(β)Nα,

which is equivalent to

ξΩ(αβ) = ξΩ(α)ξΩ(β)Nα
(
K2
Ω(β(ω1 + ω2)/2)
K2
Ω((ω1 + ω2)/2)

)Nα K2
Ω(α(ω1 + ω2)/2)

K2
Ω(αβ(ω1 + ω2)/2)

.

For this purpose we can apply the product formula for fΩ in Theorem 3.1.
For simplicity, we let τ = (ω1 + ω2)/2 again. Then on one hand,

fΩ(αβz)
D2
Ω(αβz;αβτ)
D2
Ω(αβz; τ)

= ξΩ(αβ)
∏

x∈Ker(αβ)

fΩ(z + x)

= ξΩ(αβ)
∏

r̃modαβO
r̃∈O

fΩ(z + r̃xαβ),

where xαβ is a fixed primitive αβ-division point of Ω. On the other hand,

fΩ(αβz)
D2
Ω(αβz;αβτ)
D2
Ω(αβz; τ)

=
D2
Ω(αβz;αβτ)
D2
Ω(αβz;ατ)

· fΩ(α(βz))
D2
Ω(α(βz);ατ)
D2
Ω(α(βz); τ)

=
D2
Ω(αβz;αβτ)
D2
Ω(αβz;ατ)

· ξΩ(α)
∏

r1 modαO
r1∈O

fΩ(βz + r1xα),
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where xα := βxαβ and this gives a primitive α-division point of Ω. Moreover,
in the above equality,∏
r1 modαO
r1∈O

fΩ(βz + r1xα)

=
∏

r1 modαO
r1∈O

fΩ(β(z + r1xαβ))
D2
Ω(β(z + r1xαβ);βτ)
D2
Ω(β(z + r1xαβ); τ)

×
∏

r1 modαO
r1∈O

D2
Ω(βz + r1xα; τ)

D2
Ω(βz + r1xα;βτ)

= ξΩ(β)Nα
∏

r1 modαO
r1∈O

D2
Ω(βz + r1xα; τ)

D2
Ω(βz + r1xα;βτ)

·
∏

r1 modαO
r2 modβO

fΩ(z + r1xαβ + r2xβ)

= ξΩ(β)Nα
∏

r1 modαO
r1∈O

D2
Ω(βz + r1xα; τ)

D2
Ω(βz + r1xα;βτ)

·
∏

r̃modαβO

fΩ(z + r̃xαβ).

Here xβ := αxαβ and this gives a primitive β-division point of Ω. Note that
the set {r1 + αr2 | r1 mod αO, r2 mod βO} is a complete set of representa-
tives of O/αβO. Hence we obtain

ξΩ(αβ) = ξΩ(α)ξΩ(β)Nα · FΩ(z;α, β)

where

FΩ(z;α, β) =
D2
Ω(αβz;αβτ)
D2
Ω(αβz;ατ)

·
∏

r1 modαO
r1∈O

D2
Ω(βz + r1xα; τ)

D2
Ω(βz + r1xα;βτ)

.

Moreover, by (D6), we have

FΩ(z;α, β) =
D2
Ω(αβz;αβτ)
D2
Ω(αβz;ατ)

·
D2
α−1Ω(βz; τ)

D2
α−1Ω

(βz;βτ)
·
K2
Ω(βτ)Nα

K2
α−1Ω

(βτ)
·
K2
α−1Ω(τ)
K2
Ω(τ)Nα

× e
(
EΩ

( ∑
r1 modαO

r1xα, 2(1− β)τ
))

=
K2
Ω(βτ)Nα

K2
Ω(αβτ)

·
K2
Ω(ατ)

K2
Ω(τ)Nα

=
(
K2
Ω(β(ω1 + ω2)/2)
K2
Ω((ω1 + ω2)/2)

)Nα K2
Ω(α(ω1 + ω2)/2)

K2
Ω(αβ(ω1 + ω2)/2)

,

and this proves Theorem 4.3.
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6. Quadratic reciprocity law. Let the notation be as in the preced-
ing sections. For any α, β in J∗(2) such that (α, β) = 1, we consider the
quadratic symbol

(
α
β

)
2

given by(
α

β

)
2

=
∏
x∈Sβ

ε(α, x),

where Sβ is a subset of Ker(β) such that Ker(β) is the disjoint union of {0},
Sβ and −Sβ, and ε(α, x) ∈ {±1} is so determined that αx = ε(α, x)γ(x)
with a unique γ(x) in Sβ. As in the classical results of Eisenstein ([4], [5]),
but using our product formula of Theorem 3.1, we obtain the following
explicit quadratic reciprocity law, which refines the formula of Bayad ([1,
Theorem 1.10]).

Theorem 6.1. For α, β ∈ J∗(2) such that (α, β) = 1,(
α

β

)
2

(
β

α

)
2

= (−1)
1
4
(Nα−1)(Nβ−1) εΩ(α)

1
2
(Nβ−1)

εΩ(β)
1
2
(Nα−1)

.

Proof. Since fΩ is an odd function, fΩ(αx) = ε(α, x)fΩ(γ(x)) for any
x ∈ Sβ. Thus(

α

β

)
2

=
∏
x∈Sβ

ε(α, x) =
∏
x∈Sβ

fΩ(αx)
fΩ(γ(x))

=
∏
x∈Sβ

fΩ(αx)
fΩ(x)

.

Moreover, using the product formula of Theorem 3.1, we have(
α

β

)
2

=
∏
x∈Sβ

(
D2
Ω(αx; (ω1 + ω2)/2)

D2
Ω(αx;α(ω1 + ω2)/2)

ξΩ(α)
∏

x′∈Ker(α)
x′ 6=0

fΩ(x+ x′)
)

= ξΩ(α)(Nβ−1)/2A
(α)
β

∏
x∈Sβ

∏
x′∈Sα

fΩ(x+ x′)fΩ(x− x′),

where

A
(α)
β =

∏
x∈Sβ

D2
Ω(αx; τ)

D2
Ω(αx;ατ)

with τ =
ω1 + ω2

2
.

By (D8),

A
(α)
β =

∏
x∈Sβ

℘Ω(αx)− ℘Ω(τ)
℘Ω(αx)− ℘Ω(ατ)

=
∏
x∈Sβ

℘Ω(τ)− ℘Ω(x)
℘Ω(ατ)− ℘Ω(x)

(℘Ω is even and Ω elliptic)

=
∏
x∈Sβ

DΩ(τ ;x)DΩ(τ ;−x)
DΩ(ατ ;x)DΩ(ατ ;−x)

=
∏

x∈Ker(β)
x 6=0

DΩ(τ ;x)
DΩ(ατ ;x)

,
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and then using (D4) and (D7) (with Λ = β−1Ω)

A
(α)
β =

KΩ(ατ)Nβ

Kβ−1Ω(ατ)
·
Kβ−1Ω(τ)
KΩ(τ)Nβ

=
{
KΩ(ατ)
KΩ(τ)

}Nβ
· KΩ(βτ)
KΩ(αβτ)

= H(α, β; τ)
{
KΩ(ατ)
KΩ(τ)

}Nβ−1

.

Here

H(α, β; τ) :=
KΩ(ατ)KΩ(βτ)
KΩ(τ)KΩ(αβτ)

.

Note that H(α, β; τ) = H(β, α; τ). Moreover, since

ξΩ(α) = εΩ(α)
K2
Ω(τ)

K2
Ω(ατ)

,

we have
ξΩ(α)

1
2
(Nβ−1)A

(α)
β = H(α, β; τ)εΩ(α)

1
2
(Nβ−1),

and hence(
α

β

)
2

= H(α, β; τ)εΩ(α)
1
2
(Nβ−1)

∏
x∈Sβ

∏
x′∈Sα

fΩ(x+ x′)fΩ(x− x′).

Symmetrically we have(
β

α

)
2

= H(β, α; τ)εΩ(β)
1
2
(Nα−1)

∏
v′∈Sα

∏
v∈Sβ

fΩ(v′ + v)fΩ(v′ − v)

= H(α, β; τ)εΩ(β)
1
2
(Nα−1)(−1)

1
4
(Nα−1)(Nβ−1)

×
∏
x∈Sβ

∏
x′∈Sα

fΩ(x+ x′)fΩ(x− x′),

and hence(
α

β

)
2

(
β

α

)
2

=
(
α

β

)
2

(
β

α

)−1

2

= (−1)
1
4
(Nα−1)(Nβ−1) εΩ(α)

1
2
(Nβ−1)

εΩ(β)
1
2
(Nα−1)

.

This proves Theorem 6.1.

Remark. As is explained in Section 4, εΩ in Theorem 6.1 is a character
of (O/4O)× except for the case where d = 4d0 with d0 ≡ 2, 3 (mod 4). In
the exceptional case, we may replace εΩ by ε̃Ω, because

εΩ(α)
1
2
(Nβ−1)

εΩ(β)
1
2
(Nα−1)

=
e
(

1
8(Nα− 1)

) 1
2
(Nβ−1) · εΩ(α)

1
2
(Nβ−1)

e
(

1
8(Nβ − 1)

) 1
2
(Nα−1) · εΩ(β)

1
2
(Nα−1)

=
ε̃Ω(α)

1
2
(Nβ−1)

ε̃Ω(β)
1
2
(Nα−1)

,

and ε̃Ω is a character of (O/4O)× of order 2.
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In the case where d is odd, since εΩ is a character of order 2, we have

εΩ(α)
1
2
(Nβ−1)

εΩ(β)
1
2
(Nα−1)

= εΩ(α)
1
2
(Nβ−1)εΩ(β)

1
2
(Nα−1).

In the case where d = 4d0 with d0 ≡ 0, 1 (mod 4), Nα ≡ 1 (mod 4) for any
α ∈ J∗(2), and hence we have the same equality as above. In the remaining
case where d = 4d0 with d0 ≡ 2, 3 (mod 4), since ε̃Ω is a character of order 2,
we have

ε̃Ω(α)
1
2
(Nβ−1)

ε̃Ω(β)
1
2
(Nα−1)

= ε̃Ω(α)
1
2
(Nβ−1)ε̃Ω(β)

1
2
(Nα−1).

Next, we wish to compare our theorem with the following reciprocity law
proved by Hajir and Villegas in [4].

Theorem 6.2 ([6, Theorem 21]). For α, β ∈ J∗(2) such that (α, β) = 1,(
α

β

)
2

(
β

α

)
2

= (−1)
1
4
(Nα−1)(Nβ−1)κ4(α)

1
2
(Nβ−1)κ4(β)

1
2
(Nα−1).

In Theorem 6.2, κ4 is a certain character of (O/4O)× defined with the
use of the Galois action on the quotient of Dedekind η-values. For a precise
definition of κ4, one should refer to [6]. Especially Lemma 12 in [6] is useful
for the computation of κ4(α). Comparing Theorem 6.1 with Theorem 6.2,
the following questions arise:

Q1. What is the precise relation between κ4 and εΩ (or ε̃Ω)?
Q2. Does the definition of εΩ depend essentially on the O-ideal Ω?

In the rest of this note we attempt to answer these questions. We let
{ω, 1} be the basis of O where

ω =
{

(−1 +
√
−d)/2 when d is odd,

√
−d0 when d = 4d0.

We take O itself for Ω, and we write ε1 for εΩ defined using the basis {ω, 1}.
Then by an explicit computation using Lemma 12 of [6], we obtain

Theorem 6.3.

(i) If d is odd, both ε1 and κ4 are characters of order 2, and ε1 = κ4.
(ii) If d = 4d0 and d0 ≡ 0, 1 (mod 4), both ε1 and κ4 are characters of

order 4, and ε1 = κ3
4.

(iii) If d = 4d0 and d0 ≡ 2, 3 (mod 4), both ε̃1 and κ4 are characters of
order 2, and ε̃1 = κ4. Here ε̃1 is defined by

ε̃1(α) = e
(

1
8(Nα− 1)

)
ε1(α) for α ∈ J∗(2).

Now let Ω and Ω1 be two proper O-ideals which are similar to each
other, i.e. Ω1 = µΩ with some µ ∈ Σ. We fix a basis {ω1, ω2} of Ω and take
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{µω1, µω2} for a basis of Ω1 = µΩ. Then, from the definition (4.1) and the
homogeneity of KΩ(z), we see that

εΩ1(α) = εµΩ(α) = εΩ(α) for any α ∈ J∗(2).

In each O-ideal class, there exists a prime ideal p such that

Np = p ≡
{

1 (mod 4) when d = 4d0 and d0 ≡ 0, 1 (mod 4),
1 (mod 2) otherwise.

We know that

(wH, 4) =
{

4 when d = 4d0 and d0 ≡ 0, 1 (mod 4),
2 otherwise,

where wH is the number of roots of unity contained in the ring class field
H over Σ corresponding to the ring O. We let {ω + ν, p} be a canonical
basis of p. Then ν is uniquely determined modulo p. Here we may assume
additionally that

ν ≡
{

0 (mod 8) when d is odd,
1 (mod 8) when d is even.

Then, by an explicit computation with the use of the basis {ω+ν, p} of p, we
can confirm that εp(α) = ε1(α) for any α ∈ J∗(2). Finally we can summarize
our arguments as follows:

Theorem 6.4.

(i) When d = 4d0 with d0 ≡ 0, 1 (mod 4), the definition of εΩ depends
neither on the choice of a basis of Ω nor on Ω itself, and εΩ = ε1
= κ3

4.
(ii) When d is odd or d = 4d0 with d0 ≡ 2, 3 (mod 4), for any Ω, εΩ is

one of {ε1, ε1 · χ4 ◦N}.
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