An extension of the Lucas theorem

by

JACQUES BOULANGER and JEAN-LUC CHABERT (Amiens)

1. Introduction. Recall Lucas' theorem [10, pp. 417–420] or [5] and [7]:

PROPOSITION 1.1. Let p be a prime number and let

$$n = n_0 + n_1 p + n_2 p^2 + \ldots + n_k p^k \quad with \ 0 \le n_i < p, x = x_0 + x_1 p + x_2 p^2 + \ldots + x_k p^k \quad with \ 0 \le x_i < p.$$

Then

$$\binom{x}{n} \equiv \binom{x_0}{n_0} \binom{x_1}{n_1} \dots \binom{x_k}{n_k} \pmod{p}.$$

This formula has been generalized by several authors (see, for instance, [8] or [9]), but all these extensions concern ordinary integers. The aim of this paper is to extend the Lucas formula by replacing \mathbb{Z} , or more precisely $\mathbb{Z}_{(p)}$, by a discrete valuation domain V with finite residue field. Note that the prime number p appears twice: once as a generator of the maximal ideal $p\mathbb{Z}$, and secondly as the cardinality of the residue field $\mathbb{Z}/p\mathbb{Z}$. Thus, we will replace it either by a generator t of the maximal ideal \mathfrak{m} of V, or by the cardinality q of the residue field V/\mathfrak{m} . The integer q will then occur in the q-adic representation of the integers n, while the generator t will occur in the t-adic expansion of the elements x of V.

Now we have to replace the binomial coefficients by suitable expressions. To do this, we notice that the binomial coefficient $\binom{x}{n}$ is the value at x of the polynomial

$$\binom{X}{n} = \frac{X(X-1)\dots(X-n+1)}{n!}.$$

It is well known that these binomial polynomials form a basis of the \mathbb{Z} -module

$$Int(\mathbb{Z}) = \{ f \in \mathbb{Q}[X] \mid f(\mathbb{Z}) \subseteq \mathbb{Z} \}$$

²⁰⁰⁰ Mathematics Subject Classification: 13F20, 11B65.

of integer-valued polynomials on \mathbb{Z} . We are then led to consider the ring Int(V) of integer-valued polynomials on V, that is,

$$Int(V) = \{ f \in K[X] \mid f(V) \subseteq V \},\$$

where K denotes the quotient field of V. We know how to construct a basis $C_n(X)$ of the V-module Int(V) [1, Chap. II, §2]: we first construct a sequence $\{u_n\}_{n\in\mathbb{N}}$ of elements of V such that, for every s, any choice of q^s consecutive terms provides a complete set of residues of V mod \mathfrak{m}^s . Then, the following polynomials of Lagrangian type:

$$C_n(X) = \prod_{k=0}^{n-1} \frac{X - u_k}{u_n - u_k}$$

form a basis of the V-module Int(V). We are going to show that, for a proper choice of the sequence $\{u_n\}$, if

$$n = \sum_{i=0}^{k} n_i q^i$$
 and $x = \sum_{j\geq 0} x_j t^j$,

then

$$C_n(x) \equiv \prod_{i=0}^k C_{n_i}(x_i) \pmod{\mathfrak{m}}.$$

This generalized formula will be established in the following section. Then, in the third section, analogously to Chapman and Smith's paper about $Int(\mathbb{Z})$ [4], we will use the extended formula to describe some maximal ideals of the ring Int(V).

2. Extension of the Lucas theorem

Hypotheses and notations. Let V be a discrete valuation domain with finite residue field. Denote by K the quotient field of V, by v the corresponding valuation of K, by m the maximal ideal of V, and by q the cardinality of the residue field V/\mathfrak{m} . We denote by \widehat{K} , \widehat{V} , and $\widehat{\mathfrak{m}}$ the completions of K, V, and m with respect to the m-adic topology and we still denote by v the extension of v to \widehat{K} .

The construction. We choose a generator t of \mathfrak{m} and a set $U = \{u_0 = 0, u_1, \ldots, u_{q-1}\}$ of representatives of V modulo \mathfrak{m} . It is well known that each element x of \widehat{V} has a unique t-adic expansion (see, for instance, [2, Chap. II, §7])

$$x = \sum_{j=0}^{\infty} x_j t^j$$
 with $x_j \in U$ for each $j \in \mathbb{N}$.

We now construct a sequence $\{u_n\}_{n\in\mathbb{N}}$ of elements of V which will replace the sequence of nonnegative integers. Taking q as the basis of the numeration, that is, writing every positive integer n in the form

 $n = n_0 + n_1 q + n_2 q^2 + \ldots + n_k q^k$ with $0 \le n_i < q$ for each $i \in \{0, \ldots, k\}$, we extend the sequence $\{u_j\}_{0 \le j < q}$ in the following way:

$$u_n = u_{n_0} + u_{n_1}t + u_{n_2}t^2 + \ldots + u_{n_k}t^k.$$

We then replace the binomial polynomials

$$\binom{X}{n} = \frac{X(X-1)(X-2)\dots(X-n+1)}{n!}$$

by the polynomials

$$C_n(X) = \prod_{k=0}^{n-1} \frac{X - u_k}{u_n - u_k}$$
 with $C_0 = 1$,

and we recall:

PROPOSITION 2.1 ([1, Theorem II.2.7]). The polynomials $C_n(X)$ form a basis of the V-module Int(V).

THEOREM 2.2 (generalized Lucas formula). If

$$n = n_0 + n_1 q + \ldots + n_k q^k$$

is the q-adic expansion of a positive integer n, and if

$$x = x_0 + x_1 t + \ldots + x_j t^j + \ldots$$

is the t-adic expansion of an element x of \widehat{V} , then

$$C_n(x) \equiv C_{n_0}(x_0)C_{n_1}(x_1)\dots C_{n_k}(x_k) \pmod{\widehat{\mathfrak{m}}}.$$

We first note that the above theorem is equivalent to the following proposition:

PROPOSITION 2.3. Let $n_0 \in \{0, 1, \ldots, q-1\}$ and $x_0 \in \{u_0 = 0, u_1, \ldots, u_{q-1}\}$. Then, for every $m \in \mathbb{N}$ and every $y \in \widehat{V}$,

$$C_{n_0+qm}(x_0+ty) \equiv C_{n_0}(x_0)C_m(y) \pmod{\widehat{\mathfrak{m}}}.$$

Proof of the equivalence. Theorem 2.2 obviously implies Proposition 2.3. Let us prove the converse implication. Let $n = n_0 + n_1q + \ldots + n_kq^k \in \mathbb{N}$ and $x = x_0 + x_1t + \ldots + x_jt^j + \ldots \in \widehat{V}$. Write $n = n_0 + qm_1$ and $x = x_0 + ty_1$. It follows from Proposition 2.3 that

$$C_n(x) \equiv C_{n_0}(x_0)C_{m_1}(y_1) \pmod{\widehat{\mathfrak{m}}}.$$

Now writing $m_1 = n_1 + qm_2$ and $y_1 = x_1 + ty_2$, analogously we have

$$C_{m_1}(y_1) \equiv C_{n_1}(x_1)C_{m_2}(y_2) \pmod{\widehat{\mathfrak{m}}}.$$

And so on, until we come to

$$C_{m_{k-1}}(y_{k-1}) \equiv C_{n_{k-1}}(x_{k-1})C_{n_k}(y_k) \pmod{\widehat{\mathfrak{m}}}.$$

To conclude we just have to notice that

 $n_k = n_k + q \cdot 0$ and $y_k = x_k + ty_{k+1};$

thus we have

$$C_{n_k}(y_k) \equiv C_{n_k}(x_k) \cdot C_0(y_{k+1}) = C_{n_k}(x_k) \pmod{\widehat{\mathfrak{m}}}. \blacksquare$$

Proof of Proposition 2.3. First note that our choice of the sequence $\{u_n\}_{n\in\mathbb{N}}$ implies that, for each $h, k\in\mathbb{N}$ with $0\leq k< q$, one has $u_{hq+k}=u_k+tu_h$. By hypothesis, $n=n_0+qm$ where $0\leq n_0< q$ and $x=x_0+ty$ where $x_0=u_s$ for some $s\in\{0,\ldots,q-1\}$. Hence, in particular, $u_n=u_{n_0}+tu_m$ and $u_n-u_{qm+l}=u_{n_0}-u_l$ for $0\leq l< q$. Then

$$C_n(x) = \prod_{k=0}^{n-1} \frac{x - u_k}{u_n - u_k} = \prod_{k=0}^{qm-1} \frac{x - u_k}{u_n - u_k} \cdot \prod_{l=0}^{n_0-1} \frac{x - u_{qm+l}}{u_n - u_{qm+l}} = A \cdot B.$$

The second factor B is equal to

$$\prod_{l=0}^{n_0-1} \frac{x - u_{qm+l}}{u_{n_0} - u_l},$$

and hence is congruent modulo $\widehat{\mathfrak{m}}$ to

$$C_{n_0}(x_0) = \prod_{l=0}^{n_0-1} \frac{x_0 - u_l}{u_{n_0} - u_l}$$

because:

- the denominators of both fractions are equal and invertible,
- \bullet the numerators are congruent modulo $\widehat{\mathfrak{m}}$ since

$$x - u_{qm+l} = x_0 - u_l + t(y - u_m).$$

If we prove that

$$A = \prod_{k=0}^{qm-1} \frac{x - u_k}{u_n - u_k} \equiv C_m(y) \pmod{\widehat{\mathfrak{m}}},$$

then in particular A and B belong to \widehat{V} , and hence, $A \cdot B \equiv C_m(y) \cdot C_{n_0}(x_0)$ (mod $\widehat{\mathfrak{m}}$). Writing

$$A = \prod_{h=0}^{m-1} \prod_{k=0}^{q-1} \frac{x - u_{qh+k}}{u_n - u_{qh+k}} = \prod_{h=0}^{m-1} \prod_{k=0}^{q-1} \frac{(u_s + ty) - (u_k + tu_h)}{(u_{n_0} - u_k) + t(u_m - u_h)},$$

306

we consider the k's equal to s in the numerators and the k's equal to n_0 in the denominators:

$$A = \prod_{h=0}^{m-1} \frac{y - u_h}{u_m - u_h} \cdot \prod_{h=0}^{m-1} \frac{\prod_{1 \le k < q, \ k \ne s} [(u_s - u_k) + t(y - u_h)]}{\prod_{0 \le k < q, \ k \ne n_0} [(u_{n_0} - u_k) + t(u_m - u_h)]}$$

Write

$$A = E \cdot \prod_{h=0}^{m-1} \frac{N_h}{D_h}.$$

The first factor E is exactly $C_m(y)$. Consequently, it suffices to prove that the second factor is congruent to 1 modulo $\hat{\mathfrak{m}}$, and hence that all the quotients N_h/D_h are congruent to 1 modulo $\hat{\mathfrak{m}}$. Of course,

$$N_{h} = \prod_{1 \le k < q, \, k \ne s} [(u_{s} - u_{k}) + t(y - u_{h})] \equiv \prod_{1 \le k < q, \, k \ne s} (u_{s} - u_{k}) \pmod{\widehat{\mathfrak{m}}},$$
$$D_{h} = \prod_{0 \le k < q, \, k \ne n_{0}} [(u_{n_{0}} - u_{k}) + t(u_{m} - u_{h})] \equiv \prod_{1 \le k < q, \, k \ne n_{0}} (u_{n_{0}} - u_{k}) \pmod{\widehat{\mathfrak{m}}},$$

and the last terms are congruent to -1 modulo m. This ends the proof.

REMARK 2.4. In the previous proof we have used the fact that $u_0 = 0$. We know that, whatever the choice of $u_0 \in V$, the polynomials $C_n(X)$ form a basis of the V-module Int(V). Nevertheless, if the generalized Lucas formula holds, then necessarily $u_0 = 0$. Let us prove it. Assuming that $u_0 \neq 0$, we may consider the element $x = u_0/(1-t)$ whose t-adic expansion is

$$x = \frac{u_0}{1-t} = u_0 + u_0 t + u_0 t^2 + \ldots + u_0 t^n + \ldots$$

Let $h \in \mathbb{N} \setminus \{0\}$ be such that $v(tu_0) \ge h$. It follows from the Lucas formula that

$$C_{q^h}\left(\frac{u_0}{1-t}\right) \equiv C_0(u_0)^h \cdot C_1(u_0) \; (\mathrm{mod}\,\widehat{\mathfrak{m}}),$$

since $q^h = 0 \cdot 1 + 0 \cdot q + \ldots + 1 \cdot q^h$. Obviously, $C_0(u_0) = 1$ and $C_1(u_0) = 0$. Consequently, $v(C_{q^h}(x)) > 0$. On the other hand, $v(x - u_0) = v(tu_0) \ge h$; it then follows from Lemma 2.5 below that

$$v(C_{q^h}(x)) = v(x - u_0) - h.$$

Thus, we have just proved that $v(tu_0) \ge h$ implies $v(tu_0) > h$. This is a contradiction with the assumption that $u_0 \ne 0$.

LEMMA 2.5 ([3, Lemme 2]). For every $h \in \mathbb{N}$ and every $x \in \widehat{V}$,

$$v(C_{q^h}(x)) = -h + \sup_{0 \le k < q^h} v(x - u_k).$$

In particular, if $v(x - u_{k_0}) \ge h$ for some k_0 such that $0 \le k_0 < q^h$, then $v(C_{q^h}(x)) = v(x - u_{k_0}) - h.$ It is known [1, II.2.4] that the valuation of the denominator of $C_n(X)$ is

$$v\Big(\prod_{k=0}^{n-1} (u_n - u_k)\Big) = w_q(n) = \sum_{k>0} \left[\frac{n}{q^k}\right]$$

where [z] denotes the integer part of z. Thus, if we replace the denominator of $C_n(X)$ by $(-t)^{-w_q(n)}$, we obtain another sequence of polynomials

$$\Gamma_n(X) = (-t)^{-w_q(n)} \prod_{k=0}^{n-1} (X - u_k)$$

which form a basis of the V-module Int(V) [1, II.2.10].

PROPOSITION 2.6. The generalized Lucas formula holds for the polynomials $\Gamma_n(X)$, that is, if $n = \sum_{0 \le i \le k} n_i q^i$ and $x = \sum_{j \ge 0} x_j t^j$, then

$$\Gamma_n(x) \equiv \Gamma_{n_0}(x_0)\Gamma_{n_1}(x_1)\dots\Gamma_{n_k}(x_k) \pmod{\widehat{\mathfrak{m}}}.$$

Proof. Of course, it suffices to prove that

$$\Gamma_{n_0+qm}(x_0+ty) \equiv \Gamma_{n_0}(x_0)\Gamma_m(y)$$

The proof of this last assertion is similar to that of Proposition 2.3. We first notice that $w_q(n) = m + w_q(m)$. Then $\Gamma_n(x) = A \cdot B$ where

$$A = (-t)^{-w_q(n)} \prod_{k=0}^{qm-1} (x - u_k) \quad \text{and} \quad B = \prod_{l=0}^{n_0-1} (x - u_{qm+l}).$$

Obviously,

$$B \equiv \prod_{l=0}^{n_0-1} (x_0 - u_l) = \Gamma_{n_0}(x_0) \pmod{\widehat{\mathfrak{m}}}.$$

On the other hand,

$$A = (-t)^{-w_q(n)} \prod_{h=0}^{m-1} \prod_{k=0}^{q-1} (x - u_{qh+k}) = (-t)^{-w_q(n)} \prod_{h=0}^{m-1} \prod_{k=0}^{q-1} [(x_0 - u_k) + t(y - u_h)].$$

Let $s \in \{0, \ldots, q-1\}$ be such that $x_0 = u_s$. Then

$$A = (-1)^m \cdot (-t)^{-w_q(m)} \prod_{h=0}^{m-1} (y - u_h) \cdot \prod_{h=0}^{m-1} \prod_{0 \le k < q, \ k \ne s} [(x_0 - u_k) + t(y - u_h)].$$

The second factor is exacly $\Gamma_m(y)$, while the third is congruent to $(-1)^m \mod \widehat{\mathfrak{m}}$.

Remark 2.4 still holds for the $\Gamma_n(X)$'s since $\Gamma_0(X) = 1$ and $\Gamma_1(u_0) = 0$; if the generalized Lucas formula holds for the polynomials $\Gamma_n(X)$, then necessarily $u_0 = 0$.

REMARK 2.7. There is another classical basis of Int(V): the basis formed by the Fermat polynomials $F_n(X)$ (see [6], [1, §II.2], or [11]). Recall that

$$F_0 = 1$$
, $F_1 = X$, $F_q = \frac{X - X^q}{t}$, $F_{q^{h+1}} = F_q(F_{q^h})$,

and

$$F_n = \prod_{j=0}^k (F_{q^j})^{n_j}$$
 for $n = n_0 + n_1 q + \ldots + n_k q^k$.

We are going to see that the Lucas formula may hold for the first indices n, but cannot hold for every n, in particular for $n = q^q$.

Let $\zeta_0 = 0, \zeta_1, \ldots, \zeta_{q-1}$ be the roots of $X - X^q = 0$ in \widehat{V} and assume that $u_0 = 0, u_1, \ldots, u_{q-1} \in V$ are such that $u_i \equiv \zeta_i \pmod{t^2 \widehat{V}}$. It is then easy to prove that, for $n < q^2$,

$$F_{n_0+n_1q}\left(\sum_j x_j t^j\right) \equiv x_0^{n_0} x_1^{n_1} \; (\operatorname{mod} t\widehat{V}).$$

Before proving that the formula cannot hold for $n = q^q$, we may notice that there is some choice for F_1, \ldots, F_{q-1} : they just have to be polynomials in V[X] which together with the polynomial 1 form a basis of the V-module of polynomials in V[X] whose degree is < q. But, for $i = 0, 1, \ldots, q-1$, we have $F_q(u_i t) \equiv u_i \pmod{tV}$, and hence, if the Lucas formula holds, we have $F_1(u_i) \equiv u_i \pmod{tV}$, that is,

$$F_1(X) \equiv X \pmod{tV[X]}$$

since $\deg(F_1) < q$.

Now, note that, if
$$v(x) > 0$$
, then $v(F_q(x)) = v(x) - 1$. Then

$$F_q(t) = 1 - t^{q-1}, \quad F_{q^2}(t) \equiv -t^{q-2} \pmod{t^{q-1}V};$$

consequently, $v(F_{q^q}(t)) = 0$ even if q = 2. But, the Lucas formula implies

$$F_{q^q}(t) \equiv F_1(0) \equiv 0 \pmod{tV}.$$

This is a contradiction.

The characterization of the bases of Int(V) for which the Lucas formula holds thus deserves to be studied.

3. Application to maximal ideals of Int(V). Recall the fiber of Int(V) over \mathfrak{m} :

PROPOSITION 3.1 ([3, Théorème 1] or [1, V.2.3]). There is a one-to-one correspondence between the completion \hat{V} of V and the set of prime ideals of Int(V) lying over \mathfrak{m} :

$$x \in \widehat{V} \mapsto \mathfrak{m}_x = \{ f \in \operatorname{Int}(V) \mid f(x) \in \widehat{\mathfrak{m}} \} \in \max(\operatorname{Int}(V)).$$

Following Chapman and Smith [4], we are going to consider the polynomials $C_n(X)$ which belong to these maximal ideals \mathfrak{m}_x .

PROPOSITION 3.2. With the previous notation, let $n = n_0 + n_1q + \ldots + n_kq^k$ be a positive integer and $x = \sum_{j\geq 0} x_jt^j \in \widehat{V}$. Then C_n belongs to \mathfrak{m}_x if and only if there is some index j such that $x_j = u_{\nu(x,j)}$ with $\nu(x,j) < n_j$.

Proof. By definition, C_n belongs to \mathfrak{m}_x if and only if $C_n(x)$ belongs to $\widehat{\mathfrak{m}}$. It follows from the Lucas formula that

$$C_n(x) \equiv C_{n_0}(x_0)C_{n_1}(x_1)\dots C_{n_k}(x_k) \pmod{\widehat{\mathfrak{m}}},$$

and hence, that $C_n \in \mathfrak{m}_x$ if and only if there is some $j \in \{0, \ldots, k\}$ such that

$$C_{n_j}(x_j) = \prod_{k=0}^{n_j-1} (x_j - u_k) \in \mathfrak{m}.$$

This last assertion means that $x_j \in \{u_0, \ldots, u_{n_j-1}\}$, that is, $x_j = u_{\nu(x,j)}$ with $\nu(x,j) < n_j$.

REMARK 3.3. The previous proposition could be used to prove that if $x \neq y$, then $\mathfrak{m}_x \neq \mathfrak{m}_y$: if $x \neq y$, there is some $j \geq 0$ such that $x_j \neq y_j$, and hence, such that $\nu(x, j) \neq \nu(y, j)$. Assume that $\nu(x, j) < \nu(y, j)$ and let $n = \nu(y, j)q^j$. Then $C_n \in \mathfrak{m}_x$ while $C_n \notin \mathfrak{m}_y$.

ROLLARY 3.4. Let

$$z = \frac{u_{q-1}}{1-t} = u_{q-1} + u_{q-1}t + \dots + u_{q-1}t^n + \dots$$

Then \mathfrak{m}_z is the unique maximal ideal of $\operatorname{Int}(V)$ lying over \mathfrak{m} which does not contain any polynomial C_n .

On the other hand, the ideal \mathfrak{m}_0 contains all the C_n for n > 0.

PROPOSITION 3.5. Let $x = \sum_{j\geq 0} x_j t^j \in \widehat{V}$ and, for each n > 0, let

$$y_n = \prod_{i=0}^{\left[\log n / \log q\right]} C_{n_i}(x_i) \in V.$$

Then:

Co

(1)
$$\{1, C_1(X) - y_1, \dots, C_n(X) - y_n, \dots\}$$
 is a basis of the V-module $Int(V)$.
(2) $\{t, C_1(X) - y_1, \dots, C_n(X) - y_n, \dots\}$ is a basis of the V-module \mathfrak{m}_x .

Proof. (1) $\{C_n - y_n\}$ is a basis of Int(V) because $deg(C_n - y_n) = deg(C_n) = n$ and, for $n \ge 1$, $C_n - y_n$ and C_n have the same leading coefficient.

(2) Let $f \in \mathfrak{m}_x$. It follows from (1) that $f = a_0 + \sum_{n \ge 1} a_n(C_n - y_n)$ with $a_n \in V$. By construction and the Lucas formula, $C_n - y_n \in \mathfrak{m}_x$. Consequently, $a_0 = f - \sum_{n \ge 1} a_n(C_n - y_n)$ belongs to $\mathfrak{m}_x \cap V = \mathfrak{m} = tV$.

PROPOSITION 3.6. For each $n \in \mathbb{N}$, the ideal \mathfrak{m}_{u_n} is generated by the polynomials

$$1 + (t-1)C_n$$
 and C_m for $m > n$

Proof. It follows from Proposition 3.2 that C_m belongs to \mathfrak{m}_{u_n} for every m > n. Moreover, $1 + (t-1)C_n$ also belongs to \mathfrak{m}_{u_n} since $C_n(u_n) = 1$. Conversely, let f be in \mathfrak{m}_{u_n} . Then $f(u_n) = tb$ with $b \in V$. We may find elements $a_m \in V$ such that the polynomial $g = \sum_{m=0}^n a_m C_m$ satisfies

 $g(u_m) = f(u_m)$ for $0 \le m < n$, and $g(u_n) = b$,

because the a_m 's may be computed recursively:

$$a_m = f(u_m) - \sum_{k=0}^{m-1} a_k C_k(u_m)$$
 for $0 \le m \le n$ and $a_n = b - \sum_{k=0}^{n-1} a_k C_k(u_n)$.

Now, consider the polynomial $h = f - g[1 + (t - 1)C_n]$. One has $h(u_m) = 0$ for $0 \le m \le n$. Consequently, $h = \sum_{m > n} b_m C_m$ for some $b_m \in V$. Thus,

$$f = g[1 + (t - 1)C_n] + \sum_{m > n} b_m C_m$$

that is, the polynomials $1 + (t-1)C_n$ and C_m , for m > n, generate \mathfrak{m}_{u_n} .

For instance,

$$t = [t - (t - 1)C_n][1 + (t - 1)C_n] + \sum_{m=n+1}^{2(n+1)} b_m C_m.$$

We may improve the previous proposition by noticing that, if $q^h \leq m < q^{h+1}$, then C_m is a multiple of C_{q^h} in Int(V).

We may also use the proposition to obtain generators of a maximal ideal \mathfrak{m}_x whatever $x \in \widehat{V}$: if x is not zero, then v(x) = h and we choose $u_1 = x/t^h$ (which may belong to \widehat{V} and not V). For such a choice, $x = u_n$ with $n = q^h$.

COROLLARY 3.7. Let x be a nonzero element of \widehat{V} , let v(x) = h, and assume that $u_1 = x/t^h$. Then the ideal \mathfrak{m}_x is generated by the polynomials

$$1 + (t-1)C_{q^h}$$
 and C_m for $m > q^h$.

Of course, we obtain the known results on the binomial coefficients and the binomial polynomials if we replace V by $\mathbb{Z}_{(p)}$ for some prime number p, t and q by p, u_n by n, and $C_n(X)$ by $\binom{X}{n} = X(X-1)\dots(X-n+1)/n!$.

REMARK 3.8. Note that there are other nonzero prime ideals of Int(V), those lying over the ideal (0) of V, that is, the ideals $\mathfrak{P}_g = gK[X] \cap Int(V)$ where g is a polynomial irreducible in K[X]. Moreover, the ideal \mathfrak{P}_g is maximal if and only if g has no root in \widehat{V} [1, Proposition V.2.5]. We may first notice that \mathfrak{P}_g contains some polynomial C_m if and only if $g = X - u_n$ for some n < m (and hence, \mathfrak{P}_g is not maximal).

Let us fix a nonnegative integer n. We easily see that:

(a) $\{1, C_1(X) - C_1(u_n), \dots, C_n(X) - C_n(u_n), C_{n+1}(X), \dots, C_m(X), \dots\}$ is a basis of the V-module Int(V),

(b) $\{C_1(X) - C_1(u_n), \dots, C_n(X) - C_n(u_n), C_{n+1}(X), \dots, C_m(X), \dots\}$ is a basis of the V-module \mathfrak{P}_{X-u_n} .

Moreover, in the same line as Proposition 3.6:

(c) The ideal \mathfrak{P}_{X-u_n} is generated by the polynomials $1 - C_n(X)$ and $C_m(X)$ for m > n (because, for each $f \in \mathfrak{P}_{X-u_n}$, the value of fC_n for $X = u_0, u_1, \ldots, u_n$ is 0).

References

- P.-J. Cahen and J.-L. Chabert, *Integer-Valued Polynomials*, Amer. Math. Soc. Surveys Monogr. 48, Providence, 1997.
- [2] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
- [3] J.-L. Chabert, Anneaux de "polynômes à valeurs entières" et anneaux de Fatou, Bull. Soc. Math. France 99 (1971), 273–283.
- [4] S. T. Chapman and W. W. Smith, Generators of maximal ideals in the ring of integer-valued polynomials, Rocky Mountain J. Math. 28 (1998), 95–105.
- [5] N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589–592.
- [6] G. Gerboud, Construction, sur un anneau de Dedekind, d'une base régulière de polynômes à valeurs entières, Manuscripta Math. 65 (1989), 167–179.
- [7] A. Granville, Arithmetic properties of binomial coefficients. I: Binomial coefficients modulo prime powers, in: CMS Conf. Proc. 20, Amer. Math. Soc., Providence, 1997, 253–276.
- [8] J. M. Holte, A Lucas-type theorem for fibonomial-coefficient residues, Fibonacci Quart. 32 (1994), 60–68.
- D. E. Knuth and H. S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math. 396 (1989), 212-219.
- [10] E. Lucas, *Théorie des nombres*, 1878; reprint, Librairie Blanchard, Paris, 1961.
- [11] K. Tateyama, Continuous functions on discrete valuation rings, J. Number Theory 75 (1999), 23-33.

LAMFA, UPRES-A 6119

Faculté de Mathématiques et d'Informatique Université de Picardie 33 rue Saint Leu 80039 Amiens, France E-mail: jacques-j.boulanger@wanadoo.fr jlchaber@worldnet.fr

312

Received on 8.7.1999