An extension of the Lucas theorem

by
Jacques Boulanger and Jean-Luc Chabert (Amiens)

1. Introduction. Recall Lucas' theorem [10, pp. 417-420] or [5] and [7]:

Proposition 1.1. Let p be a prime number and let

$$
\begin{array}{cl}
n=n_{0}+n_{1} p+n_{2} p^{2}+\ldots+n_{k} p^{k} & \text { with } 0 \leq n_{i}<p \\
x=x_{0}+x_{1} p+x_{2} p^{2}+\ldots+x_{k} p^{k} & \text { with } 0 \leq x_{j}<p
\end{array}
$$

Then

$$
\binom{x}{n} \equiv\binom{x_{0}}{n_{0}}\binom{x_{1}}{n_{1}} \ldots\binom{x_{k}}{n_{k}}(\bmod p)
$$

This formula has been generalized by several authors (see, for instance, [8] or [9]), but all these extensions concern ordinary integers. The aim of this paper is to extend the Lucas formula by replacing \mathbb{Z}, or more precisely $\mathbb{Z}_{(p)}$, by a discrete valuation domain V with finite residue field. Note that the prime number p appears twice: once as a generator of the maximal ideal $p \mathbb{Z}$, and secondly as the cardinality of the residue field $\mathbb{Z} / p \mathbb{Z}$. Thus, we will replace it either by a generator t of the maximal ideal \mathfrak{m} of V, or by the cardinality q of the residue field V / \mathfrak{m}. The integer q will then occur in the q-adic representation of the integers n, while the generator t will occur in the t-adic expansion of the elements x of V.

Now we have to replace the binomial coefficients by suitable expressions. To do this, we notice that the binomial coefficient $\binom{x}{n}$ is the value at x of the polynomial

$$
\binom{X}{n}=\frac{X(X-1) \ldots(X-n+1)}{n!}
$$

It is well known that these binomial polynomials form a basis of the \mathbb{Z}^{-} module

$$
\operatorname{Int}(\mathbb{Z})=\{f \in \mathbb{Q}[X] \mid f(\mathbb{Z}) \subseteq \mathbb{Z}\}
$$

2000 Mathematics Subject Classification: 13F20, 11B65.
of integer-valued polynomials on \mathbb{Z}. We are then led to consider the ring $\operatorname{Int}(V)$ of integer-valued polynomials on V, that is,

$$
\operatorname{Int}(V)=\{f \in K[X] \mid f(V) \subseteq V\}
$$

where K denotes the quotient field of V. We know how to construct a basis $C_{n}(X)$ of the V-module $\operatorname{Int}(V)$ [1, Chap. II, $\left.\S 2\right]$: we first construct a sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ of elements of V such that, for every s, any choice of q^{s} consecutive terms provides a complete set of residues of $V \bmod \mathfrak{m}^{s}$. Then, the following polynomials of Lagrangian type:

$$
C_{n}(X)=\prod_{k=0}^{n-1} \frac{X-u_{k}}{u_{n}-u_{k}}
$$

form a basis of the V-module $\operatorname{Int}(V)$. We are going to show that, for a proper choice of the sequence $\left\{u_{n}\right\}$, if

$$
n=\sum_{i=0}^{k} n_{i} q^{i} \quad \text { and } \quad x=\sum_{j \geq 0} x_{j} t^{j},
$$

then

$$
C_{n}(x) \equiv \prod_{i=0}^{k} C_{n_{i}}\left(x_{i}\right)(\bmod \mathfrak{m})
$$

This generalized formula will be established in the following section. Then, in the third section, analogously to Chapman and Smith's paper about $\operatorname{Int}(\mathbb{Z})$ [4], we will use the extended formula to describe some maximal ideals of the ring $\operatorname{Int}(V)$.

2. Extension of the Lucas theorem

Hypotheses and notations. Let V be a discrete valuation domain with finite residue field. Denote by K the quotient field of V, by v the corresponding valuation of K, by \mathfrak{m} the maximal ideal of V, and by q the cardinality of the residue field V / \mathfrak{m}. We denote by \widehat{K}, \widehat{V}, and $\widehat{\mathfrak{m}}$ the completions of K, V, and \mathfrak{m} with respect to the \mathfrak{m}-adic topology and we still denote by v the extension of v to \widehat{K}.

The construction. We choose a generator t of \mathfrak{m} and a set $U=\left\{u_{0}=\right.$ $\left.0, u_{1}, \ldots, u_{q-1}\right\}$ of representatives of V modulo \mathfrak{m}. It is well known that each element x of \hat{V} has a unique t-adic expansion (see, for instance, [2, Chap. II, §7])

$$
x=\sum_{j=0}^{\infty} x_{j} t^{j} \quad \text { with } x_{j} \in U \text { for each } j \in \mathbb{N} .
$$

We now construct a sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ of elements of V which will replace the sequence of nonnegative integers. Taking q as the basis of the numeration, that is, writing every positive integer n in the form $n=n_{0}+n_{1} q+n_{2} q^{2}+\ldots+n_{k} q^{k} \quad$ with $0 \leq n_{i}<q$ for each $i \in\{0, \ldots, k\}$, we extend the sequence $\left\{u_{j}\right\}_{0 \leq j<q}$ in the following way:

$$
u_{n}=u_{n_{0}}+u_{n_{1}} t+u_{n_{2}} t^{2}+\ldots+u_{n_{k}} t^{k} .
$$

We then replace the binomial polynomials

$$
\binom{X}{n}=\frac{X(X-1)(X-2) \ldots(X-n+1)}{n!}
$$

by the polynomials

$$
C_{n}(X)=\prod_{k=0}^{n-1} \frac{X-u_{k}}{u_{n}-u_{k}} \quad \text { with } C_{0}=1
$$

and we recall:
Proposition 2.1 ([1, Theorem II.2.7]). The polynomials $C_{n}(X)$ form a basis of the V-module $\operatorname{Int}(V)$.

ThEOREM 2.2 (generalized Lucas formula). If

$$
n=n_{0}+n_{1} q+\ldots+n_{k} q^{k}
$$

is the q-adic expansion of a positive integer n, and if

$$
x=x_{0}+x_{1} t+\ldots+x_{j} t^{j}+\ldots
$$

is the t-adic expansion of an element x of \widehat{V}, then

$$
C_{n}(x) \equiv C_{n_{0}}\left(x_{0}\right) C_{n_{1}}\left(x_{1}\right) \ldots C_{n_{k}}\left(x_{k}\right)(\bmod \widehat{\mathfrak{m}})
$$

We first note that the above theorem is equivalent to the following proposition:

Proposition 2.3. Let $n_{0} \in\{0,1, \ldots, q-1\}$ and $x_{0} \in\left\{u_{0}=0, u_{1}, \ldots\right.$ $\left.\ldots, u_{q-1}\right\}$. Then, for every $m \in \mathbb{N}$ and every $y \in \widehat{V}$,

$$
C_{n_{0}+q m}\left(x_{0}+t y\right) \equiv C_{n_{0}}\left(x_{0}\right) C_{m}(y)(\bmod \widehat{\mathfrak{m}})
$$

Proof of the equivalence. Theorem 2.2 obviously implies Proposition 2.3. Let us prove the converse implication. Let $n=n_{0}+n_{1} q+\ldots+n_{k} q^{k} \in \mathbb{N}$ and $x=x_{0}+x_{1} t+\ldots+x_{j} t^{j}+\ldots \in \widehat{V}$. Write $n=n_{0}+q m_{1}$ and $x=x_{0}+t y_{1}$. It follows from Proposition 2.3 that

$$
C_{n}(x) \equiv C_{n_{0}}\left(x_{0}\right) C_{m_{1}}\left(y_{1}\right)(\bmod \widehat{\mathfrak{m}})
$$

Now writing $m_{1}=n_{1}+q m_{2}$ and $y_{1}=x_{1}+t y_{2}$, analogously we have

$$
C_{m_{1}}\left(y_{1}\right) \equiv C_{n_{1}}\left(x_{1}\right) C_{m_{2}}\left(y_{2}\right)(\bmod \widehat{\mathfrak{m}})
$$

And so on, until we come to

$$
C_{m_{k-1}}\left(y_{k-1}\right) \equiv C_{n_{k-1}}\left(x_{k-1}\right) C_{n_{k}}\left(y_{k}\right)(\bmod \widehat{\mathfrak{m}})
$$

To conclude we just have to notice that

$$
n_{k}=n_{k}+q \cdot 0 \quad \text { and } \quad y_{k}=x_{k}+t y_{k+1}
$$

thus we have

$$
C_{n_{k}}\left(y_{k}\right) \equiv C_{n_{k}}\left(x_{k}\right) \cdot C_{0}\left(y_{k+1}\right)=C_{n_{k}}\left(x_{k}\right)(\bmod \widehat{\mathfrak{m}}) .
$$

Proof of Proposition 2.3. First note that our choice of the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ implies that, for each $h, k \in \mathbb{N}$ with $0 \leq k<q$, one has $u_{h q+k}=$ $u_{k}+t u_{h}$. By hypothesis, $n=n_{0}+q m$ where $0 \leq n_{0}<q$ and $x=x_{0}+t y$ where $x_{0}=u_{s}$ for some $s \in\{0, \ldots, q-1\}$. Hence, in particular, $u_{n}=u_{n_{0}}+t u_{m}$ and $u_{n}-u_{q m+l}=u_{n_{0}}-u_{l}$ for $0 \leq l<q$. Then

$$
C_{n}(x)=\prod_{k=0}^{n-1} \frac{x-u_{k}}{u_{n}-u_{k}}=\prod_{k=0}^{q m-1} \frac{x-u_{k}}{u_{n}-u_{k}} \cdot \prod_{l=0}^{n_{0}-1} \frac{x-u_{q m+l}}{u_{n}-u_{q m+l}}=A \cdot B
$$

The second factor B is equal to

$$
\prod_{l=0}^{n_{0}-1} \frac{x-u_{q m+l}}{u_{n_{0}}-u_{l}}
$$

and hence is congruent modulo $\widehat{\mathfrak{m}}$ to

$$
C_{n_{0}}\left(x_{0}\right)=\prod_{l=0}^{n_{0}-1} \frac{x_{0}-u_{l}}{u_{n_{0}}-u_{l}}
$$

because:

- the denominators of both fractions are equal and invertible,
- the numerators are congruent modulo $\widehat{\mathfrak{m}}$ since

$$
x-u_{q m+l}=x_{0}-u_{l}+t\left(y-u_{m}\right) .
$$

If we prove that

$$
A=\prod_{k=0}^{q m-1} \frac{x-u_{k}}{u_{n}-u_{k}} \equiv C_{m}(y)(\bmod \widehat{\mathfrak{m}})
$$

then in particular A and B belong to \widehat{V}, and hence, $A \cdot B \equiv C_{m}(y) \cdot C_{n_{0}}\left(x_{0}\right)$ $(\bmod \widehat{\mathfrak{m}})$. Writing

$$
A=\prod_{h=0}^{m-1} \prod_{k=0}^{q-1} \frac{x-u_{q h+k}}{u_{n}-u_{q h+k}}=\prod_{h=0}^{m-1} \prod_{k=0}^{q-1} \frac{\left(u_{s}+t y\right)-\left(u_{k}+t u_{h}\right)}{\left(u_{n_{0}}-u_{k}\right)+t\left(u_{m}-u_{h}\right)}
$$

we consider the k 's equal to s in the numerators and the k 's equal to n_{0} in the denominators:

$$
A=\prod_{h=0}^{m-1} \frac{y-u_{h}}{u_{m}-u_{h}} \cdot \prod_{h=0}^{m-1} \frac{\prod_{1 \leq k<q, k \neq s}\left[\left(u_{s}-u_{k}\right)+t\left(y-u_{h}\right)\right]}{\prod_{0 \leq k<q, k \neq n_{0}}\left[\left(u_{n_{0}}-u_{k}\right)+t\left(u_{m}-u_{h}\right)\right]}
$$

Write

$$
A=E \cdot \prod_{h=0}^{m-1} \frac{N_{h}}{D_{h}}
$$

The first factor E is exactly $C_{m}(y)$. Consequently, it suffices to prove that the second factor is congruent to 1 modulo $\widehat{\mathfrak{m}}$, and hence that all the quotients N_{h} / D_{h} are congruent to 1 modulo $\widehat{\mathfrak{m}}$. Of course,

$$
\begin{gathered}
N_{h}=\prod_{1 \leq k<q, k \neq s}\left[\left(u_{s}-u_{k}\right)+t\left(y-u_{h}\right)\right] \equiv \prod_{1 \leq k<q, k \neq s}\left(u_{s}-u_{k}\right)(\bmod \widehat{\mathfrak{m}}), \\
D_{h}=\prod_{0 \leq k<q, k \neq n_{0}}\left[\left(u_{n_{0}}-u_{k}\right)+t\left(u_{m}-u_{h}\right)\right] \equiv \prod_{1 \leq k<q, k \neq n_{0}}\left(u_{n_{0}}-u_{k}\right)(\bmod \widehat{\mathfrak{m}}),
\end{gathered}
$$ and the last terms are congruent to -1 modulo \mathfrak{m}. This ends the proof.

REmark 2.4. In the previous proof we have used the fact that $u_{0}=0$. We know that, whatever the choice of $u_{0} \in V$, the polynomials $C_{n}(X)$ form a basis of the V-module $\operatorname{Int}(V)$. Nevertheless, if the generalized Lucas formula holds, then necessarily $u_{0}=0$. Let us prove it. Assuming that $u_{0} \neq 0$, we may consider the element $x=u_{0} /(1-t)$ whose t-adic expansion is

$$
x=\frac{u_{0}}{1-t}=u_{0}+u_{0} t+u_{0} t^{2}+\ldots+u_{0} t^{n}+\ldots
$$

Let $h \in \mathbb{N} \backslash\{0\}$ be such that $v\left(t u_{0}\right) \geq h$. It follows from the Lucas formula that

$$
C_{q^{h}}\left(\frac{u_{0}}{1-t}\right) \equiv C_{0}\left(u_{0}\right)^{h} \cdot C_{1}\left(u_{0}\right)(\bmod \widehat{\mathfrak{m}})
$$

since $q^{h}=0 \cdot 1+0 \cdot q+\ldots+1 \cdot q^{h}$. Obviously, $C_{0}\left(u_{0}\right)=1$ and $C_{1}\left(u_{0}\right)=0$. Consequently, $v\left(C_{q^{h}}(x)\right)>0$. On the other hand, $v\left(x-u_{0}\right)=v\left(t u_{0}\right) \geq h$; it then follows from Lemma 2.5 below that

$$
v\left(C_{q^{h}}(x)\right)=v\left(x-u_{0}\right)-h .
$$

Thus, we have just proved that $v\left(t u_{0}\right) \geq h$ implies $v\left(t u_{0}\right)>h$. This is a contradiction with the assumption that $u_{0} \neq 0$.

Lemma 2.5 ([3, Lemme 2]). For every $h \in \mathbb{N}$ and every $x \in \widehat{V}$,

$$
v\left(C_{q^{h}}(x)\right)=-h+\sup _{0 \leq k<q^{h}} v\left(x-u_{k}\right)
$$

In particular, if $v\left(x-u_{k_{0}}\right) \geq h$ for some k_{0} such that $0 \leq k_{0}<q^{h}$, then

$$
v\left(C_{q^{h}}(x)\right)=v\left(x-u_{k_{0}}\right)-h .
$$

It is known [1, II.2.4] that the valuation of the denominator of $C_{n}(X)$ is

$$
v\left(\prod_{k=0}^{n-1}\left(u_{n}-u_{k}\right)\right)=w_{q}(n)=\sum_{k>0}\left[\frac{n}{q^{k}}\right]
$$

where $[z]$ denotes the integer part of z. Thus, if we replace the denominator of $C_{n}(X)$ by $(-t)^{-w_{q}(n)}$, we obtain another sequence of polynomials

$$
\Gamma_{n}(X)=(-t)^{-w_{q}(n)} \prod_{k=0}^{n-1}\left(X-u_{k}\right)
$$

which form a basis of the V-module $\operatorname{Int}(V)$ [1, II.2.10].
Proposition 2.6. The generalized Lucas formula holds for the polynomials $\Gamma_{n}(X)$, that is, if $n=\sum_{0 \leq i \leq k} n_{i} q^{i}$ and $x=\sum_{j \geq 0} x_{j} t^{j}$, then

$$
\Gamma_{n}(x) \equiv \Gamma_{n_{0}}\left(x_{0}\right) \Gamma_{n_{1}}\left(x_{1}\right) \ldots \Gamma_{n_{k}}\left(x_{k}\right)(\bmod \widehat{\mathfrak{m}})
$$

Proof. Of course, it suffices to prove that

$$
\Gamma_{n_{0}+q m}\left(x_{0}+t y\right) \equiv \Gamma_{n_{0}}\left(x_{0}\right) \Gamma_{m}(y)
$$

The proof of this last assertion is similar to that of Proposition 2.3. We first notice that $w_{q}(n)=m+w_{q}(m)$. Then $\Gamma_{n}(x)=A \cdot B$ where

$$
A=(-t)^{-w_{q}(n)} \prod_{k=0}^{q m-1}\left(x-u_{k}\right) \quad \text { and } \quad B=\prod_{l=0}^{n_{0}-1}\left(x-u_{q m+l}\right)
$$

Obviously,

$$
B \equiv \prod_{l=0}^{n_{0}-1}\left(x_{0}-u_{l}\right)=\Gamma_{n_{0}}\left(x_{0}\right)(\bmod \widehat{\mathfrak{m}})
$$

On the other hand,

$$
A=(-t)^{-w_{q}(n)} \prod_{h=0}^{m-1} \prod_{k=0}^{q-1}\left(x-u_{q h+k}\right)=(-t)^{-w_{q}(n)} \prod_{h=0}^{m-1} \prod_{k=0}^{q-1}\left[\left(x_{0}-u_{k}\right)+t\left(y-u_{h}\right)\right]
$$

Let $s \in\{0, \ldots, q-1\}$ be such that $x_{0}=u_{s}$. Then

$$
A=(-1)^{m} \cdot(-t)^{-w_{q}(m)} \prod_{h=0}^{m-1}\left(y-u_{h}\right) \cdot \prod_{h=0}^{m-1} \prod_{0 \leq k<q, k \neq s}\left[\left(x_{0}-u_{k}\right)+t\left(y-u_{h}\right)\right]
$$

The second factor is exacly $\Gamma_{m}(y)$, while the third is congruent to $(-1)^{m}$ modulo $\widehat{\mathfrak{m}}$.

Remark 2.4 still holds for the $\Gamma_{n}(X)$'s since $\Gamma_{0}(X)=1$ and $\Gamma_{1}\left(u_{0}\right)=$ 0 ; if the generalized Lucas formula holds for the polynomials $\Gamma_{n}(X)$, then necessarily $u_{0}=0$.

REmark 2.7. There is another classical basis of $\operatorname{Int}(V)$: the basis formed by the Fermat polynomials $F_{n}(X)$ (see [6], [1, §II.2], or [11]). Recall that

$$
F_{0}=1, \quad F_{1}=X, \quad F_{q}=\frac{X-X^{q}}{t}, \quad F_{q^{h+1}}=F_{q}\left(F_{q^{h}}\right)
$$

and

$$
F_{n}=\prod_{j=0}^{k}\left(F_{q^{j}}\right)^{n_{j}} \quad \text { for } n=n_{0}+n_{1} q+\ldots+n_{k} q^{k}
$$

We are going to see that the Lucas formula may hold for the first indices n, but cannot hold for every n, in particular for $n=q^{q}$.

Let $\zeta_{0}=0, \zeta_{1}, \ldots, \zeta_{q-1}$ be the roots of $X-X^{q}=0$ in \widehat{V} and assume that $u_{0}=0, u_{1}, \ldots, u_{q-1} \in V$ are such that $u_{i} \equiv \zeta_{i}\left(\bmod t^{2} \widehat{V}\right)$. It is then easy to prove that, for $n<q^{2}$,

$$
F_{n_{0}+n_{1} q}\left(\sum_{j} x_{j} t^{j}\right) \equiv x_{0}^{n_{0}} x_{1}^{n_{1}}(\bmod t \widehat{V})
$$

Before proving that the formula cannot hold for $n=q^{q}$, we may notice that there is some choice for F_{1}, \ldots, F_{q-1} : they just have to be polynomials in $V[X]$ which together with the polynomial 1 form a basis of the V-module of polynomials in $V[X]$ whose degree is $<q$. But, for $i=0,1, \ldots, q-1$, we have $F_{q}\left(u_{i} t\right) \equiv u_{i}(\bmod t V)$, and hence, if the Lucas formula holds, we have $F_{1}\left(u_{i}\right) \equiv u_{i}(\bmod t V)$, that is,

$$
F_{1}(X) \equiv X(\bmod t V[X])
$$

since $\operatorname{deg}\left(F_{1}\right)<q$.
Now, note that, if $v(x)>0$, then $v\left(F_{q}(x)\right)=v(x)-1$. Then

$$
F_{q}(t)=1-t^{q-1}, \quad F_{q^{2}}(t) \equiv-t^{q-2}\left(\bmod t^{q-1} V\right)
$$

consequently, $v\left(F_{q^{q}}(t)\right)=0$ even if $q=2$. But, the Lucas formula implies

$$
F_{q^{q}}(t) \equiv F_{1}(0) \equiv 0(\bmod t V)
$$

This is a contradiction.
The characterization of the bases of $\operatorname{Int}(V)$ for which the Lucas formula holds thus deserves to be studied.
3. Application to maximal ideals of $\operatorname{Int}(V)$. Recall the fiber of $\operatorname{Int}(V)$ over \mathfrak{m} :

Proposition 3.1 ([3, Théorème 1] or [1, V.2.3]). There is a one-to-one correspondence between the completion \widehat{V} of V and the set of prime ideals of $\operatorname{Int}(V)$ lying over \mathfrak{m} :

$$
x \in \widehat{V} \mapsto \mathfrak{m}_{x}=\{f \in \operatorname{Int}(V) \mid f(x) \in \widehat{\mathfrak{m}}\} \in \max (\operatorname{Int}(V))
$$

Following Chapman and Smith [4], we are going to consider the polynomials $C_{n}(X)$ which belong to these maximal ideals \mathfrak{m}_{x}.

Proposition 3.2. With the previous notation, let $n=n_{0}+n_{1} q+\ldots+$ $n_{k} q^{k}$ be a positive integer and $x=\sum_{j \geq 0} x_{j} t^{j} \in \widehat{V}$. Then C_{n} belongs to \mathfrak{m}_{x} if and only if there is some index j such that $x_{j}=u_{\nu(x, j)}$ with $\nu(x, j)<n_{j}$.

Proof. By definition, C_{n} belongs to \mathfrak{m}_{x} if and only if $C_{n}(x)$ belongs to $\widehat{\mathrm{m}}$. It follows from the Lucas formula that

$$
C_{n}(x) \equiv C_{n_{0}}\left(x_{0}\right) C_{n_{1}}\left(x_{1}\right) \ldots C_{n_{k}}\left(x_{k}\right)(\bmod \widehat{\mathfrak{m}}),
$$

and hence, that $C_{n} \in \mathfrak{m}_{x}$ if and only if there is some $j \in\{0, \ldots, k\}$ such that

$$
C_{n_{j}}\left(x_{j}\right)=\prod_{k=0}^{n_{j}-1}\left(x_{j}-u_{k}\right) \in \mathfrak{m} .
$$

This last assertion means that $x_{j} \in\left\{u_{0}, \ldots, u_{n_{j}-1}\right\}$, that is, $x_{j}=u_{\nu(x, j)}$ with $\nu(x, j)<n_{j}$.

Remark 3.3. The previous proposition could be used to prove that if $x \neq y$, then $\mathfrak{m}_{x} \neq \mathfrak{m}_{y}$: if $x \neq y$, there is some $j \geq 0$ such that $x_{j} \neq y_{j}$, and hence, such that $\nu(x, j) \neq \nu(y, j)$. Assume that $\nu(x, j)<\nu(y, j)$ and let $n=\nu(y, j) q^{j}$. Then $C_{n} \in \mathfrak{m}_{x}$ while $C_{n} \notin \mathfrak{m}_{y}$.

Corollary 3.4. Let

$$
z=\frac{u_{q-1}}{1-t}=u_{q-1}+u_{q-1} t+\ldots+u_{q-1} t^{n}+\ldots
$$

Then \mathfrak{m}_{z} is the unique maximal ideal of $\operatorname{Int}(V)$ lying over \mathfrak{m} which does not contain any polynomial C_{n}.

On the other hand, the ideal \mathfrak{m}_{0} contains all the C_{n} for $n>0$.
Proposition 3.5. Let $x=\sum_{j \geq 0} x_{j} t^{j} \in \widehat{V}$ and, for each $n>0$, let

$$
y_{n}=\prod_{i=0}^{[\log n / \log q]} C_{n_{i}}\left(x_{i}\right) \in V
$$

Then:
(1) $\left\{1, C_{1}(X)-y_{1}, \ldots, C_{n}(X)-y_{n}, \ldots\right\}$ is a basis of the V-module $\operatorname{Int}(V)$.
(2) $\left\{t, C_{1}(X)-y_{1}, \ldots, C_{n}(X)-y_{n}, \ldots\right\}$ is a basis of the V-module \mathfrak{m}_{x}.

Proof. (1) $\left\{C_{n}-y_{n}\right\}$ is a basis of $\operatorname{Int}(V)$ because $\operatorname{deg}\left(C_{n}-y_{n}\right)=$ $\operatorname{deg}\left(C_{n}\right)=n$ and, for $n \geq 1, C_{n}-y_{n}$ and C_{n} have the same leading coefficient.
(2) Let $f \in \mathfrak{m}_{x}$. It follows from (1) that $f=a_{0}+\sum_{n>1} a_{n}\left(C_{n}-y_{n}\right)$ with $a_{n} \in V$. By construction and the Lucas formula, $C_{n}-y_{n} \in \mathfrak{m}_{x}$. Consequently, $a_{0}=f-\sum_{n \geq 1} a_{n}\left(C_{n}-y_{n}\right)$ belongs to $\mathfrak{m}_{x} \cap V=\mathfrak{m}=t V$.

Proposition 3.6. For each $n \in \mathbb{N}$, the ideal $\mathfrak{m}_{u_{n}}$ is generated by the polynomials

$$
1+(t-1) C_{n} \quad \text { and } \quad C_{m} \text { for } m>n
$$

Proof. It follows from Proposition 3.2 that C_{m} belongs to $\mathfrak{m}_{u_{n}}$ for every $m>n$. Moreover, $1+(t-1) C_{n}$ also belongs to $\mathfrak{m}_{u_{n}}$ since $C_{n}\left(u_{n}\right)=1$. Conversely, let f be in $\mathfrak{m}_{u_{n}}$. Then $f\left(u_{n}\right)=t b$ with $b \in V$. We may find elements $a_{m} \in V$ such that the polynomial $g=\sum_{m=0}^{n} a_{m} C_{m}$ satisfies

$$
g\left(u_{m}\right)=f\left(u_{m}\right) \quad \text { for } 0 \leq m<n, \quad \text { and } \quad g\left(u_{n}\right)=b
$$

because the a_{m} 's may be computed recursively:
$a_{m}=f\left(u_{m}\right)-\sum_{k=0}^{m-1} a_{k} C_{k}\left(u_{m}\right) \quad$ for $0 \leq m \leq n \quad$ and $\quad a_{n}=b-\sum_{k=0}^{n-1} a_{k} C_{k}\left(u_{n}\right)$.
Now, consider the polynomial $h=f-g\left[1+(t-1) C_{n}\right]$. One has $h\left(u_{m}\right)=0$ for $0 \leq m \leq n$. Consequently, $h=\sum_{m>n} b_{m} C_{m}$ for some $b_{m} \in V$. Thus,

$$
f=g\left[1+(t-1) C_{n}\right]+\sum_{m>n} b_{m} C_{m}
$$

that is, the polynomials $1+(t-1) C_{n}$ and C_{m}, for $m>n$, generate $\mathfrak{m}_{u_{n}}$.
For instance,

$$
t=\left[t-(t-1) C_{n}\right]\left[1+(t-1) C_{n}\right]+\sum_{m=n+1}^{2(n+1)} b_{m} C_{m}
$$

We may improve the previous proposition by noticing that, if $q^{h} \leq m<$ q^{h+1}, then C_{m} is a multiple of $C_{q^{h}} \operatorname{in} \operatorname{Int}(V)$.

We may also use the proposition to obtain generators of a maximal ideal \mathfrak{m}_{x} whatever $x \in \widehat{V}$: if x is not zero, then $v(x)=h$ and we choose $u_{1}=x / t^{h}$ (which may belong to \widehat{V} and not V). For such a choice, $x=u_{n}$ with $n=q^{h}$.

Corollary 3.7. Let x be a nonzero element of \widehat{V}, let $v(x)=h$, and assume that $u_{1}=x / t^{h}$. Then the ideal \mathfrak{m}_{x} is generated by the polynomials

$$
1+(t-1) C_{q^{h}} \quad \text { and } \quad C_{m} \text { for } m>q^{h}
$$

Of course, we obtain the known results on the binomial coefficients and the binomial polynomials if we replace V by $\mathbb{Z}_{(p)}$ for some prime number p, t and q by p, u_{n} by n, and $C_{n}(X)$ by $\binom{X}{n}=X(X-1) \ldots(X-n+1) / n!$.

Remark 3.8. Note that there are other nonzero prime ideals of $\operatorname{Int}(V)$, those lying over the ideal (0) of V, that is, the ideals $\mathfrak{P}_{g}=g K[X] \cap \operatorname{Int}(V)$ where g is a polynomial irreducible in $K[X]$. Moreover, the ideal \mathfrak{P}_{g} is maximal if and only if g has no root in \widehat{V} [1, Proposition V.2.5]. We may
first notice that \mathfrak{P}_{g} contains some polynomial C_{m} if and only if $g=X-u_{n}$ for some $n<m$ (and hence, \mathfrak{P}_{g} is not maximal).

Let us fix a nonnegative integer n. We easily see that:
(a) $\left\{1, C_{1}(X)-C_{1}\left(u_{n}\right), \ldots, C_{n}(X)-C_{n}\left(u_{n}\right), C_{n+1}(X), \ldots, C_{m}(X), \ldots\right\}$ is a basis of the V-module $\operatorname{Int}(V)$,
(b) $\left\{C_{1}(X)-C_{1}\left(u_{n}\right), \ldots, C_{n}(X)-C_{n}\left(u_{n}\right), C_{n+1}(X), \ldots, C_{m}(X), \ldots\right\}$ is a basis of the V-module $\mathfrak{P}_{X-u_{n}}$.

Moreover, in the same line as Proposition 3.6:
(c) The ideal $\mathfrak{P}_{X-u_{n}}$ is generated by the polynomials $1-C_{n}(X)$ and $C_{m}(X)$ for $m>n$ (because, for each $f \in \mathfrak{P}_{X-u_{n}}$, the value of $f C_{n}$ for $X=u_{0}, u_{1}, \ldots, u_{n}$ is 0$)$.

References

[1] P.-J. Cahen and J.-L. Chabert, Integer-Valued Polynomials, Amer. Math. Soc. Surveys Monogr. 48, Providence, 1997.
[2] J. W. S. Cassels and A. Fröhlich, Algebraic Number Theory, Academic Press, London, 1967.
[3] J.-L. Chabert, Anneaux de "polynômes à valeurs entières" et anneaux de Fatou, Bull. Soc. Math. France 99 (1971), 273-283.
[4] S. T. Chapman and W. W. Smith, Generators of maximal ideals in the ring of integer-valued polynomials, Rocky Mountain J. Math. 28 (1998), 95-105.
[5] N. J. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589-592.
[6] G. Gerboud, Construction, sur un anneau de Dedekind, d'une base régulière de polynômes à valeurs entières, Manuscripta Math. 65 (1989), 167-179.
[7] A. Granville, Arithmetic properties of binomial coefficients. I: Binomial coefficients modulo prime powers, in: CMS Conf. Proc. 20, Amer. Math. Soc., Providence, 1997, 253-276.
[8] J. M. Holte, A Lucas-type theorem for fibonomial-coefficient residues, Fibonacci Quart. 32 (1994), 60-68.
[9] D. E. Knuth and H. S. Wilf, The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math. 396 (1989), 212-219.
[10] E. Lucas, Théorie des nombres, 1878; reprint, Librairie Blanchard, Paris, 1961.
[11] K. Tateyama, Continuous functions on discrete valuation rings, J. Number Theory 75 (1999), 23-33.

LAMFA, UPRES-A 6119
Faculté de Mathématiques et d'Informatique
Université de Picardie
33 rue Saint Leu
80039 Amiens, France
E-mail: jacques-j.boulanger@wanadoo.fr
jlchaber@worldnet.fr

