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1. Introduction. A long-standing conjecture of Gauss [11] is that there
are infinitely many real quadratic number fields with ideal class number 1
and empirical evidence suggests the much stronger statement that about
3/4 of all primes p give rise to a field Q(

√
p) with a class number of 1. This

observation, and many others, have been given a wonderful heuristic expla-
nation by Cohen and Lenstra [4]. Although computational data is abundant
[2, 3, 14, 17, 20], proofs are conspicuously absent.

In the function field case, where similar conjectures have been introduced
by Friedman and Washington [6] and refined by Yu [21], more is known.
Let Fq be the finite field of q elements, let T be an indeterminate and let
M ∈ Fq[T ] be a squarefree monic polynomial of even degree d. Write the
ideal class number of Fq(T,

√
M(T )) as hM . Although the expectations in

this setting are frequently stated in terms requiring the degree to increase
as q stays fixed we will be fixing the degree and letting q increase. Madan
[15] showed that there are infinitely many q such that there is an M ∈ Fq[T ]
with hM = 1 and d = 4 and Schmidt [19] proved that for sufficiently large
primes q there exists an M ∈ Fq[T ] with d = 6 and hM = 1.

Suppose we are interested in arbitrary odd class numbers h. Ichimura [13]
proved that there exist infinitely many primes q with quartics M ∈ Fq[T ]
such that hM = h. In a joint paper with van Wamelen [10] it was shown
that for all odd h and for all q (a power of a prime p ≥ 5) that are suf-
ficiently large there exist quartics M ∈ Fq[T ] such that hM = h. In the
same article it was shown that there are at least q7/2/(10 log log q) monic
irreducible quartics M ∈ Fq[T ] that satisfy hM = 1. This last result gives
a lower bound of about 0.4q−1/2(log log q)−1 for the probability that a ran-
domly chosen irreducible monic quartic M ∈ Fq[T ] has ideal class number 1.
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This is somewhat unsatisfying as this lower bound vanishes when q → ∞
whereas the empirical data [7] quite clearly indicates that we should expect
proportions close to 3/4. As one of our main results we prove here that,
when constrained to those monic quartics that have an irreducible cubic
factor, the proportion of M ∈ Fq[T ] with hM = 1 is between 70% and 84%.

Further motivation for looking at ideal class groups in this context comes
from the field of cryptography. Scheidler, Stein and Williams [18] have
proposed a key-exchange cryptosystem based on the continued fraction
expansion of an irrational quadratic in a real quadratic function field
Fq(T,

√
M(T )). The case where M has degree d = 4 was chosen as the one

that performed best in terms of empirically-measured speed vs. hypothesized
security. The security of this cryptosystem hinges on two main conjectures:
that the discrete logarithm problem is usually difficult and that the contin-
ued fraction expansion of Fq(T,

√
M(T )) is usually large (or, equivalently,

that the ideal class number is small). Showing, as we will, that the class
number is 1 more than 2/3 of the time means that the second assumption
above will not be of concern as one could repeatedly iterate the coding pro-
cess with enough different values of M to obtain arbitrarily small probability
that none of them have class number of 1. This leaves us with a probabil-
ity arbitrarily close to 1 that the code will not be broken due to a small
continued fraction expansion.

The question as to how often we should expect the ideal class number
to be divisible by a prime p is also of some interest. Restricting ourselves
once more to the function field case we have a result of Yu [21] where for a
fixed degree d the fraction of ideal class groups with a given p-Sylow group
tends towards some limit as q →∞, subject to the condition that p - q − 1.
Yu further shows that the limit (as d → ∞ with d even) of these limits
exists and is equal to that predicted by the Cohen–Lenstra heuristics! The
values of the individual limits, however, (say for d = 4, which is the case
of interest for this paper) remain unspecified. We shall shed light on some
of the behavior in the d = 4 case by determining upper and lower bounds
for P (hM ≡ 0 (mod p)) and P (hM = p) for odd primes p. We shall also
investigate how often the p-rank of the ideal class group is equal to 2.

2. Preliminaries. Let q be a prime, Fq be the finite field of q elements
and T be an indeterminate. For any squarefree monic quartic M ∈ Fq[T ] we
write the ideal class group of Fq(T,

√
M(T )) as ClM and the cardinality of

ClM , the ideal class number, as hM . Readers interested in an introduction
to quadratic function fields are directed to Emil Artin’s thesis [1] or to more
recent work of Hayes [12].

Define Sq to be the set of all monic quartics M ∈ Fq[T ] that are divisible
by an irreducible cubic in Fq[T ]. For the remainder of the paper we will
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restrict our attention solely to polynomials belonging in this set—a restric-
tion that is forced on us by the nature of some results that we pilfer from an
earlier paper. At times it will be useful to consider the subset S ′q, defined as
those elements of Sq with a zero coefficient for the cubic term (i.e. those of
the form M(T ) = T 4+aT 2+bT+c for some a, b, c ∈ Fq). For any N(T ) ∈ S′q
consider the translates of N , those M ∈ Sq of the form M(T ) = N(T + d)
where d ∈ Fq. Since Fq(T,

√
N(T )) and Fq(T,

√
M(T )) are isomorphic via

T 7→ T + d and
√
N(T ) 7→

√
M(T ) it follows that ClM ∼= ClN for any

translate M of N . Therefore any result concerning the proportions of ideal
class groups in S′q will automatically be true also of the ideal class groups
of Sq.

Suppose that M(x) is a monic squarefree quartic for which the Jacobian
of y2 = M(x) has odd cardinality. All points on this curve not of the form
(x, 0) can be paired up via (x, y)↔ (x,−y). This implies that there are an
odd number of points on the curve precisely when there are an odd num-
ber of solutions to M(x) = 0. For a squarefree quartic this is equivalent to
saying that M is the product of a linear polynomial and a cubic irreducible
polynomial; in other words the Jacobian of y2 = M(x) has odd cardinal-
ity if and only if M ∈ Sq. This will, as a consequence later on, restrict
our attention to those elliptic curves whose elliptic groups are also of odd
cardinality.

We shall be somewhat relaxed with our terminology and write, for in-
stance,

P (h ≡ 0 (mod p)) to mean
#{M ∈ Sq : hM ≡ 0 (mod p)}

#Sq
.

The number of monic irreducible cubics in Fq[T ] is given by (q3 − q)/3 and
there are q linear polynomials so #Sq = (q4 − q2)/3. Define Nq(A,B) as
the number of isomorphism classes of elliptic curves over Fq with E(Fq) ∼=
CA × CB.

Before submerging ourselves in the proof details it would, perhaps, be
appropriate to outline our approach. Suppose, for instance, that we wish to
bound P (h ≡ 0 (mod 3)). We would begin with the bounds for the Nq(A,B)
that were obtained in a prior paper [8] and sum over all A ≡ 0 (mod 3) to
obtain the number of desired isomorphism classes. Next we would deter-
mine the number of elliptic curves of the form E : y2 = x3 + Rx + S in
each isomorphism class. Then, for each such curve E, we would count the
number of Fq-rational points P such that the subgroup E(Fq)/〈P〉 satis-
fies the criteria for our ideal class groups (in this particular example we
would require that the subgroup has cardinality divisible by 3). We would
then see a 1-1 correspondence between such E,P pairs and M ∈ S ′q under
which ClM ∼= E(Fq)/〈P〉. It is precisely at this step that our decision to
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examine the set S′q forces us to consider only those elliptic groups where
#E(Fq) = AB is odd. We then multiply our count by q, accounting for
translations, to obtain the number of desired M ∈ Sq and finally divide
by the total number of M ∈ Sq to arrive at the proportion of M with the
desired class group structure.

Without further ado we introduce some necessary notation. We write
m |n to mean that m divides n and m ‖n to mean that m |n and (m,n/m) =
1. Also useful to us will be bxc which denotes the greatest integer less than
or equal to x. Cn shall be the cyclic group of order n and, for any set S,
we use #S for the cardinality of S. Let ordp(v) be the highest power of p
dividing v. For q ≥ 3 a prime and v and w odd positive integers with w | q−1
we define

σ(v) =
∏

p2|v
p|(q−1)/w

pbordp(v)/2c.

From a previous paper [8] we have the following:

Theorem. Let q > e100 be an odd prime. Let v and w be positive
odd integers such that w | q − 1. Define τ(x) as the number of positive
squarefree divisors of x and let φ() denote Euler’s totient function. De-
fine σ(v) as above. For any odd positive integers A and B with B |A de-
fine Nq(A,B) as the number of isomorphism classes of elliptic curves, E,
over Fq with E(Fq) ∼= CA × CB where Cn is the cyclic group of order n.
Then

(2.1)
∑

B≡0 (modw)
AB≡0 (mod vw2)

AB odd

Nq(A,B)

<
0.74q
φ(v)w3

( ∏

p‖v
p|(q−1)/w

p

p+ 1

)(
1 +

132w1.25τ(v)vσ(v)
q0.125

)
.

When, in addition, vw < q0.07 we also have

(2.2)
∑

B≡0 (modw)
AB≡0 (mod vw2)

AB odd

Nq(A,B)

>
0.58q
φ(v)w3

( ∏

p|v
p|(q−1)/w

p

p+ 1

)(
1− 132w1.25τ(v)v

q0.125

)
.
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Remark. If w - q − 1 then
∑

B≡0 (modw)
AB≡0 (mod vw2)

AB odd

Nq(A,B) = 0.

This is equivalent to the statement that if we have an elliptic curve with
E(Fq) ∼= CA × CB and B |A then we must also have B | q − 1.

We now wish to determine the number of elliptic curves of the form
E : y2 = x3 + Rx + S in each of these isomorphism classes. From earlier
comments we are only interested in non-singular elliptic curves with groups
of odd cardinality. Since the only points that are not paired up via (x, y)↔
(x,−y) are those with y = 0 or the point at infinity it follows that we must
have an even number of solutions to 0 = x3 +Rx+ S. This, in turn, means
that x3 +Rx+S is an irreducible cubic and as a consequence we must have
S 6= 0. If q 6≡ 1 (mod 3) then R must be non-zero if x3+Rx+S is irreducible.
Two elliptic curves, E1 and E2, of the form Ei : y2 = x3 + Rix + Si are
isomorphic if and only if R2 = a4R1 and S2 = a6S1 for some a ∈ F∗q . With
the exception of at most 4 isomorphism classes (characterized by R = 0
when q ≡ 1 (mod 3)) we have exactly (q− 1)/2 elliptic curves of the desired
form in each isomorphism class. The exceptional classes, when they occur,
have exactly (q − 1)/6 elliptic curves of the desired form.

It follows that, for any odd A and B, the number of elliptic curves of the
form E : y2 = x3 +Rx+ S with E(Fq) ∼= CA × CB is at least

(Nq(A,B)− 4)
q − 1

2
+ 4

q − 1
6

> (Nq(A,B)− 3)
q − 1

2
and at most

Nq(A,B)
q − 1

2
.

We paraphrase without proof an earlier result [9], Theorem 2.5, to obtain
the following theorem.

Theorem 2.3. Let Fq be the finite field with q elements and characteristic
6= 2, 3. There is a 1-1 correspondence between M ∈ S′q and pairs E,P of
non-singular elliptic curves E : w2 = v3 + Av + B with #E(Fq) odd and
with P a finite Fq-rational point on E. Under this correspondence the ideal
class group of Fq(T,

√
M(T )) is isomorphic to the coset E(Fq)/〈P〉 where

〈P〉 denotes the subgroup generated by P.

The above theorem is a consequence of a birational equivalence between
an elliptic curve, E, and a plane quartic model, y = M(x), for it. Under such
a correspondence the Jacobian of the quartic may be canonically identified
with the group E(Fq) and it is this correspondence that leads to the stated
result.
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Remark. Suppose that E(Fq) ∼= CA × CB with an odd prime p |A and
p -B. Then there exist AB/p elements g of CA × CB with p | (AB/#〈g〉).
Since one of these elements g is the identity, corresponding to the point at
infinity of E(Fq), there are exactly AB/p− 1 finite Fq-rational points P on
E that will have associated quartics in S′q with ideal class group divisible
by p.

The Weil bound gives #E(Fq) ∈ [(
√
q − 1)2, (

√
q + 1)2] (this standard

result can be found, for instance, in Eichler [5]) so the number of finite
Fq-rational points P for each curve E is in [q − 2

√
q, q + 2

√
q].

3. Bounds on ideal class group frequencies. The author has some
conjectures [7] for the degree 4 case which are in close, but not perfect,
agreement with those obtained by averaging the Cohen–Lenstra heuristics.
As a consequence, it is conjectured that for q 6≡ 1 (mod p) we should see
that

lim
q→∞

P (hM ≡ 0 (mod p)) =
1

p(p− 1)

with slightly different limits if we restrict our q to those satisfying q ≡ 1
(mod p). In the following theorem we prove upper and lower bounds that
differ from the above prediction by less than 20% (in relative terms).

Theorem 3.1. Let q > e100 be prime. Let p be an odd prime. Define Sq to
be the set of all monic quartics M ∈ Fq[T ] that are divisible by an irreducible
cubic in Fq[T ]. Let hM be the ideal class number of Fq(T,

√
M(T )) and write

P (p|h) as shorthand for #{M ∈ Sq : hM ≡ 0 (mod p)}/#Sq. Then

P (p|h) <
1.12

p(p− 1)
+

295
q0.125p

+
232

q0.125p1.75 .

If , in addition to the above hypotheses, we require that p < q0.03, then we
obtain the lower bounds

P (p|h) >
0.867
p(p− 1)

− 234
q0.125p

>
0.84

p(p− 1)
if p - q − 1,

P (p|h) >
0.867(p+ 1)

p3 − 234
q0.125p

− 150
q0.125p1.75 >

0.84(p+ 1)
p3 if p | q − 1.

P r o o f. If we wish the ideal class group of the quartic to be divisible by
p then p must divide the order of group of the associated elliptic curve. This
is only possible if p |A where E(Fq) ∼= CA × CB. We begin by considering
the case where p - q−1. Recalling formula (2.1) and setting v = p and w = 1
we obtain

∑

A≡0 (mod p)
A odd

Nq(A,B) =
∑

AB≡0 (mod p)
AB odd

Nq(A,B) < q

(
0.74
p− 1

+
196p

q0.125(p− 1)

)
.
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Now, each isomorphism class contains at most (q − 1)/2 elliptic curves
of the desired form and each such curve has a group of order less than
q + 2

√
q + 1. Since p - q − 1 it follows from the remark immediately after

(2.2) that p -B. The remark following Theorem 2.3 implies that, for each
such elliptic curve, just less than 1 in p of its Fq-rational points P will
result in a quartic with an ideal class number divisible by p. Therefore the
number of monic quartics M ∈ S′q that give rise to ideal class numbers of
Fq(T,

√
M(T )) that are divisible by p is bounded from above by

q

(
0.74
p− 1

+
196p

q0.125(p− 1)

)
q − 1

2
· q + 2

√
q + 1

p
< q3

(
0.37
p2 − p +

98
q0.125p

)
.

Let us now consider the other case, where p | q − 1. Again referring to
(2.1) with v = p and w = 1 we obtain the following bound for the number
of desired isomorphism classes:

∑

A≡0 (mod p)
A odd

Nq(A,B) < q

(
0.74p
p2 − 1

+
196p2

q0.125(p2 − 1)

)
.

Some of isomorphism classes above will have a p-rank of 2. We determine an
upper bound for these via (2.1) once again, this time with v = 1 and w = p.
The number of isomorphism classes with a p-rank of 2 is then bounded from
above by

∑

A≡0 (mod p)
B≡0 (mod p)
AB odd

Nq(A,B) =
∑

B≡0 (mod p)
AB≡0 (mod p2)

AB odd

Nq(A,B) < q

(
0.74
p3 +

98
q0.125p1.75

)
.

If an elliptic curve E has a p-rank of 2 then p |#(E(Fq)/〈P〉) for all P.
It follows that every Fq-rational point P of E gives rise to a quartic M with
p |hM . So, we shall count, with weight 1/p, all the elliptic curves with p-rank
at least 1 and then count, with weight 1 − 1/p, those with p-rank of 2 and
thus avoid doubly counting the same contribution. We obtain the following
upper bound for the number of monic quartics M ∈ S ′q that give rise to an
ideal class group divisible by p:

q3
(

0.37
p2 − 1

+
98p

q0.125(p2 − 1)
+
(

1− 1
p

)(
0.37
p3 +

49
q0.125p1.75

))

< q3
(

0.37
(

1
p2 − 1

+
p− 1
p4

)
+

98p
q0.125(p2 − 1)

+
49(p− 1)
q0.125p2.75

)

< q3
(

0.37
p(p− 1)

+
98

q0.125p
+

77
q0.125p1.75

)
.
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As this bound is larger (with the presence of the third term) than the
bound in the case where p - q − 1 we conclude that, no matter what the
congruence of q is modulo p, we have an upper bound for the number of
monic quartics M ∈ S′q having an ideal class number of Fq(T,

√
M(T ))

divisible by p of

q3
(

1.12
p(p− 1)

+
295

q0.125p
+

232
q0.125p1.75

)
.

From our previous remark concerning Sq and S′q we may multiply these
results for S′q by q to obtain the desired upper bounds for the set Sq.

We begin our proof of the lower bounds by first treating the case p - q−1.
From (2.2), with v = p and w = 1 we have

∑

A≡0 (mod p)
A odd

Nq(A,B) =
∑

AB≡0 (mod p)
AB odd

Nq(A,B) > q

(
0.58
p− 1

− 154w1.25p

q0.125(p− 1)

)
.

We see that there are at least

q

(
0.58
p− 1

− 154w1.25p

q0.125(p− 1)
− 3
q

)
q − 1

2

elliptic curves of the desired form with p |A each of which has at least
q − 2

√
q + 1 points P on it. Since p - q − 1 the p-Sylow subgroup is cyclic

and therefore there are #E/p− 1 points P on the curve that are associated
with a quartic M such that hM ≡ 0 (mod p). It follows that the number of
M ∈ S′q with p |hM must be at least

q3
(

0.289
p(p− 1)

− 78
q0.125p

)

from which we can easily obtain the stated lower bounds for the case where
p - q − 1.

The case p | q− 1 is more complicated. If the p-rank of the elliptic group
is 1 then we proceed as before. If E(Fq) ∼= CA × CB with p |B then every
associated monic will have an ideal class group divisible by p.

From (2.2), with v = p and w = 1 we have
∑

A≡0 (mod p)
A odd

Nq(A,B) > q

(
0.58p
p2 − 1

− 154p2

q0.125(p2 − 1)

)
.

If all of the elliptic curves in the isomorphism classes counted above
had a p-rank of 1 then we would proceed as before, with the comment that
the number of M in S′q related to each such curve must be #E(Fq)/p − 1.
However, since we are in the case where p | q − 1, some of the isomorphism
classes will have elliptic curves with a p-rank of 2 and for these curves every
one of the associated M ∈ S′q will satisfy hM ≡ 0 (mod p). To determine the
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additional contribution from these we find a lower bound for the number of
isomorphism classes with a p-rank of 2 by setting v = 1 and w = p in (2.2)
to obtain ∑

B≡0 (mod p)
AB≡0 (mod p2)

AB odd

Nq(A,B) > q

(
0.58
p3 −

77p1.25

q0.125p3

)
.

Combining the contributions from the elliptic curves of p-rank 1 with
those of p-rank 2, being careful not to count the same curves twice, gives us
the following lower bound for the number of M ∈ S ′q with p |hM :

#{M ∈ S′q : hM ≡ 0 (mod p)}

>
q(q − 1)

2

(
0.58p
p2 − 1

− 154p2

q0.125(p2 − 1)

)
q − 2

√
q + 1− p
p

+
q(q − 1)

2

(
0.58(p− 1)

p4 − 77p1.25(p− 1)
q0.125p4

)
(q − 2

√
q)

> q3
(

0.289(p+ 1)
p3 − 78

q0.125p
− 50
q0.125p1.75

)
.

Multiplying the above result by q converts it to the number of M ∈ Sq
with p |hM . Finally, since #Sq < q4/3, if we further divide by q4/3 we will
immediately obtain the lower bound for P (h ≡ 0 (mod p)) in the case where
p | q − 1, concluding our proof.

Lemma 3.2. Let q > e100 be prime. Let p and r be distinct odd primes.
Define Sq to be the set of all monic quartics M ∈ Fq[T ] that are divisi-
ble by an irreducible cubic in Fq[T ]. Let hM be the ideal class number of
Fq(T,

√
M(T )) and write P (pr|h) as shorthand for #{M ∈ Sq : hM ≡ 0

(mod pr)}/#Sq. Then, for M ∈ Sq,

P (pr|h) <
1.12

(p2 − p)(r2 − r) +
597

q0.125(p− 1)(r − 1)
.

P r o o f. If we wish the ideal class group of the quartic to be divisible by
pr then pr must divide the order of the group of the associated elliptic curve.
We treat separately the 4 cases depending on the value of gcd(pr, q−1) and
begin by considering the case where gcd(pr, q − 1) = 1. Recalling the result
of (2.1) and setting v = pr and w = 1 we obtain

∑

AB≡0 (mod pr)
AB odd

Nq(A,B) <
0.74q

(p− 1)(r − 1)

(
1 +

528pr
q0.125

)
.

Now, each isomorphism class contains at most (q − 1)/2 elliptic curves
of the desired form and each such curve has a group of order less than
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q + 2
√
q + 1. Since p - q − 1 and r - q − 1 it follows that p -B and r -B and

we have #E(Fq)/(pr)− 1 points P such that the quartic M associated with
(E,P) satisfies hM ≡ 0 (mod pr). Therefore the number of monic quartics
M ∈ S′q with pr |hM is bounded from above by

q
0.74

(p− 1)(r − 1)

(
1 +

528pr
q0.125

)
q − 1

2
· q + 2

√
q + 1

pr

< q3 0.37
pr(p− 1)(r − 1)

(
1 +

528pr
q0.125

)
.

Dividing this by #S′q gives, for the case where gcd(pr, q − 1) = 1,

P (pr|h) <
1.12

(p2 − p)(r2 − r) +
587

q0.125(p− 1)(r − 1)
.

The next cases to be considered are when exactly one of p and r divides
q−1. We shall treat the case where gcd(pr, q−1) = p and use the symmetry
of the situation to obtain the other result as well. We shall see that there are
two main differences between this case and the situation where gcd(pr, q−1)
= 1. They are the presence of the factor p/(p+ 1) that shows up in the
determination of the number of isomorphism classes and the fact that some
of the elliptic curves will now have a p-rank of 2.

Referring to (2.1) once again we obtain the bound below for the number
of isomorphism classes of desired form:

∑

AB≡0 (mod pr)
AB odd

Nq(A,B) <
0.74qp

(p2 − 1)(r − 1)

(
1 +

528pr
q0.125

)
.

Some of the isomorphism classes above will have a p-rank of 2. We determine
an upper bound for these via (2.1) once again, this time with v = r and
w = p. The number of isomorphism classes with a p-rank of 2 and divisible
by r is bounded from above by

∑

B≡0 (mod p)
AB≡0 (mod p2r)

AB odd

Nq(A,B) <
0.74q

(r − 1)p3

(
1 +

264p1.25r

q0.125

)
.

All of the Fq-rational points P on the elliptic curves E with p-rank of 2
give rise to quartics with associated ideal class number divisible by p and
fewer than #E(Fq)/r of these give class numbers that are also divisible
by r. To avoid counting the same curve twice we add to the amount from
the curves with p-rank ≥ 1 a correction equal to (p − 1)/p of the total we
obtain from the p-rank 2 curves. We obtain the following upper bound, when
gcd(pr, q − 1) = p, for the number of monic quartics M ∈ S ′q such that hM
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is divisible by pr:

q3
(

0.37
(p2 − 1)(r2 − r)

(
1 +

528pr
q0.125

)
+

0.37(p− 1)
(r2 − r)p4

(
1 +

264p1.25r

q0.125

))

< q3
(

0.37
(
p4 + p3 − p2 − p+ 1
p4(p2 − 1)(r2 − r)

)

+
196pr

q0.125(p2 − 1)(r2 − r) +
98(p− 1)p1.25r

q0.125(r2 − r)p4

)

< q3
(

0.37
(p2 − p)(r2 − r) +

198
q0.125(p− 1)(r − 1)

)

where we have used basic calculus to see that
196p
p2 − 1

+
98(p− 1)
p2.75 <

198
p− 1

.

Since the bound we have obtained above is symmetric with respect to
p and r it follows that the same upper bound (for the number of monic
quartics M ∈ S′q such that hM is divisible by pr) holds for the case where
p - q − 1 and r | q − 1.

The final case remaining is the case where gcd(pr, q− 1) = pr. We begin
by determining an upper bound for the number of isomorphism classes whose
groups are divisible by pr and obtain

∑

AB≡0 (mod pr)
AB odd

Nq(A,B) <
0.74qpr

(p2 − 1)(r2 − 1)

(
1 +

528pr
q0.125

)
.

We now need to determine the maximum number of isomorphism classes
where the p-rank is 2, where the r-rank is 2 and where they are both equal
to 2 and sum their contributions making particular note of the fact that if
both p- and r-ranks of an elliptic curve are 2 then all associated values of
M ∈ S′q have pr |h. We obtain, for the number of monic quartics M ∈ S ′q
such that hM is divisible by pr, the following upper bound:

0.37q3

(p2 − 1)(r2 − 1)

(
1 +

528pr
q0.125

)
+
p− 1
pr
· 0.37q3

(r − 1)p3 ·
r

r + 1

(
1 +

264p1.25r

q0.125

)

+
r − 1
pr
· 0.37q3

(p− 1)r3 ·
p

p+ 1

(
1+

264r1.25p

q0.125

)
+

0.37q3

p3r3

(
1+

132p1.25r1.25

q0.125

)

< 0.37q3
(

1
(p2 − 1)(r2 − 1)

+
p− 1

(r2 − 1)p4 +
r − 1

(p2 − 1)r4 +
1

p3r3

)

+
49q3

q0.125

(
4pr

(p2 − 1)(r2 − 1)
+

2p1.25r(p− 1)
(r2 − 1)p4
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+
2r1.25p(r − 1)

(p2 − 1)r4 +
p1.25r1.25

p3r3

)

< q3
(

0.37
(p2 − p)(r2 − r) +

199
q0.125(p− 1)(r − 1)

)
.

Note that, in all 4 cases, the number of desired monics M ∈ S ′q is less
than

q3
(

0.37
(p2 − p)(r2 − r) +

199
q0.125(p− 1)(r − 1)

)

and that, once we divide this by (q3− q)/3 we can obtain the desired upper
bound for the proportion of M ∈ S′q such that pr |h. This proportion is
necessarily the same when we consider M ∈ Sq as well.

Theorem 3.3. Let q > e100 be prime. Let p < q0.03 be an odd prime.
Define Sq to be the set of all monic quartics M ∈ Fq[T ] that are divisi-
ble by an irreducible cubic in Fq[T ]. Let hM be the ideal class number of
Fq(T,

√
M(T )) and write P (h = p) as shorthand for #{M ∈ Sq : hM =

p}/#Sq. Then, if p - q − 1,

1
p2 − p

(
0.56− 0.236p

q0.03 +
1.12

p2(p− 1)

)
< P (h = p) <

1.121
p(p− 1)

and , if p | q − 1,

1
p2 − p

(
0.559− 0.263p

q0.03 −
0.867
p2 +

1.12
p3(p− 1)

)
< P (h = p) <

1.121
p(p− 1)

.

P r o o f. The trivial inequality P (h = p) ≤ P (h ≡ 0 (mod p)) together
with Theorem 3.1 and the remark that

295
q0.125p

+
232

q0.125p1.75 < 0.0005

serves to prove the upper bounds. The lower bounds, however, will require
some effort. Let us begin with the case p - q − 1. It is clear that

P (h = p) ≥ P (h ≡ 0 (mod p))− P (h ≡ 0 (mod p2))−
∑

odd prime r 6=p
P (pr|h).

The first term on the right has a lower bound of 0.867
p(p−1) − 234

q0.125p given
by Theorem 3.1. The final summation can be bounded using Lemma 3.2 as
follows:

∑

odd prime r 6=p
r<q

P (pr|h) <
1.12
p2 − p

∑

r<q

1
r2 − r +

597
q0.125(p− 1)

∑

r<q

(
1
r

+
1

r2 − r

)

where the summation is understood to be over all odd primes r < q with
the exception of r = p. It is a straightforward matter, by summing a



Frequencies of class groups 325

finite number of terms and then using integrals to bound the remainder,
to arrive at ∑

odd prime r

1
r2 − r < 0.2733.

In addition we may use a result from a paper of Rosser and Schoenfeld [16],
(3.20), to see that

N∑

odd prime r

1
r
< log logN.

These inequalities permit the following simplification:
∑

odd prime r 6=p
r<q

P (pr|h)

<
0.307
p2 − p −

1.12
p2(p− 1)2 +

164 + 597 log log q
q0.125(p− 1)

− 597
q0.125(p− 1)2 .

Next we wish to determine an upper bound for P (p2|h). Since p - q − 1
it follows that σ(p2) = 1. Making use of this in (2.1) with v = p2 and w = 1
gives us

∑

A≡0 (mod p2)
A odd

Nq(A,B) <
0.74q
p2 − p

(
1 +

264p2

q0.125

)
.

Since p - q−1 all of the elliptic curves in the isomorphism classes above have
cyclic p-Sylow groups and it follows that for each such curve fewer than
#E(Fq)/p2 of the points on the curve will be associated with an M ∈ S ′q
with hM ≡ 0 (mod p2). We conclude that

P (p2|h) <
1.12

p4 − p3 +
294

q0.125(p2 − p) .

Combining our pieces shows that

P (h = p) >
0.867
p2 − p −

234
q0.125p

− 1.12
p4 − p3 −

294
q0.125(p2 − p) −

0.307
p2 − p(3.4)

+
1.12

p2(p− 1)2 −
164 + 597 log log q
q0.125(p− 1)

+
597

q0.125(p− 1)2 ,

which we simplify to get

P (h = p) >
1

p2 − p

(
0.56− p(597 log log q + 398)

q0.125 +
1.12

p2(p− 1)

)
.

Since (597 log log q + 398)/q0.095 < 0.236 for q > e100 we see that we may
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replace the above bound with

1
p2 − p

(
0.56− 0.236p

q0.03 +
1.12

p2(p− 1)

)

as was required.
We next treat the case p | q − 1. Referring to Theorem 3.1 we see that

P (h ≡ 0 (mod p)) >
0.867(p+ 1)

p3 − 234
q0.125p

− 150
q0.125p1.75 .

All that remains is the determination of P (p2|h). It is in this calculation
where the complication due to a p-rank of 2 rears its ugly head. As before,
we subtract off an amount due to the case where the elliptic curve has a
p-Sylow group that is cyclic and of order at least p2. But we also need to
discuss the situation where the p-Sylow group has a p-rank of 2.

If E(Fq) ∼= Cpn with n ≥ 2 or if E(Fq) ∼= Cp×Cp then fewer than #E/p2

of the points P on E will be associated with an M ∈ S such that p2 |hM . If
E(Fq) ∼= Cpm × Cp with m ≥ 2 then less than #E/p of the points P on E
will be associated with an M ∈ S such that p2 |hM . If E(Fq) ∼= Cpm × Cpn
with m ≥ n ≥ 2 then all of the finite points P on E will be associated with
an M ∈ S such that p2 |hM . We shall use (2.1) three times, once each with
(v, w) = (p2, 1), (p, p) and (1, p2). Both of the latter two cases are subsets
of the preceding cases and we shall correct our results against overcounting.
We obtain

P (p2|h) <
1.12

p4 − p3

(
1 +

264p3

q0.125

)
+

1.12
p5

(
1 +

264p1.25p

q0.125

)

+
1.12(p− 1)

p7

(
1 +

132p2.5

q0.125

)

<
1

p2 − p

(
1.12(p+ 1)

p3 +
296p
q0.125 + 0.0006

)
,

since
296p0.25

q0.125p
+

148p0.5

q0.125p2 < 0.0006.

Combining our many pieces for the p | q − 1 case, noting that the bound
for P (pr|h) is the same as we used previously, shows that

P (h = p) >
1

p2 − p

(
0.867(p2 − 1)

p2 − 234(p− 1)
q0.125 − 150(p− 1)

q0.125p0.75

)
(3.5)

− 1
p2 − p

(
0.307− 1.12

p(p− 1)
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+
(164 + 597 log log q)p

q0.125 − 597p
q0.125(p− 1)

)

− 1
p2 − p

(
1.12(p+ 1)

p3 +
296p
q0.125 + 0.0006

)
,

which gives us

P (h = p) >
1

p2 − p

(
0.559− 0.263p

q0.03 −
0.867
p2 +

1.12
p3(p− 1)

)

as
597 log log q + 694 + 150p−0.75

q0.095 < 0.263.

This concludes our proof.

Corollary 3.6. Let q > e100 be prime. Let S be the set of all monic
quartics M = T 4 + aT 2 + bT + c ∈ Fq[T ] (for some a, b, c ∈ Fq) that are
divisible by some irreducible cubic in Fq[T ] and that have no cubic term.
Let hM be the ideal class number of Fq(T,

√
M(T )) and write P (h = p) as

shorthand for #{M ∈ Sq : hM = p}/#Sq. Then

9.78% < P (h = 3) < 18.7% if 3 - q − 1,

2.56% < P (h = 5) < 5.61% if 5 - q − 1,

1.14% < P (h = 7) < 2.67% if 7 - q − 1,

0.39% < P (h = 11) < 1.02% if 11 - q − 1,

8.09% < P (h = 3) < 18.7% if 3 | q − 1,

2.48% < P (h = 5) < 5.61% if 5 | q − 1,

1.07% < P (h = 7) < 2.67% if 7 | q − 1,

0.37% < P (h = 11) < 1.02% if 11 | q − 1.

P r o o f. These statements follow immediately from (3.4) and (3.5).

In the number field situation one expects (see the heuristics of Cohen
and Lenstra [4]) that the ideal class number of Q(

√
p) is 1 for about 75.4%

of all primes p. The function field case in which we find ourselves is some-
what different and it is worth mentioning that computational results [7]
suggest very strongly that there is no limit for P (h = 1) as q →∞. Rather,
what is observed is that the probability depends crucially on the primes
dividing q−1. What we do expect, however, is that, no matter what the
divisibility of q− 1, if q is sufficiently large (q > 10000 should suffice) then
74.5%<P (h = 1) < 76.5%. In the following theorem we prove bounds that
are considerably looser.

Theorem 3.7. Let q > e100 be prime. Define Sq to be the set of all monic
quartics M ∈ Fq[T ] that are divisible by an irreducible cubic in Fq[T ]. Let
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hM be the ideal class number of Fq(T,
√
M(T )) and write P (h = 1) as

shorthand for #{M ∈ Sq : hM = 1}/#Sq. Then

70% < P (h = 1) < 84%.

P r o o f. From Theorem 3.1 the number of monic quartics M ∈ Sq that
have the ideal class number of Fq(T,

√
M(T )) divisible by some p is bounded

from above by
∑

p odd prime

q4
(

0.371
p(p− 1)

+
99

q0.125p
+

78
q0.125p1.75

)
.

We recall from the proof of Theorem 3.3 that

∑

p odd prime

1
p2 − p < 0.2733 and

N∑

p odd prime

1
p
< log logN

and easily obtain, as well,
∑

p odd prime

1
p1.75 < 0.31.

Combining these results, for q > e100, gives the number of quartics M ∈ Sq
that have some prime dividing the ideal class number as being bounded from
above by 0.1032q4. But this quantity counts M more than once whenever
hM is divisible by more than one prime. We shall attempt a small correction
of this by subtracting out the number of M with hM divisible by pr. To do
this we will require lower bounds for P (pr|h) where p and r are distinct odd
primes. From (2.2) we have, when pr < q0.07,

∑

AB≡0 (mod pr)
AB odd

Nq(A,B) >
0.58qpr

(p2 − 1)(r2 − 1)

(
1− 528pr

q0.125

)
.

Since every elliptic group in the isomorphism classes above has at least
#E(Fq)/(pr)−1 values of associated M ∈ S′q with hM ≡ 0 (mod pr) we can
obtain the following lower bound:

0.289q3

(p2 − 1)(r2 − 1)
− 154prq3

q0.125(p2 − 1)(r2 − 1)

for the number of M ∈ S′q with hM ≡ 0 (mod pr). A short computation,
summing over all products pr < 500 of distinct odd primes p and r, gives us
a lower bound of 0.0037q4 for the number of M ∈ Sq whose class numbers
are divisible by at least 2 distinct primes. Subtracting this from our earlier
result shows that there are at most 0.0995q4 values of M ∈ Sq whose ideal
class number is divisible by some prime. Since #Sq = (q4 − q2)/3 it follows
that at least 70% of the M ∈ Sq must satisfy hM = 1.
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To obtain the upper bound we use Theorem 3.1 and Corollary 3.6 to see
that

P (h = 1) < 1− P (h ≡ 0 (mod 3))− P (h = 5)− P (h = 7),

P (h = 1) < 1− 0.128− 0.0248− 0.0107 < 0.84,

as required.

Previously mentioned conjectures [7] lead to the prediction that we
should expect

lim
q→∞

q≡1 (mod p)

P (p-rank = 2) =
1

p3(p2 − 1)
.

Our final theorem proves bounds which create an interval approximately
centered on the expected result.

Theorem 3.8. Let q > e100 be prime. Let p < q0.03 be an odd prime.
Define Sq to be the set of all monic quartics M ∈ Fq[T ] that are divisible
by an irreducible cubic in Fq[T ]. Let rp(M) be the p-rank of the ideal class
group of Fq(T,

√
M(T )) and write P (rp = 2) as shorthand for #{M ∈ Sq :

rp(M) = 2}/#Sq. Then P (rp = 2) = 0 if p - q − 1 and if p | q − 1 we have

0.85/p5 < P (rp = 2) < 1.14/p5.

P r o o f. If p - q − 1 then we will refer to the remark following (2.2) to-
gether with Theorem 2.3 to conclude that a p-rank of 2 is impossible here.
Substituting w = p and v = 1 into (2.1) and (2.2) gives us the following
bounds:

∑

B≡0 (mod p)
AB≡0 (mod p2)

AB odd

Nq(A,B) <
0.74q
p3 +

98p1.25

q0.125p3 <
0.74q
p3 +

98
q0.0875p3 <

0.756q
p3

and
∑

B≡0 (mod p)
AB≡0 (mod p2)

AB odd

Nq(A,B) >
0.58q
p3 − 77p1.25

q0.125p3 >
0.567q
p3 .

To translate the above bounds into the quartic case we will use Theorem
2.3 and we must determine, for an arbitrary abelian group G of p-rank 2,
how many elements g ∈ G are such that the G/〈g〉 is non-cyclic. If we write
G = {aibj : i, j ∈ Z} where a and b are independent and generate G, then
it is easy to see that G/〈g〉 is non-cyclic precisely when g = apxbpy for some
integers x and y. It then follows immediately from Theorem 2.3 and previous
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comments that

#{M ∈ Sq : rp(M) = 2} < q
0.756q
p3 · q − 1

2

(
q + 2

√
q + 1

p2 − 1
)
<

0.378q4

p5 ,

#{M ∈ Sq : rp(M) = 2} > q

(
0.557q
p3 − 3

)
q − 1

2

(
q − 2

√
q + 1

p2 − 1
)

>
0.2834q4

p5

from which we also obtain

0.85q/p5 < P (rp = 2) < 1.14q/p5.

It is worth noting that when p is very small in comparison to q the above
results can be sharpened slightly. For example, when p = 3 and q > e100

with 3 | q− 1 then we can show that the probability that the 3-rank is 2 (for
the ideal class group of Fq(T,

√
M(T )) with M ∈ Sq) is between 0.86/35

and 1.12/35.
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