Magic p-dimensional cubes

by
Marián Trenkler (Košice)

A magic p-dimensional cube of order n is a p-dimensional matrix

$$
\mathbf{M}_{n}^{p}=\left|\mathbf{m}\left(i_{1}, \ldots, i_{p}\right): 1 \leq i_{1}, \ldots, i_{p} \leq n\right|
$$

containing natural numbers $1, \ldots, n^{p}$ such that the sum of the numbers along every row and every diagonal is the same.

By a row of \mathbf{M}_{n}^{p} we mean an n-tuple of elements $\mathbf{m}\left(i_{1}, \ldots, i_{p}\right)$ which have identical coordinates at $p-1$ places. A diagonal of \mathbf{M}_{n}^{p} is an n-tuple $\left\{\mathbf{m}\left(x, i_{2}, \ldots, i_{p}\right): x=1, \ldots, n, i_{j}=x\right.$ or $i_{j}=2^{p}+1-x$ for all $\left.2 \leq j \leq p\right\}$. A magic p-dimensional cube \mathbf{M}_{n}^{p} has $p n^{p-1}$ rows and 2^{p-1} diagonals. The symbol $\lfloor x\rfloor$ denotes the integer part of x. A magic 1-dimensional cube \mathbf{M}_{n}^{1} of order n is given by an arbitrary permutation of integers $1, \ldots, n$. Evidently, a magic p-dimensional cube of order 2 for $p \geq 2$ does not exist.

In [5] there is a construction of \mathbf{M}_{n}^{3} for every $n \neq 2$ and in [6] it is proved that a magic p-dimensional cube \mathbf{M}_{n}^{p} of order n exists for every integer p and $n \not \equiv 2(\bmod 4)$. (The reader can find more information in $[2,3,5,6]$.) These results are improved in

Theorem. A magic p-dimensional cube \mathbf{M}_{n}^{p} of order n exists if and only if $p \geq 2$ and $n \neq 2$ or $p=1$.

Before we begin the proof, we demonstrate a construction of a magic square \mathbf{M}_{6}^{2}. The construction starts from four copies of a Latin square $\mathbf{U}=$ $\left|\mathbf{u}\left(i_{1}, i_{2}\right): 1 \leq i_{1}, i_{2} \leq 3\right|$ of order 3 defined by the relation $\mathbf{u}\left(i_{1}, i_{2}\right) \equiv\left(i_{1}-i_{2}\right)$ $(\bmod 3)$. We insert these squares into a 6×6 table, so that Latin squares are symmetric about the lines going through the centres of two opposite sides. All elements of Latin squares are replaced by $0,1,2,3$ as shown in Figure A. On the left hand side in every cell there is an element of the Latin square, and its substitution on the right hand side.

[^0]

Fig. A

$27+6$	7	$9+2$	$27+2$	$9+7$	$9+6$
$9+1$	$27+5$	9	$9+9$	$9+5$	$27+1$
8	$9+3$	$27+4$	$9+4$	$27+3$	$9+8$
$27+8$	3	$18+4$	4	$18+3$	$18+8$
1	$18+5$	$27+9$	$18+9$	5	$18+1$
$18+6$	$27+7$	2	$18+2$	$18+7$	6

Fig. B

By multiplying all elements by 9 and adding elements of four copies of a magic square \mathbf{M}_{3}^{2} we obtain the magic square \mathbf{M}_{6}^{2} of order 6 which is shown in Figure B.

Proof of the Theorem. For $n \not \equiv 2(\bmod 4)$ the proof is in [6]. That paper gives the construction of \mathbf{M}_{n}^{p} for $n \equiv 1(\bmod 2)$ or $n \equiv 0(\bmod 4)$ and $p \geq 2$.

Let $n \equiv 2(\bmod 4), n \neq 2$ and $p \geq 2$ be two fixed natural numbers and let $m=n / 2$. The construction of \mathbf{M}_{n}^{p} is described in 6 steps.

1. Let $\mathbf{D}=\left|\mathbf{d}(j, x): 1 \leq j \leq m, 1 \leq x \leq 2^{p}\right|$ be a matrix defined by the following relations:

$$
\begin{aligned}
& \mathbf{d}(1, x)=2^{p-1} \cdot 2^{x(\bmod 2)}-\left\lfloor\frac{x+1}{2}\right\rfloor \\
& \mathbf{d}(2, x)=2^{p-1} \cdot 2^{(x+1) \bmod 2)}-\left\lfloor\frac{x+1}{2}\right\rfloor \\
& \mathbf{d}(3, x)=x+(-1)^{x}\left\lfloor\frac{x-1}{2^{p-1}}\right\rfloor[(p+1)(\bmod 2)] \\
& \mathbf{d}(j, x)= \begin{cases}x-1, & j=4,6,8, \ldots, m-1 \\
2^{p}-x, & j=5,7,9, \ldots, m\end{cases}
\end{aligned}
$$

This definition yields the following facts which are crucial in our construction:
(a) for every $1 \leq x \leq 2^{p}$,

$$
\sum_{j=1}^{m} \mathbf{d}(j, x)=\frac{n}{4}\left(2^{p}-1\right)-\frac{1}{2}+\left[x+\left\lfloor\frac{x-1}{2^{p-1}}\right\rfloor(p+1)\right](\bmod 2)
$$

(b) $\left\{\mathbf{d}(j, 1), \ldots, \mathbf{d}\left(j, 2^{p}\right)\right\}=\left\{1, \ldots, 2^{p}\right\}$ for all $1 \leq j \leq m$,
(c) $\mathbf{d}(1, x)+\mathbf{d}\left(1,2^{p}-x+1\right)=m-1$ for all $1 \leq x \leq 2^{p-1}$ (this is important only for $p \equiv 0(\bmod 2)$).
2. Let σ be a permutation of the set $\left\{1, \ldots, 2^{p}\right\}$ which satisfies:
(i) if the number of ones in the binary representation of the number $k-1$ is even (odd) then $\sigma(k)$ is an even (odd) number for every $k=1, \ldots, 2^{p-1}$,
(ii) if $k \leq 2^{p-1}$ then $\sigma(k) \leq 2^{p-1}$,
(iii) if $2^{p-1}<k \leq 2^{p}$ then $\sigma(k)=2^{p}-\sigma\left(2^{p}-k+1\right)$.
3. Let $\mathbf{U}=\left|\mathbf{u}\left(i_{1}, \ldots, i_{p}\right): 1 \leq i_{1}, \ldots, i_{p} \leq m\right|$ be a p-dimensional matrix defined by

$$
\mathbf{u}\left(i_{1}, \ldots, i_{p}\right)=\left(\sum_{x=1}^{p}(-1)^{x+1} i_{x}\right)(\bmod m)
$$

Every row of \mathbf{U} is the set $\{0,1, \ldots, m-1\}$. If $p \equiv 1(\bmod 2)$ then the diagonal $\{\mathbf{u}(i, \ldots, i): i=1, \ldots, m\}$ of \mathbf{U} is the set $\{0,1, \ldots, m-1\}$. If $p \equiv 0$ $(\bmod 2)$ then it is $\{0,0, \ldots, 0\}$.
4. Let $\mathbf{V}_{(k)}=\left|\mathbf{v}_{(k)}\left(i_{1}, \ldots, i_{p}\right): 1 \leq i_{1}, \ldots, i_{p} \leq m\right|, 1 \leq k \leq 2^{p}$, be p-dimensional matrices defined by

$$
\text { if } \quad \mathbf{u}\left(i_{1}, \ldots, i_{p}\right)=q \quad \text { then } \quad \mathbf{v}_{(k)}\left(i_{1}, \ldots, i_{p}\right)=\mathbf{d}(q, \sigma(k))
$$

5. Let $\mathbf{M}_{(k)}=\left|\mathbf{m}_{(k)}\left(i_{1}, \ldots, i_{p}\right): 1 \leq i_{1}, \ldots, i_{p} \leq m\right|, 1 \leq k \leq 2^{p}$, be p-dimensional matrices defined by

$$
\mathbf{m}_{(k)}\left(i_{1}, \ldots, i_{p}\right)=\mathbf{v}_{(k)}\left(i_{1}, \ldots, i_{p}\right) m^{p}+\mathbf{m}\left(i_{1}, \ldots, i_{p}\right)
$$

where $\mathbf{m}\left(i_{1}, \ldots, i_{p}\right)$ is the element of \mathbf{M}_{m}^{p} which is constructed in [6].
Because $\mathbf{v}_{(j)}\left(i_{1}, \ldots, i_{p}\right) \neq \mathbf{v}_{(k)}\left(i_{1}, \ldots, i_{p}\right)$ for all $j \neq k$ and from the previous relation it follows that:
(a) no two elements $\mathbf{m}_{(k)}\left(i_{1}, \ldots, i_{p}\right)$ with different coordinates or indices are equal,
(b) the row sum of $\mathbf{M}_{(k)}$ for fixed k is the same, i.e.

$$
\left[\frac{m}{2}\left(2^{p}-1\right)+\frac{(-1)^{\omega}}{2}\right] m^{p}+\frac{m\left(m^{p}+1\right)}{2}, \quad \text { where } \omega=1 \text { or } 2
$$

(c) if $p \equiv 1(\bmod 2)$ then $\sum_{i=1}^{m} \mathbf{m}_{(k)}(i, \ldots, i)$ is equal to the row sum of $\mathbf{M}_{(k)}$, if $p \equiv 0(\bmod 2)$ then

$$
\sum_{i=1}^{m} \mathbf{m}_{(k)}(i, \ldots, i)=\mathbf{d}(1, \sigma(k)) m^{p+1}+m\left(m^{p}+1\right) / 2
$$

6. We define a magic p-dimensional cube $\mathbf{M}_{n}^{p}=\mid \mathbf{m}\left(i_{1}, \ldots, i_{p}\right): 1 \leq$ $i_{1}, \ldots, i_{p} \leq n \mid$ of order $n \equiv 2(\bmod 4)$ by

$$
\mathbf{m}\left(i_{1}, \ldots, i_{p}\right)=\mathbf{m}_{(k)}\left(i_{1}^{*}, \ldots, i_{p}^{*}\right)
$$

where $i_{j}^{*}=\min \left\{i_{j}, n+1-i_{j}\right\}$ and $k=\sum_{x=1}^{p}\left\lfloor\frac{i_{x}-1}{m}\right\rfloor 2^{x-1}+1$.
From the definition of \mathbf{M}_{n}^{p} we get:
(a) every row of \mathbf{M}_{n}^{p} consists of one row of $\mathbf{M}_{(j)}$ and one row of $\mathbf{M}_{(k)}$ which have different row sums,
(b) every diagonal of \mathbf{M}_{n}^{p} consists of $\mathbf{m}_{(k)}(i, \ldots, i), \mathbf{m}_{\left(2^{p}+1-k\right)}(i, \ldots, i)$, $i=1, \ldots, m$. If $p \equiv 1(\bmod 2)$ then $\mathbf{M}_{(k)}$ and $\mathbf{M}_{\left(2^{p}-k+1\right)}$ have different row sums. If $p \equiv 0(\bmod 2)$ then the row sums of $\mathbf{M}_{(k)}$ and $\mathbf{M}_{\left(2^{p}-k+1\right)}$ are the same.

It is easy to see that \mathbf{M}_{n}^{p}, which is a union of 2^{p} matrices $\mathbf{M}_{(k)}$, satisfies the conditions for a magic p-dimensional cube.

Remark 1. Magic squares have fascinated people for centuries. Mathematicians have studied many properties of magic squares and formulated problems which have not been solved. (See [1].) We can formulate similar problems for magic cubes, too.

Remark 2. Another "magic" p-dimensional cube was studied by J. Ivančo. In [4] it is proved that if $4 \leq p \equiv 0(\bmod 2)$ then the edges of a p dimensional cube can be labelled by integers $1,2, \ldots, 2^{p-1} p$ in such a way that the sum of the labels of edges incident to each vertex is the same.

References

[1] G. A be, Unsolved problems on magic squares, Discrete Math. 127 (1994), 3-13.
[2] A. Adler, Magic N-cubes form a free matroid, Electron. J. Combin. 4 (1997), 147160.
[3] W. S. Andrews, Magic Squares and Cubes, Dover, New York, 1960.
[4] J. Ivančo, On supermagic regular graphs, Math. Bohem. 125 (2000), 99-114.
[5] M. Trenkler, A construction of magic cubes, Math. Gazette 84 (2000), 36-41.
[6] -, Magic p-dimensional cubes of order $n \not \equiv 2(\bmod 4)$, Acta Arith. 92 (2000), 189194.

Šafárik University
Jesenná 5
04154 Košice, Slovakia
E-mail: trenkler@duro.science.upjs.sk

[^0]: 2000 Mathematics Subject Classification: 11A99, 15A99, 05B15.

