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Magic p-dimensional cubes
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A magic p-dimensional cube of order n is a p-dimensional matrix

Mp
n = |m(i1, . . . , ip) : 1 ≤ i1, . . . , ip ≤ n|,

containing natural numbers 1, . . . , np such that the sum of the numbers
along every row and every diagonal is the same.

By a row of Mp
n we mean an n-tuple of elements m(i1, . . . , ip) which

have identical coordinates at p − 1 places. A diagonal of Mp
n is an n-tuple

{m(x, i2, . . . , ip) : x = 1, . . . , n, ij = x or ij = 2p + 1− x for all 2 ≤ j ≤ p}.
A magic p-dimensional cube Mp

n has pnp−1 rows and 2p−1 diagonals. The
symbol bxc denotes the integer part of x. A magic 1-dimensional cube M1

n of
order n is given by an arbitrary permutation of integers 1, . . . , n. Evidently,
a magic p-dimensional cube of order 2 for p ≥ 2 does not exist.

In [5] there is a construction of M3
n for every n 6= 2 and in [6] it is proved

that a magic p-dimensional cube Mp
n of order n exists for every integer p

and n 6≡ 2 (mod 4). (The reader can find more information in [2, 3, 5, 6].)
These results are improved in

Theorem. A magic p-dimensional cube Mp
n of order n exists if and only

if p ≥ 2 and n 6= 2 or p = 1.

Before we begin the proof, we demonstrate a construction of a magic
square M2

6. The construction starts from four copies of a Latin square U =
|u(i1, i2) : 1 ≤ i1, i2 ≤ 3| of order 3 defined by the relation u(i1, i2) ≡ (i1−i2)
(mod 3). We insert these squares into a 6×6 table, so that Latin squares are
symmetric about the lines going through the centres of two opposite sides.
All elements of Latin squares are replaced by 0, 1, 2, 3 as shown in Figure A.
On the left hand side in every cell there is an element of the Latin square,
and its substitution on the right hand side.
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0→ 3 2→ 0 1→ 1 1→ 3 2→ 1 0→ 1
1→ 1 0→ 3 2→ 0 2→ 1 0→ 1 1→ 3
2→ 0 1→ 1 0→ 3 0→ 1 1→ 3 2→ 1
2→ 3 1→ 0 0→ 2 0→ 0 1→ 2 2→ 2
1→ 0 0→ 2 2→ 3 2→ 2 0→ 0 1→ 2
0→ 2 2→ 3 1→ 0 1→ 2 2→ 2 0→ 0

Fig. A

27 + 6 7 9 + 2 27 + 2 9 + 7 9 + 6
9 + 1 27 + 5 9 9 + 9 9 + 5 27 + 1

8 9 + 3 27 + 4 9 + 4 27 + 3 9 + 8
27 + 8 3 18 + 4 4 18 + 3 18 + 8

1 18 + 5 27 + 9 18 + 9 5 18 + 1
18 + 6 27 + 7 2 18 + 2 18 + 7 6

Fig. B

By multiplying all elements by 9 and adding elements of four copies of a
magic square M2

3 we obtain the magic square M2
6 of order 6 which is shown

in Figure B.

Proof of the Theorem. For n 6≡ 2 (mod 4) the proof is in [6]. That paper
gives the construction of Mp

n for n ≡ 1 (mod 2) or n ≡ 0 (mod 4) and p ≥ 2.
Let n ≡ 2 (mod 4), n 6= 2 and p ≥ 2 be two fixed natural numbers and

let m = n/2. The construction of Mp
n is described in 6 steps.

1. Let D = |d(j, x) : 1 ≤ j ≤ m, 1 ≤ x ≤ 2p| be a matrix defined by the
following relations:

d(1, x) = 2p−1 · 2x (mod 2) −
⌊
x+ 1

2

⌋
,

d(2, x) = 2p−1 · 2(x+1) mod 2) −
⌊
x+ 1

2

⌋
,

d(3, x) = x+ (−1)x
⌊
x− 1
2p−1

⌋
[(p+ 1) (mod 2)],

d(j, x) =
{
x− 1, j = 4, 6, 8, . . . ,m− 1,
2p − x, j = 5, 7, 9, . . . ,m.

This definition yields the following facts which are crucial in our construc-
tion:

(a) for every 1 ≤ x ≤ 2p,
m∑

j=1

d(j, x) =
n

4
(2p − 1)− 1

2
+
[
x+

⌊
x− 1
2p−1

⌋
(p+ 1)

]
(mod 2),

(b) {d(j, 1), . . . ,d(j, 2p)} = {1, . . . , 2p} for all 1 ≤ j ≤ m,
(c) d(1, x) + d(1, 2p − x + 1) = m − 1 for all 1 ≤ x ≤ 2p−1 (this is

important only for p ≡ 0 (mod 2)).

2. Let σ be a permutation of the set {1, . . . , 2p} which satisfies:

(i) if the number of ones in the binary representation of the number k−1
is even (odd) then σ(k) is an even (odd) number for every k = 1, . . . , 2p−1,

(ii) if k ≤ 2p−1 then σ(k) ≤ 2p−1,
(iii) if 2p−1 < k ≤ 2p then σ(k) = 2p − σ(2p − k + 1).
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3. Let U = |u(i1, . . . , ip) : 1 ≤ i1, . . . , ip ≤ m| be a p-dimensional matrix
defined by

u(i1, . . . , ip) =
( p∑

x=1

(−1)x+1ix

)
(modm).

Every row of U is the set {0, 1, . . . ,m − 1}. If p ≡ 1 (mod 2) then the
diagonal {u(i, . . . , i) : i = 1, . . . ,m} of U is the set {0, 1, . . . ,m−1}. If p ≡ 0
(mod 2) then it is {0, 0, . . . , 0}.

4. Let V(k) = |v(k)(i1, . . . , ip) : 1 ≤ i1, . . . , ip ≤ m|, 1 ≤ k ≤ 2p, be
p-dimensional matrices defined by

if u(i1, . . . , ip) = q then v(k)(i1, . . . , ip) = d(q, σ(k)).

5. Let M(k) = |m(k)(i1, . . . , ip) : 1 ≤ i1, . . . , ip ≤ m|, 1 ≤ k ≤ 2p, be
p-dimensional matrices defined by

m(k)(i1, . . . , ip) = v(k)(i1, . . . , ip)m
p + m(i1, . . . , ip),

where m(i1, . . . , ip) is the element of Mp
m which is constructed in [6].

Because v(j)(i1, . . . , ip) 6= v(k)(i1, . . . , ip) for all j 6= k and from the
previous relation it follows that:

(a) no two elements m(k)(i1, . . . , ip) with different coordinates or indices
are equal,

(b) the row sum of M(k) for fixed k is the same, i.e.
[
m

2
(2p − 1) +

(−1)ω

2

]
mp +

m(mp + 1)
2

, where ω = 1 or 2,

(c) if p ≡ 1 (mod 2) then
∑m
i=1 m(k)(i, . . . , i) is equal to the row sum of

M(k), if p ≡ 0 (mod 2) then
m∑

i=1

m(k)(i, . . . , i) = d(1, σ(k))mp+1 +m(mp + 1)/2.

6. We define a magic p-dimensional cube Mp
n = |m(i1, . . . , ip) : 1 ≤

i1, . . . , ip ≤ n| of order n ≡ 2 (mod 4) by

m(i1, . . . , ip) = m(k)(i
∗
1, . . . , i

∗
p),

where i∗j = min{ij , n+ 1− ij} and k =
∑p
x=1b ix−1

m c2x−1 + 1.
From the definition of Mp

n we get:

(a) every row of Mp
n consists of one row of M(j) and one row of M(k)

which have different row sums,
(b) every diagonal of Mp

n consists of m(k)(i, . . . , i), m(2p+1−k)(i, . . . , i),
i = 1, . . . ,m. If p ≡ 1 (mod 2) then M(k) and M(2p−k+1) have different row
sums. If p ≡ 0 (mod 2) then the row sums of M(k) and M(2p−k+1) are the
same.
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It is easy to see that Mp
n, which is a union of 2p matrices M(k), satisfies

the conditions for a magic p-dimensional cube.

Remark 1. Magic squares have fascinated people for centuries. Math-
ematicians have studied many properties of magic squares and formulated
problems which have not been solved. (See [1].) We can formulate similar
problems for magic cubes, too.

Remark 2. Another “magic” p-dimensional cube was studied by J. Ivan-
čo. In [4] it is proved that if 4 ≤ p ≡ 0 (mod 2) then the edges of a p-
dimensional cube can be labelled by integers 1, 2, . . . , 2p−1p in such a way
that the sum of the labels of edges incident to each vertex is the same.
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