Magic p-dimensional cubes

by

MARIÁN TRENKLER (Košice)

A magic p-dimensional cube of order n is a p-dimensional matrix

$$M^p_n = |m(i_1, \ldots, i_p) : 1 \leq i_1, \ldots, i_p \leq n|,$$

containing natural numbers $1, \ldots, n^p$ such that the sum of the numbers along every row and every diagonal is the same.

By a row of M^p_n we mean an n-tuple of elements $m(i_1, \ldots, i_p)$ which have identical coordinates at $p - 1$ places. A diagonal of M^p_n is an n-tuple

$\{m(x, i_2, \ldots, i_p) : x = 1, \ldots, n, i_j = x \text{ or } i_j = 2p + 1 - x \text{ for all } 2 \leq j \leq p\}$.

A magic p-dimensional cube M^p_n has $pn^p - 1$ rows and $2p - 1$ diagonals. The symbol $[x]$ denotes the integer part of x. A magic 1-dimensional cube M^1_n of order n is given by an arbitrary permutation of integers $1, \ldots, n$. Evidently, a magic p-dimensional cube of order 2 for $p \geq 2$ does not exist.

In [5] there is a construction of M^3_2 for every $n \neq 2$ and in [6] it is proved that a magic p-dimensional cube M^p_n of order n exists for every integer p and $n \neq 2 \text{ (mod 4)}$. (The reader can find more information in [2, 3, 5, 6].) These results are improved in

THEOREM. A magic p-dimensional cube M^p_n of order n exists if and only if $p \geq 2$ and $n \neq 2$ or $p = 1$.

Before we begin the proof, we demonstrate a construction of a magic square M^2_6. The construction starts from four copies of a Latin square $U = |u(i_1, i_2) : 1 \leq i_1, i_2 \leq 3|$ of order 3 defined by the relation $u(i_1, i_2) \equiv (i_1 - i_2) \pmod{3}$. We insert these squares into a 6×6 table, so that Latin squares are symmetric about the lines going through the centres of two opposite sides. All elements of Latin squares are replaced by 0, 1, 2, 3 as shown in Figure A. On the left hand side in every cell there is an element of the Latin square, and its substitution on the right hand side.

2000 Mathematics Subject Classification: 11A99, 15A99, 05B15.
By multiplying all elements by 9 and adding elements of four copies of a magic square M_3^2 we obtain the magic square M_6^2 of order 6 which is shown in Figure B.

Proof of the Theorem. For $n \not\equiv 2 \pmod{4}$ the proof is in [6]. That paper gives the construction of M_n^p for $n \equiv 1 \pmod{2}$ or $n \equiv 0 \pmod{4}$ and $p \geq 2$.

Let $n \equiv 2 \pmod{4}$, $n \not\equiv 2$ and $p \geq 2$ be two fixed natural numbers and let $m = n/2$. The construction of M_n^p is described in 6 steps.

1. Let $D = |d(j, x) : 1 \leq j \leq m, 1 \leq x \leq 2^p|$ be a matrix defined by the following relations:

\[
d(1, x) = 2^{p-1} \cdot 2^{x \pmod{2}} - \left\lfloor \frac{x+1}{2} \right\rfloor,
\]

\[
d(2, x) = 2^{p-1} \cdot 2^{(x+1) \pmod{2}} - \left\lfloor \frac{x+1}{2} \right\rfloor,
\]

\[
d(3, x) = x + (-1)^x \left\lfloor \frac{x-1}{2^p-1} \right\rfloor [(p+1) \pmod{2}],
\]

\[
d(j, x) = \begin{cases} x-1, & j = 4, 6, 8, \ldots, m-1, \\ 2^p - x, & j = 5, 7, 9, \ldots, m. \end{cases}
\]

This definition yields the following facts which are crucial in our construction:

(a) for every $1 \leq x \leq 2^p$,

\[
\sum_{j=1}^{m} d(j, x) = \frac{n}{4}(2^p - 1) - \frac{1}{2} + \left\lfloor x + \frac{x-1}{2^p-1} \right\rfloor (p+1) \pmod{2},
\]

(b) $\{d(j, 1), \ldots, d(j, 2^p)\} = \{1, \ldots, 2^p\}$ for all $1 \leq j \leq m$,

(c) $d(1, x) + d(1, 2^p - x + 1) = m - 1$ for all $1 \leq x \leq 2^{p-1}$ (this is important only for $p \equiv 0 \pmod{2}$).

2. Let σ be a permutation of the set $\{1, \ldots, 2^p\}$ which satisfies:

(i) if the number of ones in the binary representation of the number $k-1$ is even (odd) then $\sigma(k)$ is an even (odd) number for every $k = 1, \ldots, 2^{p-1}$,

(ii) if $k \leq 2^{p-1}$ then $\sigma(k) \leq 2^{p-1}$,

(iii) if $2^{p-1} < k \leq 2^p$ then $\sigma(k) = 2^p - \sigma(2^p - k + 1)$.
3. Let \(U = |u(i_1, \ldots, i_p): 1 \leq i_1, \ldots, i_p \leq m| \) be a \(p \)-dimensional matrix defined by

\[
u(i_1, \ldots, i_p) = \left(\sum_{x=1}^{p} (-1)^{x+1} i_x \right) \pmod{m}.
\]

Every row of \(U \) is the set \{0, 1, \ldots, m-1\}. If \(p \equiv 1 \pmod{2} \) then the diagonal \(\{u(i, \ldots, i): i = 1, \ldots, m\} \) of \(U \) is the set \{0, 1, \ldots, m-1\}. If \(p \equiv 0 \pmod{2} \) then it is \{0, 0, \ldots, 0\}.

4. Let \(V(k) = |v(k)(i_1, \ldots, i_p): 1 \leq i_1, \ldots, i_p \leq m|, 1 \leq k \leq 2^p, \) be \(p \)-dimensional matrices defined by

\[
\text{if } u(i_1, \ldots, i_p) = q \text{ then } v(k)(i_1, \ldots, i_p) = d(q, \sigma(k)).
\]

5. Let \(M(k) = |m(k)(i_1, \ldots, i_p): 1 \leq i_1, \ldots, i_p \leq m|, 1 \leq k \leq 2^p, \) be \(p \)-dimensional matrices defined by

\[
m(k)(i_1, \ldots, i_p) = v(k)(i_1, \ldots, i_p)m^p + m(i_1, \ldots, i_p),
\]

where \(m(i_1, \ldots, i_p) \) is the element of \(M_m^p \) which is constructed in [6].

Because \(v(j)(i_1, \ldots, i_p) \neq v(k)(i_1, \ldots, i_p) \) for all \(j \neq k \) and from the previous relation it follows that:

(a) no two elements \(m(k)(i_1, \ldots, i_p) \) with different coordinates or indices are equal,

(b) the row sum of \(M(k) \) for fixed \(k \) is the same, i.e.

\[
\left\lfloor \frac{m}{2}(2^p - 1) + \frac{(-1)^\omega}{2} \right\rfloor m^p + \frac{m(m^p + 1)}{2}, \quad \text{where } \omega = 1 \text{ or } 2,
\]

(c) if \(p \equiv 1 \pmod{2} \) then \(\sum_{i=1}^{m} m(k)(i, \ldots, i) \) is equal to the row sum of \(M(k) \), if \(p \equiv 0 \pmod{2} \) then

\[
\sum_{i=1}^{m} m(k)(i, \ldots, i) = d(1, \sigma(k))m^{p+1} + m(m^p + 1)/2.
\]

6. We define a magic \(p \)-dimensional cube \(M_n^p = |m(i_1, \ldots, i_p): 1 \leq i_1, \ldots, i_p \leq n| \) of order \(n \equiv 2 \pmod{4} \) by

\[
m(i_1, \ldots, i_p) = m(k)(i_1^*, \ldots, i_p^*),
\]

where \(i_j^* = \min\{i_j, n + 1 - i_j\} \) and \(k = \sum_{x=1}^{p} \lfloor \frac{i_x-1}{m} \rfloor 2^{x-1} + 1. \)

From the definition of \(M_n^p \) we get:

(a) every row of \(M_n^p \) consists of one row of \(M(j) \) and one row of \(M(k) \) which have different row sums,

(b) every diagonal of \(M_n^p \) consists of \(m(k)(i, \ldots, i), m(2^p+1-k)(i, \ldots, i), \)

\(i = 1, \ldots, m. \) If \(p \equiv 1 \pmod{2} \) then \(M(k) \) and \(M(2^p-k+1) \) have different row sums. If \(p \equiv 0 \pmod{2} \) then the row sums of \(M(k) \) and \(M(2^p-k+1) \) are the same.
It is easy to see that M^p_n, which is a union of 2^p matrices $M_{(k)}$, satisfies the conditions for a magic p-dimensional cube.

Remark 1. Magic squares have fascinated people for centuries. Mathematicians have studied many properties of magic squares and formulated problems which have not been solved. (See [1].) We can formulate similar problems for magic cubes, too.

Remark 2. Another “magic” p-dimensional cube was studied by J. Ivančo. In [4] it is proved that if $4 \leq p \equiv 0 \pmod{2}$ then the edges of a p-dimensional cube can be labelled by integers $1, 2, \ldots, 2^{p-1}p$ in such a way that the sum of the labels of edges incident to each vertex is the same.

References

Šafárik University
Jesenná 5
041 54 Košice, Slovakia
E-mail: trenkler@duro.science.upjs.sk

*Received on 16.12.1999
and in revised form 26.4.2000*