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1. Introduction. The present article is set against the backdrop of the
problem of studying gaps between integer points on affine conics as considered,
for example, in [CJ]. The best result known on this problem, which is Theo-
rem 1.4 of Cilleruelo and Jiménez-Urroz [CJ], tells us that whenm is an integer
≥ 2, there are no more thanm integer points on any arc of length�a,d |R|s(m)

on the conic aX2 + dY 2 = R, where a, d and R are non-zero integers, and
s(m) = 1/4−1/(8[m/2] + 4). It appears to be a difficult problem to improve
upon this result, although it is believed to be far from presenting the correct
picture at least when the conic in question is a circle and m ≥ 4 (see [CG],
the penultimate paragraph on page 1237 and Conjecture 1 on page 1238). It
is, however, known that when the conic is a circle or a rectangular hyperbola,
that is, when a = ±d, and m = 2 or 3 the dependence on R given by this
result is optimal. When the conic is a circle, this follows from the much more
detailed conclusions of Cilleruelo [C] when m = 2 and those of the recent
work [CG] of Cilleruelo and Granville in the substantially more difficult case
when m = 3. According to Section 10 of [CG], the case of the rectangular
hyperbola is the subject of a forthcoming article by the same authors.

In this article we shall be concerned exclusively with the case m = 2 of
the results reviewed above. More precisely, in Cilleruelo [C] it is shown that
for any integer R ≥ 0 an arc of length 2(4R)1/6 on the circle X2 + Y 2 = R
contains no more than two integer points and, further, that for any ε > 0
there are infinitely many integers R ≥ 0 such that on the circle X2 +Y 2 = R
there is an arc of length ≤ 2(4R)1/6 + ε containing three integer points.
Analogous conclusions for the rectangular hyperbola are stated on page 1236
of [CG]. Our principal purpose here is to take up the general case of conics
given by aX2 + dY 2 = R, where R, a and d are any non-zero integers.
Clearly, we may assume that a and d are coprime. Our main results are
then Theorems 1.1 and 1.2 below.
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For any integer n 6= 0, let v2(n) denote the largest integer k such that
2k divides n. When v2(ad) is either 1 or 2, we set mad = 4, and when v2(ad)
is either 0 or ≥ 3, we set mad = 2. In other words, mad = 4 when ad is
congruent to 2, 4 or 6 modulo 8, and mad = 2 otherwise.

Theorem 1.1. Let a, d and R be non-zero integers and suppose that
a and d are coprime. Then there are no more than two integer points on
any arc of length

≤ 2
(
|ad|m2

ad|R|
sup(|a|, |d|)3

)1/6

on the conic aX2 + dY 2 = R.

The conclusion of Theorem 1.1 is seen to be the best possible by means
of the following theorem, which is stated in the pattern of Theorem 1.3 of
[CG]. In Theorem 1.2 and thereafter we shall say that an arc of a conic joins
a set of points in the plane if this arc contains this set of points and is the
shortest of such arcs on the conic.

Theorem 1.2. Let a and d be non-zero coprime integers and let A be
the set of real numbers C for which there is an integer R such that on the
conic aX2+dY 2 = R there is an arc of length 2C

( |ad|m2
ad|R|

sup(|a|,|d|)3
)1/6 that joins a

set of three integer points. Then A is a dense subset of the interval [1,+∞).

We prove Theorems 1.1 and 1.2 in Sections 3 and 4 respectively. We
shall presently outline our proofs, which develop on the attractive proofs of
Theorems 1.2 and 1.3 on page 1217 of [CG], where Cilleruelo and Granville
revisit and refine the results of [C].

Let us call an ordered triple τ = (p1, p2, p3) of non-collinear points pi
with coordinates (xi, yi) in the real plane a triangle and call the points
pi the points of the triangle τ . We write ∆(τ) to denote the determinant
whose ith row is (xi, yi, 1) for 1 ≤ i ≤ 3. Thus |∆(τ)| is twice the area of
the Euclidean triangle with vertices pi. We call ∆(τ) the determinant of τ .
When the pi all have integer coordinates we say that τ is an integer triangle.

We now have the following simple but crucial remark, which we verify
under Lemma 3.1. Given a and d, there is for any triangle τ = (p1, p2, p3) a
unique point p(τ) = (x(τ), y(τ)) and a unique real number R(τ) such that
the points p1, p2 and p3 all lie on the conic

(1.1) a(X − x(τ))2 + d(Y − y(τ))2 = R(τ).

We call p(τ) the centre of the triangle τ relative to (a, d). Thus, given a and d,
if τ = (p1, p2, p3) is an integer triangle whose centre p(τ) relative to (a, d) is
also an integer point, then p1 − p(τ), p2 − p(τ) and p3 − p(τ) are all integer
points on aX2 +dY 2 = R(τ). We shall repeatedly use this conclusion as our
path to obtaining sets of three integer points all lying on aX2 + dY 2 = R,
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for some R. We refer to the triangle (p1 − p(τ), p2 − p(τ), p3 − p(τ)) as the
triangle obtained by translating τ by its centre relative to (a, d).

Let us now summarize the proof of Theorem 1.1. Suppose that the points
pi of a triangle τ = (p1, p2, p3) all lie on a circle of radius r. We then have
the classical formula

∏
1≤i<j≤3 ‖pi − pj‖ = 2∆(τ)r, where ‖ ‖ is the usual

norm on R2, and on which the proof of Theorem 1.2 in [CG] is based. We
begin by reviewing a generalisation of this formula given by Proposition 2.1.
With the aid of the conclusion of the preceding paragraph and an analysis
of ∆(τ) modulo 2 we then show that, for a and d as in Theorem 1.1, mad is
the infimum of |∆(τ)| taken over all integer triangles τ for which there is an
R(τ) such that the points of τ all lie on aX2 + dY 2 = R(τ). This together
with an application of Proposition 2.1 gives Theorem 1.1.

It will be intuitively clear from the proof of Theorem 1.1 that, for suf-
ficiently large R, an arc on aX2 + dY 2 = R joining the points of an inte-
ger triangle with determinant mad and whose points all “nearly” lie on a
line parallel to a coordinate direction should show Theorem 1.1 to be op-
timal. For this reason, the proof of Theorem 1.2 reduces to producing, for
infinitely many integers R, such “thin” triangles with points all lying on
aX2 + dY 2 = R. We obtain such triangles by translating, by their centres,
triangles in the orbit of a suitably chosen integer triangle with determinant
mad under the action of the principal congruence subgroup Γ (N) of SL2(Z),
where N = 2admad. Here we let SL2(Z) act on the set of triangles by the
natural extension of its action on the points of the plane as a subgroup of
GL2(R).

Theorems 1.1 and 1.2 evidently imply an optimal lower bound for the
diameter of any set of three integer points on a given conic of the form
aX2 + dY 2 = R. In Section 5, which is the final section of this article, we
consider, more generally, the case of n+ 1 integer points on quadrics of the
form a1X

2
1 + · · · + anX

2
n = R, where the ai and R are integers, and n is

an integer ≥ 2. Our results in this case are Propositions 5.1 and 5.2, which,
though less precise, are analogues of Theorems 1.1 and 1.2 for these quadrics
and are obtained by analogous arguments.

Throughout this article, when A is a matrix, At shall mean the transpose
of A.

2. A classical formula. Special cases of the formula given by Propo-
sition 2.1 below may be found in pages 238 to 242 of [B], in connection with
the Cayley–Menger determinant, and in Ex. 10, page 26 of [S], from which
sources its proof, provided below for completeness, may be easily deduced.

Let n be an integer ≥ 2 and suppose that ai, ci, 1 ≤ i ≤ n, and R are
all real numbers. Let τ = (p1, . . . , pn+1), with pi = (x1i, . . . , xni), be a tuple
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of n+ 1 points in Rn, all lying on

(2.1) a1(X1 − c1)2 + · · ·+ an(Xn − cn)2 = R.

Let ∆(τ) be the determinant of the the square matrix of order n+ 1 whose
ith row is (x1i, . . . , xni, 1). Further, let P(τ) be the square matrix of order
n+ 1 whose (i, j)th entry is a1(x1i − x1j)2 + · · ·+ an(xni − xnj)2.

Proposition 2.1. With notation as above we have the relation

(2.2) det(P(τ)) = (−1)n 2n+1
( ∏

1≤i≤n
ai

)
∆(τ)2R.

Proof. Since both sides of (2.2) are invariant on replacing the pi with
pi − c, where c = (c1, . . . , cn), we assume that ci = 0 for each i. Let αi, for
1 ≤ i ≤ n, and β be complex numbers satisfying the relations α2

i = ai and
β2 = R. Let M+(τ) be the square matrix of order n + 1 whose ith row is
(α1x1i, . . . , αnxni, β) and M−(τ) be the square matrix of order n+ 1 whose
ith row is (α1x1i, . . . , αnxni,−β). Since the points pi lie on (2.1), and since
the ci are all 0, we have the identity∑

1≤k≤n
ak(xki − xkj)2 = −2

(
−R+

∑
1≤k≤n

akxkixkj

)
for any (i, j) with 1 ≤ i ≤ j ≤ n + 1. This identity implies the relation of
matrices P(τ) = −2M−(τ)M+(τ)t, from which (2.2) results on passing to
determinants and noting that det(M±(τ)) = ±∆(τ)β

∏
1≤i≤n αi.

3. The bound for conics. When α = (α1, α2, α3), β = (β1, β2, β3) are
ordered triples of real numbers and i and j integers ≥ 1, we set

(3.1) ∆ij(α, β) = det

α
i
1 βj1 1
αi2 βj2 1
αi3 βj3 1

.
Lemma 3.1. Let a and d be real numbers 6= 0 and τ = (p1, p2, p3) with

pi = (xi, yi) be a triangle. Then there is a unique (x(τ), y(τ), R(τ)) in R3

such that the points pi all lie on the conic

(3.2) a(X − x(τ))2 + d(Y − y(τ))2 = R(τ).

If x and y denote (x1, x2, x3) and (y1, y2, y3) respectively then

2a∆(τ)x(τ) = a∆21(x, y) + d∆21(y, y),(3.3)
2d∆(τ)y(τ) = a∆12(x, x) + d∆12(x, y).(3.4)
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Proof. Since the pi are not collinear, ∆(τ) 6= 0. Thus there exists a
unique (x(τ), y(τ), z(τ)) in R3 satisfying the matrix relation

(3.5)

x1 y1 1
x2 y2 1
x3 y3 1


2ax(τ)

2dy(τ)
z(τ)

 =

ax
2
1 + dy2

1

ax2
2 + dy2

2

ax2
3 + dy2

3

.
On setting R(τ) = z(τ) + ax(τ)2 + dy(τ)2, we easily deduce from (3.5)
that the pi all lie on the conic (3.2) and that (x(τ), y(τ), R(τ)) is uniquely
determined by (a, d) and τ . Finally, Cramer’s rule applied to (3.5) gives (3.3)
and (3.4).

The point p(τ) = (x(τ), y(τ)) is what has been called the centre of a
triangle τ relative to (a, d) in Section 1. For the sake of brevity, we sometimes
omit mentioning (a, d) when referring to the centre of a triangle τ relative
to (a, d). We shall denote the conic (3.2) by Cad(τ).

Lemma 3.2. For any non-zero coprime integers a and d there is an
integer triangle whose centre relative to (a, d) is an integer point and whose
determinant is mad.

Proof. Let b and c be any integers such that ab− cd = 1. The lemma is
a consequence of the definition of mad and the following assertions, which
we shall verify presently.

(i) ((2b, 2c), (d, a), (0, 0)) is an integer triangle with determinant 2.
When v2(ad) = 0, the centre of this triangle relative to (a, d) is
an integer point.

(ii) ((1, 1), (−1, 1), (1,−1)) is an integer triangle with determinant 4. For
any a and d and, in particular, when v2(ad) = 1 or 2, the centre of
this triangle relative to (a, d) is (0, 0).

(iii) ((2b, 4c), (d/2, a), (0, 0)) is a triangle with determinant 2. When
v2(ad) ≥ 3 and a is odd, this triangle is an integer triangle whose
centre relative to (a, d) is an integer point.

(iv) ((4b, 2c), (d, a/2), (0, 0)) is a triangle with determinant 2. When
v2(ad) ≥ 3 and a is even, this triangle is an integer triangle whose
centre relative to (a, d) is an integer point.

All other assertions above being evident, we are reduced to verifying
that the centres of the triangles given in (i), (iii) and (iv) are indeed integer
points. Let us consider the case of the triangle τ = ((2b, 2c), (d, a), (0, 0))
in (i). Since ∆(τ) = 2, the formula (3.3) gives

(3.6) 4ax(τ) = a det

4b2 2c 1
d2 a 1
0 0 1

+ ddet

4c2 2c 1
a2 a 1
0 0 1

.
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On expanding the determinants in (3.6) by their last rows and dividing
throughout by 2a we get

(3.7) 2x(τ) = det

(
2b2 c

d2 a

)
+ ddet

(
2c2 c

a 1

)
≡ 2 det

(
0 c

1 1

)
≡ 0 mod 2,

since a and d are both odd. Thus x(τ) is an integer. The formula (3.4) gives

(3.8) 4dy(τ) = adet

2b 4b2 1
d d2 1
0 0 1

+ ddet

2b 4c2 1
d a2 1
0 0 1

 .

On expanding the determinants in (3.8) by their last rows and dividing
throughout by 2d we get

(3.9) 2y(τ) = a det

(
b 2b2

1 d

)
+ det

(
b 2c2

d a2

)
≡ 2 det

(
b 0
1 1

)
≡ 0 mod 2,

since a and d are odd. Thus y(τ) is an integer.
Let us now consider the triangle τ = ((2b, 4c), (d/2, a), (0, 0)) in (iii).

When v2(ad) ≥ 3 and a is odd, we have v2(d) ≥ 3, since a and d are
coprime. Thus τ is an integer triangle. Further, from the formula (3.3) we
have

(3.10) 4ax(τ) = a det

 4b2 4c 1
d2/4 a 1

0 0 1

+ d det

16c2 4c 1
a2 a 1
0 0 1

.
On expanding the determinants in (3.10) by their last rows and dividing
throughout by 4a we get

(3.11) x(τ) = det

(
b2 c

d2/4 a

)
+ d det

(
4c2 c

a 1

)
,

so that x(τ) is an integer. Using the formula (3.4) for y(τ) we get

(3.12) 4dy(τ) = adet

 2b 4b2 1
d/2 d2/4 1
0 0 1

+ ddet

 2b 16c2 1
d/2 a2 1
0 0 1

.
On expanding the determinants in (3.12) by their last rows and dividing
throughout by d we get

(3.13) 4y(τ) = a det

(
b 2b2

1 d/2

)
+ det

(
2b 16c2

d/2 a2

)
≡ 2ab(a− b) mod 4,
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since d/2 is divisible by 4. For any integers a and b the product 2ab(a− b) is
divisible by 4. Thus y(τ) is an integer. The case of the triangle in (iv) being
similar to that in (iii), we leave this case to the reader.

Proposition 3.3. When a and d are non-zero coprime integers, the
infimum of |∆(τ)| taken over all integer triangles τ which have an integer
point for their centre relative to (a, d) is mad.

Proof. On account of Lemma 3.2, we are reduced to showing that |∆(τ)|
≥ mad for any integer triangle τ whose centre relative to (a, d) is an integer
point. Since ∆(τ) is then a non-zero integer, it suffices to verify that

(3.14) 2v2(∆(τ)) ≥ mad .

Translating the points of τ by the centre of τ we assume that the points
of τ lie on the conic aX2 + dY 2 = R, for some integer R. Further, by
symmetry, we assume that a is odd so that v2(ad) = v2(d).

All integer points (x, y) on aX2+dY 2 = R satisfy ax+dy = R modulo 2.
Since a is odd, it follows that the integer points on aX2 + dY 2 = R reduce
modulo 2 to no more than two points. Therefore at least two of the three
rows of ∆(τ) are the same modulo 2 and hence v2(∆(τ)) ≥ 1. In particular,
this implies (3.14) when v2(ad) = v2(d) = 0 or ≥ 3.

Suppose that either (i) v2(ad) = v2(d) = 1 or (ii) R is odd and v2(ad) =
v2(d) = 2. We will obtain (3.14) in these cases by verifying that all integer
points of τ reduce to the same point modulo 2 so that all rows of ∆(τ) are
the same modulo 2 and v2(∆(τ)) ≥ 2. To this end, let (xi, yi) be the points
of τ .

When (i) holds we have ax2
i + dy2

i = R with d even and a odd so that
each xi is the same as R modulo 2. Thus xi ≡ xj mod 2 and hence x2

i −x2
j ≡

0 mod 4, for any i and j. Since we have a(x2
i − x2

j ) = −d(y2
i − y2

j ) with
v2(a) = 0 and v2(d) = 1, this implies that y2

i −y2
j ≡ 0 mod 2 for any i and j.

Consequently, (xi, yi) and (xj , yj) are the same modulo 2 for any i and j
when (i) holds.

When (ii) holds we have ax2
i + dy2

i = R with R odd, d even and a odd.
Thus each xi is odd and hence x2

i − x2
j ≡ 0 mod 8 for any i and j. Since

a(x2
i − x2

j ) = −d(y2
i − y2

j ) with v2(a) = 0 and v2(d) = 2, this implies that
y2
i − y2

j ≡ 0 mod 2 for any i and j. Consequently, (xi, yi) and (xj , yj) are
the same modulo 2 for any i and j when (ii) holds.

Suppose now that R is even and v2(ad) = v2(d) = 2. Then each xi
is even and the triangle τ ′ whose points have the coordinates (xi/2, yi) is
an integer triangle lying on aX2 + (d/4)Y 2 = R/4. Since a and d/4 are
non-zero coprime integers, v2(∆(τ ′)) ≥ 1. Since ∆(τ) = 2∆(τ ′) we conclude
that v2(∆(τ)) ≥ 2, from which (3.14) follows in this case as well.
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Proof of Theorem 1.1. Let pi = (xi, yi), 1 ≤ i ≤ 3, be three integer
points on aX2 + dY 2 = R, all lying on an arc A of length l. We shall verify
that l > 2

( |ad|m2
ad|R|

sup(|a|,|d|)3
)1/6. Let τ denote the triangle (p1, p2, p3).

Applying Proposition 2.1 to the ordered triple τ and aX2+dY 2 = R, and
noting that, in this case, det(P(τ)) = 2

∏
1≤i<j≤3(a(xi− xj)2 + d(yi− yj)2),

we obtain
(3.15)

∏
1≤i<j≤3

(a(xi − xj)2 + d(yi − yj)2) = 4ad∆(τ)2R.

For each (i, j) with 1 ≤ i < j ≤ 3, let lij denote the length of the part of
A that joins pi and pj . Then sup(|a|, |d|)l2ij > |a(xi − xj)2 + d(yi − yj)2| for
each such (i, j). On taking absolute values of both sides of (3.15) and using
Proposition 3.3 we then have
(3.16) sup(|a|, |d|)3(l12l23l13)2 > 4|ad| |∆(τ)|2|R| ≥ 4|ad|m2

ad|R|.
We may assume that p2 lies on the part of A that joins p1 and p3. We then
have l12 + l23 = l13 ≤ l and consequently l12l23 ≤ l2/4 and l12l23l13 ≤ l3/4.
On combining this remark with (3.16) and rearranging terms we obtain the
required lower bound for l.

4. Optimality of the bound for conics. Throughout this section,
a and d shall be given non-zero coprime integers. When τ is a triangle we
write dia(τ) to denote the largest of the distances between the points of τ .

Let Tad be the set of integer triangles τ whose centres relative to (a, d)
are integer points and for which on the conic Cab(τ) defined by (3.2) there
exists an arc that joins the points of τ . When a and d are of the same sign,
Cad(τ) is an ellipse and there exists such an arc on Cad(τ) for all triangles τ .
This may not, however, be the case for all triangles τ when a and d are
of opposite signs, that is, when Cad(τ) is a hyperbola, for then the points
of τ may not all lie on the same branch. Since the distance between the
two branches of a hyperbola a(X − k)2 + d(Y − l)2 = R, where (k, l) is a
point in the plane, is at least 2(|R|/sup(|a|, |d|))1/2, it suffices to verify that
dia(τ) < 2(|R(τ)|/sup(|a|, |d|))1/2 in order to conclude that a triangle τ lies
in Tad, for any a and d.

We borrow notation from Cilleruelo and Granville [CG] and write Arc(τ),
for each τ in Tad, to denote the length of the arc on Cad(τ) that joins the
points of τ . We shall presently verify the following theorem.

Theorem 4.1. Let a and d be non-zero coprime integers. The image of
the map

(4.1) τ 7→ Arc(τ)

2
( |ad|m2

ad|R(τ)|
(sup(|a|,|d|)3

)1/6
from Tad to the real line is a dense subset of the interval [1,+∞).
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Theorem 1.2 follows immediately from Theorem 4.1 on translating the
triangles τ in Tad by their centres relative to (a, d).

We extend the action of the modular group SL2(Z) on the points of
the plane as a subgroup of GL2(R) to the set of all triangles by setting
g(τ) = (g(p1), g(p2), g(p3)) for any triangle τ = (p1, p2, p3) and g in SL2(Z).
We prove Theorem 4.1 at the end of this section with the aid of the following
lemmas. We recall that, for any integer N , Γ (N) is the subgroup of SL2(Z)
all of whose elements reduce to the identity matrix modulo N .

Lemma 4.2. Let τ be an integer triangle whose centre is an integer point
and let τ ′ be a triangle in the orbit of τ under Γ (2ad∆(τ)). Then ∆(τ ′) =
∆(τ) and the centre of τ ′ is an integer point.

Proof. Let g in Γ (2ad∆(τ)) be such that τ ′ = g(τ). Since det(g) = 1 we
have ∆(τ ′) = det(g)∆(τ) = ∆(τ). Suppose τ = (p1, p2, p3). Since g reduces
to the identity matrix modulo 2ad∆(τ), the point g(pi) is the same as pi
modulo 2ad∆(τ) for each i. The formulae (3.3) and (3.4) then imply that
the centre of τ ′ is an integer point.

Lemma 4.3. Let τ = (p1, p2, p3) with pi = (xi, yi) be a triangle that
satisfies the conditions x1 > x2, x1 > x3 and ∆(τ) > 0. Then

− y1 − y2

x1 − x2
> − y1 − y3

x1 − x3
.

If Iτ is the non-empty open interval
(
− y1−y3
x1−x3

,− y1−y2
x1−x2

)
then for all t in Iτ

we have

(4.2) tx2 + y2 > tx1 + y1 > tx3 + y3.

Moreover, if fτ (t) is the rational function defined by

(4.3) fτ (t) =
(t(x2 − x3) + (y2 − y3))2

4(t(x2 − x1) + (y2 − y1))(t(x1 − x3) + (y1 − y3))
,

then fτ maps Iτ continuously on [1,+∞).

Proof. We have ∆(τ) = (x1 − x2)(y1 − y3)− (x1 − x3)(y1 − y2). It then
follows from the hypothesis on τ that − y1−y2

x1−x2
> − y1−y3

x1−x3
. All other assertions

of the lemma being evident, it remains to verify that the image of Iτ under
fτ is [1,+∞). To see this, we note using (4.3) that

(4.4) fτ (t)− 1 =
(t(x2 − x1 + x3 − x1) + (y2 − y1 + y3 − y1))2

4(t(x2 − x1) + (y2 − y1))(t(x1 − x3) + (y1 − y3))
,

from which and (4.2) it follows that fτ (t) ≥ 1 for all t in Iτ . Moreover,
fτ (t) = 1 when t = −(y1−y2)−(y1−y3)

(x1−x2)+(x1−x3) , and this point lies in Iτ . We conclude
by noting that fτ (t) tends to +∞ as t tends to either end point of Iτ .
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From this point on we will assume, as we may without loss of generality,
that sup(|a|, |d|) = |a|. Further, set N = 2admad and, for each integer m,

(4.5) Sm =
(

1 Nm

0 1

)
,

which is an element of Γ (N). For any triangle τ = (p1, p2, p3) and an integer
m we write τm to denote the triangle Sm(τ), and denote the points Sm(pi) of
τm by pmi . By Lemma 4.2,∆(τm) = ∆(τ) and τm is an integer triangle whose
centre is an integer point, if this is so for τ . If (xi, yi) are the coordinates of
pi and, for each integer m, (xmi , y

m
i ) are the coordinates of pmi , we have

(4.6) xmi = Nmyi + xi and ymi = yi for each i.

Lemma 4.4. Let τ be an integer triangle with ∆(τ) = mad and whose
centre relative to (a, d) is an integer point. Suppose further that the points
pi = (xi, yi), 1 ≤ i ≤ 3, of τ satisfy the condition y2 > y1 > y3. Then τm is
in Tab for all sufficiently large integers m, and

lim
m→+∞

Arc(τm)

2
( |ad|m2

ad|R(τm)|
|a|3

)1/6 = lim
m→+∞

dia(τm)

2
( |ad|m2

ad|R(τm)|
|a|3

)1/6(4.7)

=
(

(y2 − y3)2

4(y2 − y1)(y1 − y3)

)1/3

.

Proof. From (4.6) we have for any (i, j), as m→ +∞,

|(a(xmi − xmj )2 + d(ymi − ymj )2)| ∼ |a| |N |2m2|yi − yj |2.

Since y2 > y1 > y3, we further have dia(τm) ∼ |N |m(y2 − y3) as m→ +∞.
These remarks together with (3.15) give the second equality in (4.7).

Since dia(τm) → +∞ as m → +∞, the second equality in (4.7) implies
that |R(τm)| → +∞ as m → +∞ and dia(τm) �a,d |R(τm)|1/6. Conse-
quently, τm is in Tad for all sufficiently large m and dia(τm)/|R(τm)|1/2 → 0
as m → +∞. Thus Arc(τm)/dia(τm) → 1 as m → +∞, so that the first
equality in (4.7) holds as well.

Proof of Theorem 4.1. By Lemma 3.2 there is an integer triangle τ with
determinant mad and whose centre relative to (a, d) is an integer point. Re-
placing τ with τm, for a sufficiently large m, and then changing the ordering
on the set of points of τ if necessary, we may assume that τ satisfies the
conditions of Lemma 4.3. Let E be the set of rational numbers in the inter-
val Iτ which, in their reduced form, may be expressed as r/s, with r and s
coprime, s > 0 and r ≡ 0 mod N , s ≡ 1 mod N .

If t is in E and r/s is its reduced form, then there exist integers p, q such
that



Integer points on conics 207

Tt =
(
p q

r s

)
is in Γ (N). Let τt be the triangle Tt(τ). By Lemma 4.2, τt is an integer
triangle with an integer point as centre and determinant mad. Since t is in Iτ ,
(4.2) implies that τt satisfies the conditions of Lemma 4.4. In particular, on
applying (4.7) to τt, we see that fτ (t)1/3 is a limit point of the image of
the map (4.1). Thus the closure of that image contains the closure of the
image of E under f1/3

τ , which is [1,+∞) by Lemma 4.3, as E is dense in Iτ .
Since, by Theorem 1.1, the image of the map (4.1) is contained in [1,+∞),
we obtain Theorem 4.1.

5. An analogue in higher dimensions. Throughout this section we
use the notation introduced in Section 2. Further, for positive integers n
and k and any tuple τ = (p1, . . . , pk) of points in Rn, write dia(τ) to denote
sup1≤i≤j≤k ‖pi − pj‖, where ‖ ‖ denotes the usual norm on Rn.

Proposition 5.1. Let n be an integer ≥ 2 and suppose that ai, 1 ≤ i
≤ n, and R are non-zero integers. Let τ = (p1, . . . , pn+1) be a tuple of n+ 1
integer points in Rn, all lying on

(5.1) a1X
2
1 + · · ·+ anX

2
n = R.

When ∆(τ) 6= 0 we have

(5.2) dia(τ) ≥
√

2
( ∏

1≤i≤n |ai| |R|
(n+ 1)!(sup1≤i≤n |ai|)n+1

)1/(2(n+1))

.

Proof. On expanding det(P(τ)) by any row and applying the triangle
inequality we have |det(P(τ))| ≤ (n+ 1)!(sup1≤i≤n |ai|)n+1dia(τ)2(n+1). The
proposition follows on combining this bound with the formula (2.2) and
noting that |∆(τ)| ≥ 1, since ∆(τ) is a non-zero integer.

When n = 2, any tuple τ of n + 1, that is, three distinct points lying
on (5.1) satisfies the condition ∆(τ) 6= 0, so that this condition becomes
superfluous in that case, as in Theorem 1.1. Plainly, this is not true when
n ≥ 3, since, for example, one can have four distinct coplanar points all
lying on a given sphere in R3. The example due to R. Heath-Brown, cited
by Cilleruelo and Granville in the final paragraph of Section 11 of [CG],
then shows that it is possible to construct tuples τ of n+ 1 distinct integer
points, all lying on a sphere in Rn, which satisfy ∆(τ) = 0 and for which
the lower bound for dia(τ) given by Proposition 5.1 does not hold.

The following proposition, though much less precise than Theorem 1.2,
shows, on the other hand, that when its hypotheses are satisfied the conclu-
sion of Proposition 5.1 gives the best possible dependence on |R|.
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Proposition 5.2. Let n be an integer ≥ 2 and ai, 1 ≤ i ≤ n, be non-
zero integers. There is a real number C > 0 such that for infinitely many
integers R there are tuples τ of n+1 integer points on a1X

2
1 +· · ·+anX2

n = R
satisfying ∆(τ) 6= 0 and dia(τ) ≤ C|R|1/(2(n+1)).

We shall employ the following notation and lemma to verify this propo-
sition, the principle being the same as that of the proof of Theorem 4.1.
Let τ = (p1, . . . , pn+1) be a tuple of n + 1 points pi = (x1i, . . . , xni) in Rn

satisfying ∆(τ) 6= 0. There is then a unique (x1(τ), . . . , xn(τ), z(τ)) in Rn+1

satisfying the relation

(5.3)


x11 . . . xn1 1

...
...

...
x1n . . . xnn 1

x1(n+1) . . . xn(n+1) 1




2a1x1(τ)
...

2anxn(τ)
z(τ)

 =


N (p1)

...
N (pn)
N (pn+1)

,
where we have written N (pi) for a1x

2
1i + · · ·+ anx

2
ni, for each i. On setting

R(τ) = z(τ) + a1x1(τ)2 + · · · + anxn(τ)2 we see from (5.3) that the points
pi all lie on

a1(X1 − x1(τ))2 + · · ·+ an(Xn − xn(τ))2 = R(τ).

We write p(τ) to denote the point (x1(τ), . . . , xn(τ)) and call it the centre
of τ relative to (a1, . . . , an). Further, we set D(τ) to be the determinant of
order n+ 1 whose (i, j)th entry is a2(x2i − x2j)2 + · · ·+ an(xni − xnj)2.

Lemma 5.3. There exists a tuple τ of n + 1 integer points p1, . . . , pn+1

whose centre relative to (a1, . . . , an) is an integer point and such that ∆(τ)
and D(τ) are distinct from 0.

Proof. Let us first verify that there exists a tuple τ = (p1, . . . , pn+1)
of n + 1 points in Rn with each of the points pi having rational coordi-
nates and for which ∆(τ), D(τ) are 6= 0. By a familiar density argument,
this reduces to verifying that the polynomials ∆(X11, X21, . . . , Xn(n+1)) and
D(X11, X21, . . . , Xn(n+1)), obtained by replacing the coordinates xij of the
points pi in ∆(τ) and D(τ) with indeterminates Xij , are distinct from the
zero polynomial. This assertion being evident for ∆(X11, X21, . . . , Xn(n+1)),
we take up the case of D(X11, X21, . . . , Xn(n+1)). For each i, 1 ≤ i ≤ n, let αi
be a complex number satisfying α2

i = ai. Further, for each i, 1 ≤ i ≤ n+ 1,
let ui denote the vector

(a2X
2
2i + · · ·+ anX

2
ni, 1,

√
−2α2X2i, . . . ,

√
−2αnXni)

and let vi denote the vector

(1, a2X
2
2i + · · ·+ anX

2
ni,
√
−2α2X2i, . . . ,

√
−2αnXni).
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If U and V are respectively the matrices of order n + 1 with ith rows
ui and vi, it is easily seen that det(U) and det(V ) are non-zero polyno-
mials, since each ai is non-zero. Moreover, det(U) det(V ) = det(UV t) =
D(X11, X21, . . . , Xn(n+1)). Thus, D(X11, X21, . . . , Xn(n+1)) is a non-zero
polynomial. Finally, on multiplying all the coordinates of all the points of τ
by a sufficiently large integer we obtain a tuple of n+1 integer points whose
centre relative to (a1, . . . , an) is also an integer point and which satisfies the
conditions of the lemma.

Proof of Proposition 5.2. Let τ = (p1, . . . , pn+1) be an n+ 1-tuple satis-
fying the conditions of Lemma 5.3, set N = 2

∏
1≤i≤n ai∆(τ) and, for each

integer m, let Sm be the upper triangular matrix of order n

(5.4)



1 Nm 0 . . . 0
0 1 Nm . . . 0
... . . . 1 Nm

...
0 . . . 0 1 Nm

0 . . . 0 0 1


.

If, for each integer m ≥ 1, τm is the tuple (Sm(p1), . . . , Sm(pn+1))
then ∆(τm) = ∆(τ) and, by Cramer’s rule applied to (5.3), τm is a tu-
ple of n+ 1 integer points whose centre relative to (a1, . . . , an) is an integer
point (cf. proof of Lemma 4.2). Also, it is easily seen that det(P(τm)) ∼
(Nm)2(n+1)D(τ) as m → +∞. Further, if pi = (xi1, xi2, . . . , xin) then let
qi = (xi2, . . . , xin), for 1 ≤ i ≤ n + 1. If τ1 is the tuple of n + 1 points
q1, . . . , qn+1 in Rn−1 then dia(τm) ∼ m|N |dia(τ1) as m → +∞. It now
follows from (2.2) that

(5.5) lim
m→+∞

dia(τm)
(2n+1

∏
1≤i≤n |ai| |R(τm)|)1/(2(n+1))

=
dia(τ1)

|D(τ)|1/(2(n+1))
.

Since ∆(τ) 6= 0 we have dia(τ1) 6= 0. Therefore, dia(τm) → +∞ as
m → +∞, and (5.5) implies that |R(τm)| → +∞ as m → +∞. Thus the
proposition follows on translating the tuples τm by their centres and taking
(5.5) into account.
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