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Representations of certain binary quadratic
forms as Lambert series

by

Pee Choon Toh (Singapore)

1. Introduction. Let q be a complex number with |q| < 1. In [2],
A. Berkovich and H. Yesilyurt used Ramanujan’s 1ψ1 summation formula
to write two theta series associated with binary quadratic forms as a sum
of Lambert series:

∞∑
x,y=−∞

qx
2+5y2 = 1 +

∞∑
n=1

(
−20
n

)
qn

1− qn
+
∞∑
n=1

(
n

5

)
qn

1 + q2n
,(1.1)

∞∑
x,y=−∞

q2x2+2xy+3y2 = 1 +
∞∑
n=1

(
−20
n

)
qn

1− qn
−
∞∑
n=1

(
n

5

)
qn

1 + q2n
.(1.2)

By taking the sum and difference of (1.1) and (1.2), we obtain
∞∑

x,y=−∞
qx

2+5y2 +
∞∑

x,y=−∞
q2x2+2xy+3y2 = 2 + 2

∞∑
n=1

(
−20
n

)
qn

1− qn
,(1.3)

∞∑
x,y=−∞

qx
2+5y2 −

∞∑
x,y=−∞

q2x2+2xy+3y2 = 2
∞∑
n=1

(
n

5

)
qn

1 + q2n
.(1.4)

In general, for an imaginary quadratic field, K, of discriminant dK and
class number h, Dirichlet’s theorem [11, Th. 204] states that

h+ ω

∞∑
n=1

(
dK
n

)
qn

1− qn
=

h∑
i=1

∞∑
x,y=−∞

qQi(x,y),(1.5)

where ω is the number of units and Qi(x, y) are the inequivalent binary
quadratic forms of the quadratic field K. When K = Q(

√
−5), we get (1.3).

The companion formula (1.4) can be obtained using the theory of genus
characters. Thus, identities involving a single Lambert series as a sum of
theta series are well understood. What is interesting in this case is that we
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can also isolate each theta series and rewrite it as a sum of Lambert series.
This phenomenon is illustrated in the following example involving four theta
series. Let K = Q(

√
−30) and define

F (a, b, c) =
∞∑

x,y=−∞
qax

2+bxy+cy2 .

We have


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



F (1, 0, 30)
F (2, 0, 15)
F (3, 0, 10)
F (5, 0, 6)

=



4 + 2
∞∑
n=1

(
−120
n

)
qn

1− qn

2
∞∑
n=1

(
n

15

)
qn − q3n

1 + q4n

2
∞∑
n=1

(
10
n

)
qn − q2n

1− q3n

2
∞∑
n=1

(
n

6

)
qn − q2n − q3n + q4n

1− q5n


.

(1.6)

Observe that the matrix on the left hand side is invertible. Hence, we can
rewrite each of the four theta series as a linear combination of four Lambert
series.

In the next section, we shall provide a sufficient condition that allows us
to express theta series as a linear combination of Lambert series. Explicit
examples will be given in Section 3.

2. Genus characters and a theorem of Kronecker. Let us recall
the theory of genus characters [13, pp. 59–62]. Let K = Q(

√
N) where N < 0

is a square free integer. The discriminant of K is defined as

dK =
{
N if N ≡ 1 (mod 4),
4N otherwise.

If dK is odd then it can be written as a product of distinct odd primes,
−p1p2 . . . pk. We set Pi = ±pi so that dK/Pi ≡ 1 (mod 4), and each dK/Pi
remains an odd discriminant. If dK is even, then either dK = −8p2 . . . pk,
where dK/4 ≡ 2 (mod 4), or dK = −4p2 . . . pk, where dK/4 ≡ 3 (mod 4).
In this case, we set P1 to be ±8 or −4 so that dK/P1 remains an odd
discriminant.

Let d1 be any product of the factors P1, . . . , Pk of dK . Then dK = d1d2

gives us a decomposition of dK into a product of two coprime discriminants.
For each decomposition dK = d1d2, and any prime ideal p not dividing dK ,
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we can define a genus character,

χ(p) = χd1(p) =
(

d1

N(p)

)
.

It can be shown [13, p. 60] that χd1 = χd2 . Hence we can identify dK =
d1d2 = d2d1, giving us a total of 2k−1 decompositions.

If p | dK , then one of χd1 , χd2 is zero and the other is non-zero; we then
take χ to be the non-zero value. There are 2k−1 different genus characters
corresponding to decompositions of dK . In fact, the genus characters form
an abelian group, G, of order 2k−1 [13, p. 66].

Now, for an imaginary quadratic field K [9, p. 190], we have(
dK
p

)
=


0 if p ramifies, (p) = p2, N(p) = p,

1 if p splits, (p) = pp′, N(p) = p,

−1 if p is inert, (p) = p, N(p) = p2.

If χ is a genus character (corresponding to dK = d1d2), then the L-series
equals

(2.1) LK(s, χ) =
∑

ideal a

χ(a)
N(a)s

=
∏

p prime

(
1− χ(p)

N(p)s

)−1

=
∏

p over
ramified p

(
1− χ(p)

N(p)s

)−1 ∏
p over
split p

(
1− χ(p)

N(p)s

)−1 ∏
p over
inert p

(
1− χ(p)

N(p)s

)−1

.

For the first product, we may assume without loss of generality that p | d2,
hence χ(p) =

(
d1
p

)
and

(
d2
p

)
= 0. Thus,

(2.2)
∏

p over
ramified p

(
1− χ(p)

N(p)s

)−1

=
∏

ramified p

(
1−

(
d1

p

)
p−s
)−1 ∏

ramified p

(
1−

(
d2

p

)
p−s
)−1

.

In the second product, since χd1 = χd2 and p lies under p and p′,

(2.3)
∏

p over
split p

(
1− χ(p)

N(p)s

)−1

=
∏

split p

(
1−

(
d1

p

)
p−s
)−1 ∏

split p

(
1−

(
d1

p

)
p−s
)−1

=
∏

split p

(
1−

(
d1

p

)
p−s
)−1 ∏

split p

(
1−

(
d2

p

)
p−s
)−1

.
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For the last product, χ(p) =
(
d1
p2

)
= 1. However, since

(
dK
p

)
=
(
d1
p

)(
d2
p

)
= −1, we have

(2.4)
∏

p over
inert p

(
1− χ(p)

N(p)s

)−1

=
∏

inert p

(1− p−2s)−1

=
∏

inert p

(1− p−s)−1(1 + p−s)−1

=
∏

inert p

(
1−

(
d1

p

)
p−s
)−1 ∏

inert p

(
1−

(
d2

p

)
p−s
)−1

.

Combining these, we obtain Kronecker’s theorem [13, p. 62],

LK(s, χ) =
∏
p

(
1−

(
d1

p

)
p−s
)−1∏

p

(
1−

(
d2

p

)
p−s
)−1

(2.5)

= Ld1(s)Ld2(s).

Next, applying the inverse Mellin transform to (2.5), we get∑
a 6=0

χ(a)qN(a) =
( ∞∑
n=1

(
d1

n

)
qn
)( ∞∑

n=1

(
d2

n

)
qn
)

(2.6)

=
∞∑
n=1

(
d1

n

)∑|d2|
k=1

(
d2
k

)
qkn

1− q|d2|n
.

Using Ld1,d2(q) to denote the last sum, we can now state our result.

Theorem 2.1. Let K be an imaginary quadratic field, with ω units,
where the ideal class group is isomorphic to the group G of genus charac-
ters. Let ax2 + bxy+ cy2 be a primitive binary quadratic form with discrim-
inant dK . If p is any unramified prime represented by this form, then

F (a, b, c) = 1 +
ω

|G|
∑
χd1
∈G

χd1(p)Ld1,d2(q)

= 1 +
ω

|G|
∑

admissible d1

(
d1

p

)
Ld1,d2(q).

Proof. Let m = |G|. Under the hypothesis of the theorem, there is an
isomorphism from the form class group of primitive binary quadratic forms
to the ideal class group [6, p. 113], which is hence isomorphic to G. Next, let
Qi(x, y) be the representatives of the form class group and Fi =

∑
qQi(x,y)

be the associated theta series, where the sum is over all integers x and y,
excluding (x, y) = (0, 0). Then (2.6) gives us a system of m equations of the
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form

ωLd1,d2(q) =
(
d1

n1

)
F1 +

(
d1

n2

)
F2 + · · ·+

(
d1

nm

)
Fm,(2.7)

where ni is any integer represented by Qi(x, y), coprime to dK . Hence we
have the matrix equation

ωL̂ = AF̂ .(2.8)

Here F̂ = (F1, . . . , Fk), L̂ is the vector of the Lambert series Ld1,d2(q), and
A is the character table for G. By the orthogonality relations, [1, Ch. 6], we
can recover each Fj as

Fj =
ω

m

∑
χd1
∈G

χd1(nj)Ld1,d2(q).(2.9)

The proof is complete when we add the case (x, y) = (0, 0) and replace nj
by a suitable prime.

The condition in Theorem 2.1 is commonly described as imaginary quad-
ratic fields having one class per genus. S. Chowla [4] proved that there are
finitely many such fields. Further work by J. D. Swift [15], S. Chowla and
W. E. Briggs [5], E. Grosswald [7] and P. J. Weinberger [16], showed that
besides the 65 that are currently known, there exists at most one more field
with one class per genus.

Theorem 2.1 can easily be generalized to imaginary quadratic fields with
more than one class per genus. However, in this case, it is not possible
to isolate the several theta series associated to the same genus and the
corresponding result is not as striking.

There are another 36 known form class groups that have one class per
genus. These are said to have nonfundamental discriminants and corre-
spond to orders [6, p. 132] rather than the ring of integers in the imaginary
quadratic field. Theorem 2.1 does not apply to these 36.

For these 101 discriminants, N. A. Hall [8] has computed explicit formulas
for the number of representations of an integer by binary quadratic forms,
while K. S. Williams [17] has given identities analogous to (1.5).

For recent work on the problem of representations of an integer by binary
quadratic forms (not necessarily having one class per genus), see Z. H. Sun
and K. S. Williams [14], P. Kaplan and K. S. Williams [10] and references
therein.

3. Examples and tables. There are exactly nine imaginary quadratic
fields with class number h = 1, listed according to their discriminants:

dK = −3,−4,−7,−8,−11,−19,−43,−67,−163.(3.1)

L. C. Shen [12] has given explicit identities for these cases.
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There are 18 imaginary quadratic fields with class number h = 2, listed
according to their discriminants:

dK = −15,−20,−24,−35,−40,−51,−52,−88,−91,(3.2)
−115,−123,−148,−187,−232,−235,−267,−403,−427.

In the cases where dK = −4`, ` = 5, 13 or 37, we have
∞∑

x,y=−∞
qx

2+`y2 = 1 +
∞∑
n=1

(
−4`
n

)
qn

1− qn
+
∞∑
n=1

(
`

n

)
qn

1 + q2n
,(3.3)

∞∑
x,y=−∞

q2x2+2xy+ `+1
2
y2 = 1 +

∞∑
n=1

(
−4`
n

)
qn

1− qn
−
∞∑
n=1

(
`

n

)
qn

1 + q2n
.(3.4)

(3.3) and (3.4) were established by H. H. Chan and S. H. Chan [3].
When dK = −8`, ` = 3, 5, 11 or 29,

∞∑
x,y=−∞

qx
2+2`y2 = 1 +

∞∑
n=1

(
−8`
n

)
qn

1− qn
+
∞∑
n=1

(
n

`

)
qn + (−1

` )q3n

1 + q4n
,

∞∑
x,y=−∞

q2x2+`y2 = 1 +
∞∑
n=1

(
−8`
n

)
qn

1− qn
−
∞∑
n=1

(
n

`

)
qn + (−1

` )q3n

1 + q4n
.

The case of ` = 3 was also given in [2].
The remaining discriminants are all of the form dK = −`m, according

to the following table:

` m D = `m a b c

3 5 15 2 1 2

7 5 35 3 1 3

3 17 51 3 3 5

7 13 91 5 3 5

23 5 115 5 5 7

3 41 123 3 3 11

11 17 187 7 3 7

47 5 235 5 5 13

3 89 267 3 3 23

31 13 403 11 9 11

61 7 427 7 7 17

∞∑
x,y=−∞

qx
2+xy+ D+1

4
y2 = 1 +

∞∑
n=1

(
−D
n

)
qn

1− qn
+
∞∑
n=1

(
−`
n

)∑m−1
j=1 ( jm)qjn

1− qmn
,

∞∑
x,y=−∞

qax
2+bxy+cy2 = 1 +

∞∑
n=1

(
−D
n

)
qn

1− qn
−
∞∑
n=1

(
−`
n

)∑m−1
j=1 ( jm)qjn

1− qmn
.
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There are 24 imaginary quadratic fields with class number h = 4, having
one class per genus. We give a table listing the discriminants together with
the representatives of the form class group, as well as one example for dK =
−84.

dk F (a, b, c)

−84 (1, 0, 21) (2, 2, 11) (3, 0, 7) (5, 4, 5)

−120 (1, 0, 30) (2, 0, 15) (3, 0, 10) (5, 0, 6)

−132 (1, 0, 33) (2, 2, 17) (3, 0, 11) (6, 6, 7)

−168 (1, 0, 42) (2, 0, 21) (3, 0, 14) (6, 0, 7)

−195 (1, 1, 49) (3, 3, 17) (5, 5, 11) (7, 1, 7)

−228 (1, 0, 57) (2, 2, 29) (3, 0, 19) (6, 6, 11)

−280 (1, 0, 70) (2, 0, 35) (5, 0, 14) (7, 0, 10)

−312 (1, 0, 78) (2, 0, 39) (3, 0, 26) (6, 0, 13)

−340 (1, 0, 85) (2, 2, 43) (5, 0, 17) (10, 10, 11)

−372 (1, 0, 93) (2, 2, 47) (3, 0, 31) (6, 6, 17)

−408 (1, 0, 102) (2, 0, 51) (3, 0, 34) (6, 0, 17)

−435 (1, 1, 109) (3, 3, 37) (5, 5, 23) (11, 7, 11)

−483 (1, 1, 121) (3, 3, 41) (7, 7, 19) (11, 1, 11)

−520 (1, 0, 130) (2, 0, 65) (5, 0, 26) (10, 0, 13)

−532 (1, 0, 133) (2, 2, 67) (7, 0, 19) (13, 12, 13)

−555 (1, 1, 139) (3, 3, 47) (5, 5, 29) (13, 11, 13)

−595 (1, 1, 149) (5, 5, 31) (7, 7, 23) (13, 9, 13)

−627 (1, 1, 157) (3, 3, 53) (11, 11, 17) (13, 7, 13)

−708 (1, 0, 177) (2, 2, 89) (3, 0, 59) (6, 6, 31)

−715 (1, 1, 179) (5, 5, 37) (11, 11, 19) (13, 13, 17)

−760 (1, 0, 190) (2, 0, 95) (5, 0, 38) (10, 0, 19)

−795 (1, 1, 199) (3, 3, 67) (5, 5, 41) (15, 15, 17)

−1012 (1, 0, 253) (2, 2, 127) (11, 0, 23) (17, 12, 17)

−1435 (1, 1, 359) (5, 5, 73) (7, 7, 53) (19, 3, 19)

For dK = −84, we set

L1 =
∞∑
n=1

(
−84
n

)
qn

1− qn
, L2 =

∞∑
n=1

(
28
n

)
qn − q2n

1− q3n
,

L3 =
∞∑
n=1

(
n

7

)
qn − q5n

1 + q6n
, L4 =

∞∑
n=1

(
21
n

)
qn

1 + q2n
.

Then
∞∑

x,y=−∞
qx

2+21y2 = 1 +
1
2

(L1 + L2 + L3 + L4),
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∞∑
x,y=−∞

q3x2+7y2 = 1 +
1
2

(L1 + L2 − L3 − L4),

∞∑
x,y=−∞

q2x2+2xy+11y2 = 1 +
1
2

(L1 − L2 + L3 − L4),

∞∑
x,y=−∞

q5x2+4xy+5y2 = 1 +
1
2

(L1 − L2 − L3 + L4).

For imaginary quadratic fields with class number h = 8, the following 13
have one class per genus:

dk F (a, b, c)

−420 (1, 0, 105) (2, 2, 53) (3, 0, 35) (5, 0, 21)

(6, 6, 19) (7, 0, 15) (10, 10, 13) (11, 8, 11)

−660 (1, 0, 165) (2, 2, 83) (3, 0, 55) (5, 0, 33)

(6, 6, 29) (10, 10, 19) (11, 0, 15) (13, 4, 13)

−840 (1, 0, 210) (2, 0, 105) (3, 0, 70) (5, 0, 42)

(6, 0, 35) (7, 0, 30) (10, 0, 21) (14, 0, 15)

−1092 (1, 0, 273) (2, 2, 137) (3, 0, 91) (6, 6, 47)

(7, 0, 39) (13, 0, 21) (14, 14, 23) (17, 8, 17)

−1155 (1, 1, 289) (3, 3, 97) (5, 5, 59) (7, 7, 43)

(11, 11, 29) (15, 15, 23) (17, 1, 17) (19, 17, 19)

−1320 (1, 0, 330) (2, 0, 165) (3, 0, 110) (5, 0, 66)

(6, 0, 55) (10, 0, 33) (11, 0, 30) (15, 0, 22)

−1380 (1, 0, 345) (2, 2, 173) (3, 0, 115) (5, 0, 69)

(6, 6, 59) (10, 10, 37) (15, 0, 23) (19, 8, 19)

−1428 (1, 0, 357) (2, 2, 179) (3, 0, 119) (6, 6, 61)

(7, 0, 51) (14, 14, 29) (17, 0, 21) (19, 4, 19)

−1540 (1, 0, 385) (2, 2, 193) (5, 0, 77) (7, 0, 55)

(10, 10, 41) (11, 0, 35) (14, 14, 31) (22, 22, 23)

−1848 (1, 0, 462) (2, 0, 231) (3, 0, 154) (6, 0, 77)

(7, 0, 66) (11, 0, 42) (14, 0, 33) (21, 0, 22)

−1995 (1, 1, 499) (3, 3, 167) (5, 5, 101) (7, 7, 73)

(15, 15, 37) (19, 19, 31) (21, 21, 29) (23, 11, 23)

−3003 (1, 1, 751) (3, 3, 251) (7, 7, 109) (11, 11, 71)

(13, 13, 61) (21, 21, 41) (29, 19, 29) (31, 29, 31)

−3315 (1, 1, 829) (3, 3, 277) (5, 5, 167) (13, 13, 67)

(15, 15, 59) (17, 17, 53) (29, 7, 29) (31, 23, 31)

We illustrate Theorem 2.1 by writing F (1, 0, 105) in terms of eight Lambert
series:
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∞∑
x,y=−∞

qx
2+105y2 = 1 +

1
4

( ∞∑
n=1

(
−420
n

)
qn

1− qn
+
∞∑
n=1

(
105
n

)
qn

1 + q2n

+
∞∑
n=1

(
140
n

)
qn − q2n

1− q3n
+
∞∑
n=1

(
−84
n

)∑5
k=1

(
5
k

)
qkn

1− q5n

+
∞∑
n=1

(
60
n

)∑7
k=1

(−7
k

)
qkn

1− q7n
+
∞∑
n=1

(
−35
n

)∑12
k=1

(
12
k

)
qkn

1− q12n

+
∞∑
n=1

(
28
n

)∑15
k=1

(−15
k

)
qkn

1− q15n
+
∞∑
n=1

(
−20
n

)∑21
k=1

(
21
k

)
qkn

1− q21n

)
.

Finally for imaginary quadratic fields with class number h = 16, −5460
is the only fundamental discriminant with one class per genus.

dk F (a, b, c)

−5460 (1, 0, 1365) (2, 2, 683) (3, 0, 455) (5, 0, 273)

(6, 6, 229) (7, 0, 195) (10, 10, 139) (13, 0, 105)

(14, 14, 101) (15, 0, 91) (21, 0, 65) (26, 26, 59)

(30, 30, 53) (35, 0, 39) (37, 4, 37) (42, 42, 43)

We again illustrate Theorem 2.1 by writing F (37, 4, 37) in terms of sixteen
Lambert series:

∞∑
x,y=−∞

q37x2+4xy+37y2

= 1 +
1
8

( ∞∑
n=1

(
−5460
n

)
qn

1− qn
+
∞∑
n=1

(
1365
n

)
qn

1 + q2n

+
∞∑
n=1

(
1820
n

)
qn − q2n

1− q3n
−
∞∑
n=1

(
−1092
n

)∑5
k=1

(
5
k

)
qkn

1− q5n

+
∞∑
n=1

(
780
n

)∑7
k=1

(−7
k

)
qkn

1− q7n
−
∞∑
n=1

(
−420
n

)∑13
k=1

(
13
k

)
qkn

1− q13n

+
∞∑
n=1

(
−455
n

)∑12
k=1

(
12
k

)
qkn

1− q12n
−
∞∑
n=1

(
364
n

)∑15
k=1

(−15
k

)
qkn

1− q15n

−
∞∑
n=1

(
273
n

)∑20
k=1

(−20
k

)
qkn

1− q20n
+
∞∑
n=1

(
−260
n

)∑21
k=1

(
21
k

)
qkn

1− q21n
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+
∞∑
n=1

(
−195
n

)∑28
k=1

(
28
k

)
qkn

1− q28n
−
∞∑
n=1

(
156
n

)∑35
k=1

(−35
k

)
qkn

1− q35n

−
∞∑
n=1

(
140
n

)∑39
k=1

(−39
k

)
qkn

1− q39n
−
∞∑
n=1

(
105
n

)∑52
k=1

(−52
k

)
qkn

1− q52n

−
∞∑
n=1

(
−91
n

)∑60
k=1

(
60
k

)
qkn

1− q60n
+
∞∑
n=1

(
−84
n

)∑65
k=1

(
65
k

)
qkn

1− q65n

)
.
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