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1. Introduction. Let K/k be a Zp-extension of a number field k, let
kn be the nth layer and An := A(kn) the p-part of the ideal class group
of kn. Let Λ :=Zp[[Gal(K/k)]] be the Iwasawa algebra associated with K/k;
all modules we shall work with will be Λ-modules. For any field E we denote
by L̃(E) the maximal unramified (not necessarily abelian) pro-p-extension

of E; to simplify the notation, we usually write L̃ := L̃(K) and L̃n := L̃(kn)

for every n ≥ 0. In [O1] M. Ozaki studies the non-abelian extensions L̃/K

and L̃n/kn using the lower central series for G̃ := Gal(L̃/K) and G̃n :=

Gal(L̃n/kn). Let

C1(G̃) := G̃ and Ci(G̃) := [G̃, Ci−1(G̃)] (for any i ≥ 2)

(for details and precise definitions see Section 2), and set

X(i) := X(i)(K/k) = Ci(G̃)/Ci+1(G̃) (for any i ≥ 1)

(with analogous notation X
(i)
n , depending on the series for G̃n).

Note that for i = 1 we obtain the classical Iwasawa moduleX(1) ' lim←−n
An

(where the limit is with restect to the natural norm maps). Stabilization is

a frequent property of Iwasawa modules like class groups (other related
modules have been extensively studied in [BC]): those modules associated
with the fields kn tend to remain the same (i.e., stabilize) from the very first
step in which they stop growing. For example we have the following results
(see [Fu] and [B3]).

Theorem 1.1. Assume all ramified primes in K/k are totally ramified
in K/kn0.

(i) If |An| = |An+1| for some n ≥ n0, then |Am| = |An| = |X(1)| for all
m ≥ n.
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(ii) If rkp(An) = rkp(An+1) for some n ≥ n0, then rkp(Am) = rkp(An)

= rkp(X
(1)) for all m≥ n (where rkp denotes the p-rank of a module).

Since capitulation of ideals is related to the generalized Greenberg Con-
jecture (see, e.g., [B1], [B2] and [LN]), in [BC] we studied the capitulation
kernels and provided an example of delayed stabilization. For any m ≥ n, let
in,m : An → Am be the map induced by the natural inclusions, and define
Hn,m := Ker(in,m) and Hn :=

⋃
m≥nHn,m. The Hn have natural stabiliza-

tion properties similar to the ones of class groups (see [BC, Theorem 3.7]),
but we noticed a possible different behaviour for the Hn,m:

Theorem 1.2 ([BC, Theorem 3.11]). Let n ≥ n0. Then there exist con-
stants r (independent of n) and h(n) such that, if n < r, then

1 = |Hn,n| ≤ |Hn,n+1| ≤ · · · ≤ |Hn,r| < |Hn,r+1| < · · ·
< |Hn,h(n)| = |Hn,h(n)+1| = · · · = |Hn|.

Our goal is to study stabilization for the orders (and the p-ranks) of

the X
(i)
n to see which of the above statements could be generalized to the

non-abelian setting. Theorem 1.1 expresses the stabilization of the X
(1)
n , but

delayed stabilization seems to be more common in the non-abelian case, as
we shall show in a crucial example in Section 2.1. The stabilization of the

X
(i)
n is (perhaps not surprisingly) strictly related to the behaviour of the

modules X
(j)
n for 1 ≤ j ≤ i; indeed, our main results are the following (see

Theorems 2.13 and 3.1).

Theorem 1.3. Let i ≥ 1 and n ≥ n0.

(i) If |X(j)
n | = |X(j)

n+1| for all 1 ≤ j ≤ i, then X
(j)
n ' X

(j)
m ' X(j) for

any 1 ≤ j ≤ i and for all m ≥ n.

(ii) If |X(j)
n | = |X(j)

n+1| for all 1 ≤ j ≤ i−1, and rkp(X
(i)
n ) = rkp(X

(i)
n+1),

then rkp(X
(i)
n ) = rkp(X

(i)
m ) = rkp(X

(i)) for all m ≥ n.

One immediately notices that the statement for the p-ranks is weaker
since it requires hypotheses on the orders (which imply that all the
λ-invariants of the X(i) are zero, see Remark 3.2) and not only on p-ranks.
At present we are not able to remove this obstacle because a crucial step
in our proof shows that the “normally generated” condition appearing in

Definition 2.10 for the sets R
(i)
n is not necessary to obtain Λ-submodules

of X(i) if one assumes stabilization of orders (while stabilization of p-ranks
seems not to be enough for it).

2. Stabilization for the order of X
(i)
n . Let H be a (topological)

group. For all a, b ∈ H we set [a, b] = a−1b−1ab. If H1, H2 are subgroups
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of H, we denote the commutator group of H1 and H2 by

[H1, H2] := 〈[h1, h2] : h1 ∈ H1, h2 ∈ H2〉
(the topological closure of [H1, H2]). Moreover, we define the sequences

C1(H) := H, Ci(H) := [H,Ci−1(H)] (for any i ≥ 2)

and

D0(H) := H, Di(H) := [Di−1(H), Di−1(H)] (for any i ≥ 1).

We call them the lower central series and the derived series ofH respectively.
Let G̃ = Gal(L̃/K). We get the following series for G̃:

G̃ = C1(G̃) ⊇ C2(G̃) ⊇ C3(G̃) ⊇ · · · ,(1)

G̃ = D0(G̃) ⊇ D1(G̃) ⊇ D2(G̃) ⊇ · · · .(2)

A well known relation is that Di(H) ⊆ C2i(H), i.e., the ith term of the
derived series is contained in the 2ith term of the lower central series. For
more details see, for example, [Bo, Ch. I, §6.3, §6.4] or [Fr]. The derived

series of G̃ is naturally related to the class field tower of K, while the lower
central series is less intuitive so we give here notations and properties for
the fields it is related to.

Definition 2.1. For every i ≥ 1, we set

(i) L(i) := the subfield of L̃ fixed by Ci+1(G̃);

(ii) G(i) := G̃/Ci+1(G̃) ' Gal(L(i)/K);

(iii) X(i) := Ci(G̃)/Ci+1(G̃) = Ci(G
(i)) ' Gal(L(i)/L(i−1)).

The group X(i) will be called the ith Iwasawa module of K/k.

We have analogous notation and definitions (just add an index n) for the

modules associated with the lower central series of G̃n := Gal(L̃n/kn).
If F (i)(kn) is the ith term of the class field tower of kn (i.e., the maximal

abelian unramified p-extension of F (i−1)(kn)), then, from the relation above,

L(2i−1)(kn) ⊆ F (i)(kn).
In [O1] M. Ozaki proved several results on the structure of the X(i) as

modules over the Iwasawa algebra Λ = Zp[[Gal(K/k)]], which are particu-
larly interesting when the Iwasawa µ-invariant of K/k is trivial.

Theorem 2.2.

(i) For all i ≥ 1 and all n ≥ 0 we have X
(i)
n ' A(L

(i−1)
n )

G
(i−1)
n

(i.e.,

the G
(i−1)
n -coinvariants of A(L

(i−1)
n )).

(ii) For all i ≥ 1 and m ≥ n � 0, the natural restriction maps

X
(i)
m → X

(i)
n are surjective and lim←−n

X
(i)
n ' X(i).

(iii) For all i ≥ 1, X(i) has a natural Λ-module structure.
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(iv) Let µ(K/k) = 0. Then, for any i ≥ 1, X(i) is a finitely generated
Zp-module, and in particular, a finitely generated torsion Λ-module.

(v) Let µ(K/k) = 0. Then, for any i ≥ 1, there exist integers λ(i) :=
λ(i)(K/k) and ν(i)(K/k) (independent of n) such that, for all n� 0,

|X(i)
n | = pλ

(i)(K/k)n+ν(i)(K/k).

Moreover, λ(i) is the Zp-rank of X(i).

Proof. See [O1, Lemmas 1 and 2, Proposition 1 and Theorem 1].

Definition 2.3. Let µ(K/k) = 0. The invariant λ(1) is the familiar
Iwasawa λ-invariant. For every i ≥ 1 we will call λ(i) the higher Iwasawa

ith λ-invariant for K/k. We write λ̃(i) := rkp(X
(i)) = dimFp(X(i)/pX(i))

(analogous notation λ̃
(i)
n for rkp(X

(i)
n )).

The sequences {λ̃(i)n }n∈N are increasing (see [O1, Lemma 2]) and their be-
haviour only depends on µ(K/k) (in particular it is independent of i), while,

as in classical Iwasawa theory, the stabilization of the orders of the X
(i)
n

yields a trivial λ(i)-invariant.

Proposition 2.4.

(i) If µ(K/k) = 0, then {λ̃(i)n }n∈N is bounded for any i ≥ 1.

(ii) If µ(K/k) > 0, then {λ̃(i)n }n∈N diverges for any i ≥ 1.

Proof. (i) If µ(K/k) = 0, then X(i) is a finitely generated Zp-module for

any i (by Theorem 2.2). Then, for all n ∈ N, we have λ̃
(i)
n ≤ λ̃(i), which is

finite.

(ii) Assume that for some i ≥ 1 we have λ̃
(i)
n ≤ t for all n ∈ N. Now

lim←−n
X(i)
n /pX(i)

n = X(i)/pX(i),

and it is clear that λ̃(i) ≤ t. This means that X(i)/Φ(X(i)) is generated by
(at most) t elements as an Fp-vector space (where Φ(X(i)) is the Frattini
subgroup of X(i)). Thus, by the Burnside Basis Theorem, these t elements
generate X(i) as a topological group, or, which is the same, as a Zp-module.
This contradicts [O1, Proposition 2].

Before going into the details of the stabilization of the |X(i)
n | we give an

example which shows that Theorem 1.1 is not immediately generalizable to
the non-abelian setting.

2.1. Example. We first recall the following group-theoretical results
(for the first one see, for example, [Ta, Section III]; we provide a short proof
for the second for the convenience of the reader).
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Theorem 2.5. Let G be a finite 2-group such that G/D1(G) '
Z/2Z⊕ Z/2Z. Then D1(G)/D2(G) is cyclic and D2(G) = 1.

Remark 2.6. We recall the definition of nilpotent group. For a group G
we set

[G, iG] := [[. . . [[G,G], G], . . . ], G︸ ︷︷ ︸
i times

].

We say that G is nilpotent of class i ≥ 1 if [G, iG] = 1 and [G, i−1G] 6= 1.
If G is a topological group whose space is Hausdorff, the last conditions
are equivalent to Ci(G) = 1 and Ci−1(G) 6= 1 (we shall use this equivalent
definition).

Proposition 2.7. Let G be a pronilpotent group (i.e., the inverse limit
of finite nilpotent groups) such that G/C2(G) is cyclic or procyclic. Then G
is abelian.

Proof. Let H := G/C3(G) and note that C2(H) = C2(G)/C3(G) is
contained in Z(H) (the centre of H). This means that H/Z(H) is cyclic
or procyclic, hence H is abelian. Therefore C2(G)/C3(G) = C2(H) = 1,
which yields C2(G) = C3(G) (and Ci(G) = C2(G) for all i ≥ 2). Since G is
pronilpotent, it is clear that

⋂∞
i=2Ci(G) = 1. Hence C2(G) =

⋂∞
i=2Ci(G) = 1,

which means that G is abelian.

Since “pro-p” implies “pronilpotent”, the previous proposition shows
that if there is a cyclic or procyclic quotient in the series (2), then the
series stops there.

Fix p = 2 and consider the cyclotomic Z2-extension of the field k =
Q(
√

5 · 732678913) as in [O2, Example 1]. Note that the prime 2 is inert
in k, so ramification starts immediately, i.e., n0 = 0. In the first layer we
have k1 = k(

√
2). Using PARI/GP we can see that A0 ' Z/2Z, which yields

X
(i)
0 = 0 for every i ≥ 2: indeed if the p-rank of X

(1)
0 = G̃0/C2(G̃0) is 1,

then X
(2)
0 = 0 (by Proposition 2.7). Moreover,

k1 '
Q[x]

(x4 − 7326789134x2 + 13420459724217960969)

and A1 ' Z/2Z ⊕ Z/2Z. Now let H := G̃1/D3(G̃1). Since H/D1(H) '
Z/2Z⊕Z/2Z, Theorem 2.5 implies that D2(H) = 1, which yields D2(G̃1) = 1.

This means that G̃1 is nilpotent of class i1 (for some i1 ≥ 2) and X
(i)
1 = 0 for

all i ≥ i1 (in other words G̃1 has derived length at most 2 and it is nilpotent
of class i1).

Going on with the computations, one finds the 4th layer k4 with A4/A
2
4 '

(Z/2Z)16. Now we denote by ρ the number of generators of the group of units
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of k4 (since k4 is totally real and has degree 25 over Q, ρ = 25 as well). We
have

dimF2 A4 = 16 ≥ 2 + 2
√
ρ+ 2 = 2 + 2

√
25 + 2 ≈ 13.662.

Thus by the Golod–Shafarevich inequality (see, for example, [NSW, Theo-
rem 10.10.5], which improves a little the bound of the original article [GS]),
we find that k4 has an infinite Hilbert 2-class field tower, hence, a fortiori,

the lower central series has infinite length, i.e., X
(i)
4 6= 0 for any i ≥ 1.

Summing up we have X
(i1)
0 = X

(i1)
1 = 0, but certainly X

(i1)
4 6= 0; this

gives us a counterexample (for the sequence of the p-ranks as well) to a
direct generalization of Theorem 1.1 to X(i) for i ≥ 2.

2.2. Stabilization. We have to add other hypotheses to obtain the

stabilization of the orders or of the p-ranks of the X
(i)
m .

To simplify the notation we assume here n0(K/k) = 0, i.e., every ramified
prime in the Zp-extension K/k is totally ramified (but, as usual in Iwasawa
theory, everything can be proved for a general n0). For any prime pi of k

which ramifies in K/k, fix p̃i in L̃ lying above pi, and let I(p̃1), . . . , I(p̃s) ⊆
G = Gal(L̃/k) be their inertia groups. Note that the natural restriction
G → Gal(K/k) induces isomorphisms I(p̃j) ' Gal(K/k) for every 1 ≤ j ≤ s.
Fix a topological generator γ of I(p̃1). For any 2 ≤ j ≤ s, there exist gj ∈ G̃
such that γgj is a topological generator of I(p̃j).

Definition 2.8. Let g be any element of G̃. For every m ≥ n ≥ 0 we
define

νn,m(g) = gνn,m := gγ
(pm−n−1)pn+γ(p

m−n−2)pn+···+γpn+1

=

pm−n∏
i=1

γ−(p
m−n−i)pngγ(p

m−n−i)pn .

As in the classical theory, we write simply νn to indicate ν0,n, i.e.,

νn(g) = gνn = gγ
(pn−1)+γ(p

n−2)+···+γ+1

= (γ−(p
n−1)gγp

n−1) · (γ−(pn−2)gγpn−2) · . . . · (γ−1gγ) · g

(for any g ∈ G̃).

Remark 2.9. Note that G̃ is not a Λ-module (in general) because the
“+” in the exponent is not commutative.

Definition 2.10. For every n ≥ 0 and i ≥ 1, we set

(i) Y
(i)
n := Ker{res : X(i) → X

(i)
n }, where res denotes the natural

restriction map;
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(ii) R̃n := (νn([γ, x]), νn(gj) : x ∈ G̃, 2 ≤ j ≤ s)
G̃

, where (·)
G̃

stands for

a normally generated closed subgroup in G̃;

(iii) R
(i)
n := (νn([γ, x]), νn(gj) : x ∈ G(i), 2 ≤ j ≤ s)G(i) .

Proposition 2.11. For every n ≥ 0 and i ≥ 1:

(i) G̃n ' G̃/R̃n;

(ii) G
(i)
n ' G(i)/R

(i)
n ;

(iii) Y
(i)
n = (Ci(G̃) ∩ R̃n)Ci+1(G̃)/Ci+1(G̃) = X(i) ∩R(i)

n .

Proof. See [O1, Lemma 3]. Note also that, if i = 1, then the characteri-

zation of Y
(i)
n is consistent with the one of Yn in the classical context (see,

for example, [Wa, Ch. 13]).

Now we focus our attention on the first i columns of the tower, i.e., we
consider G(i) = G̃/Ci+1(G̃) in place of G̃. We continue to use only γ and gj
to indicate the cosets γCi+1(G̃) and gjCi+1(G̃) in G(i).

Lemma 2.12. For any g ∈ G̃ and any m ≥ n ≥ 0 we have

(gνn)νn,m = gνm .

Proof. Direct computation shows that

(gνn)νn,m = (νn(g))γ
(pm−n−1)pn+γ(p

m−n−2)pn+···+γ1·pn+1

=
0∏

ε=pm−n−1

γ−εp
n · νn(g) · γεpn = νm(g) = gνm .

Theorem 2.13. Let i ≥ 1 and n ≥ 0. If |X(j)
n | = |X(j)

n+1| for all 1 ≤
j ≤ i, then X

(j)
n ' X

(j)
m ' X(j) and Y

(j)
m = 0 for every 1 ≤ j ≤ i and for

all m ≥ n.

Proof. We use induction on i.

If i = 1, Theorem 1.1 yields Y
(1)
n = 0 and X

(1)
n ' X(1)

m for all m ≥ n.
Now we assume that the statement is true for i ≥ 1 and prove the i+ 1

case. First, note that if m ≥ n, then km ∩ L(i)
n = kn since km/kn is totally

ramified and L
(i)
n /kn is unramified (we recall that n0 = 0 here). Thus

Gal(kmL
(i)
n /km) ' Gal(L(i)

n /kn) ' G(i)
n .

This means that the natural restriction induces an epimorphism

(3) G(i)
m ' Gal(L(i)

m /km) � Gal(kmL
(i)
n /km) ' G(i)

n .

By inductive hypothesis,

|G(i)
m | = |X(1)

m | · . . . · |X(i)
m | = |X(1)

n | · . . . · |X(i)
n | = |G(i)

n |,

so (3) is an isomorphism. Note that K ∩ L(i)
m = km yields Gal(L

(i)
m /km) '
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Gal(KL
(i)
m /K), and from [O1, Lemma 2(2)] we have

lim←−m
G(i)
m ' lim←−m

Gal(L(i)
m /km) ' lim←−m

Gal(KL(i)
m /K)

' Gal
( ⋃
m∈N

KL(i)
m /K

)
' Gal(L(i)/K) ' G(i).

The isomorphism in (3) implies that

Gal(KL(i)
n /K) ' G(i)

n ' lim←−m
G(i)
m ' G(i) ' Gal(L(i)/K),

and this leads to

(4) KL(i)
n = L(i).

Now recall that Y
(i+1)
n = X(i+1) ∩R(i+1)

n and G
(i+1)
n ' G(i+1)/R

(i+1)
n . So we

have the isomorphisms

(5) Gal(KL(i+1)
n /K) ' Gal(L(i+1)

n /kn) ' G(i+1)
n ' G(i+1)/R(i+1)

n ,

and from (4),

(6) Gal(KL(i)
n /K) = Gal(L(i)/K) ' G(i) = G̃/Ci+1(G̃) ' G(i+1)/X(i+1).

By comparing (5) and (6) we obtain R
(i+1)
n ⊆ X(i+1), which yields R

(i+1)
n

= Y
(i+1)
n . Since X(i+1) ⊆ Z(G(i+1)) (where Z denotes the centre of the

group), we can take away the “normally generated” condition in the defini-

tion of R
(i+1)
n , i.e.,

R(i+1)
n := (νn([γ, x]), νn(gj) : x ∈ G(i+1), 2 ≤ j ≤ s)G(i+1)

= 〈νn([γ, x]), νn(gj) : x ∈ G(i+1), 2 ≤ j ≤ s〉G(i+1) ,

where 〈·〉 stands for topologically generated subgroup. We also recall

that Y
(i+1)
n is a Λ-submodule of X(i+1) (as the kernel of a homomorphism

or because Y
(i+1)
n = Gal(L(i+1)/L(i)L

(i+1)
n ) is a normal subgroup of

Gal(L(i+1)/k)), so we have the following equality between Λ-modules (recall
also Lemma 2.12):

νn,n+1Y
(i+1)
n = νn,n+1R

(i+1)
n = R

(i+1)
n+1 = Y

(i+1)
n+1 .

Our final hypothesis |X(i+1)
n | = |X(i+1)

n+1 | implies that the natural restriction

X
(i+1)
n+1 � X

(i+1)
n is an isomorphism, hence Y

(i+1)
n+1 = Y

(i+1)
n as well.

Thus Nakayama’s Lemma yields Y
(i+1)
n = R

(i+1)
n = 0, and the theorem

follows.

Remark 2.14. (1) The hypothesis G
(i)
n ' G(i)

n+1 (or R
(i)
n = R

(i)
n+1, which

is the same) is equivalent to those of the above theorem, i.e., |X(j)
n | = |X(j)

n+1|
for 1 ≤ j ≤ i.

In the same way it is easy to see that the condition G̃n ' G̃n+1 (or

R̃n = R̃n+1) is equivalent to requiring |X(j)
n | = |X(j)

n+1| for any j ≥ 1.



Stabilization in non-abelian Iwasawa theory 327

(2) The equivalence R
(i+1)
n ⊆ X(i+1) ⇔ R

(i)
n = 0 can also be proved easily

by group theory, noting that

R(i)
n = π(R(i+1)

n ) = (R(i+1)
n · C(i+1)(G

(i+1)))/C(i+1)(G
(i+1))

' R(i+1)
n /(R(i+1)

n ∩ C(i+1)(G
(i+1))) = R(i+1)

n /(R(i+1)
n ∩X(i+1))

(where π : G(i+1) → G(i) is the natural projection).

(3) From the proof of Theorem 2.13 one can also deduce (among others)
the following facts:

(i) kmL
(j)
n = L

(j)
m for all m ≥ n and any 1 ≤ j ≤ i;

(ii) KL
(j)
n = L(j) for any 1 ≤ j ≤ i;

(iii) L(j)/L
(j)
n is a Zp-extension of the number field L

(j)
n , and for any

1 ≤ j ≤ i the fixed field of Gal(L(j)/L
(j)
n )p

h
is L

(j)
n+h.

We end this section with a slightly different version of Theorem 2.13 (re-
call that A(E) denotes the p-part of the class group of the number field E).

Proposition 2.15. Assume that |X(j)
n | = |X(j)

n+1| for all 1 ≤ j ≤ i − 1

and that A(L
(i−1)
n+1 ) ' A(L

(i−1)
n ). Then X

(j)
n ' X

(j)
m ' X(j) for every 1 ≤

j ≤ i and any m ≥ n.

Proof. Recall that X
(i)
n ' A(L

(i−1)
n )

G
(i−1)
n

, i.e., X
(i)
n is isomorphic to the

maximal quotient of A(L
(i−1)
n ) on which G

(i−1)
n = Gal(L

(i−1)
n /kn) acts triv-

ially (see Theorem 2.2). Since L
(i−1)
n ∩ kn+1 = kn, we have a surjection

Gal(L
(i−1)
n+1 /kn+1) � Gal(kn+1L

(i−1)
n /kn+1) ' Gal(L(i−1)

n /kn)

(i.e., G
(i−1)
n+1 � G

(i−1)
n ) given by the natural restriction maps. The first hy-

pothesis yields G
(i−1)
n+1 ' G

(i−1)
n , so A(L

(i−1)
n+1 ) ' A(L

(i−1)
n ) immediately im-

plies X
(i)
n ' X(i)

n+1 and we can apply Theorem 2.13.

3. On the p-rank of X
(i)
n . The stabilization of p-ranks turns out to be

much more complicated to obtain. Up to now we can only prove it under
rather stringent hypotheses similar to those of Theorem 2.13 (in particular

they yield λ(i) = 0 for any i). Recall that λ̃
(i)
n := rkp(X

(i)
n ).

Theorem 3.1. Suppose that |X(j)
n | = |X(j)

n+1| for all 1 ≤ j ≤ i, and

λ̃
(i+1)
n = λ̃

(i+1)
n+1 . Then λ̃

(i+1)
n = λ̃

(i+1)
m = λ̃(i+1) for any m ≥ n.

Proof. In the proof of Theorem 2.13 we have already seen that the hy-
pothesis on the orders implies

R(i+1)
n ⊆ X(i+1) and Y (i+1)

m = νn,mY
(i+1)
n
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for all m ≥ n. Moreover, from the hypothesis λ̃
(i+1)
n = λ̃

(i+1)
n+1 , we have

X(i+1)/(Y (i+1)
n + pX(i+1)) = X(i+1)/(νn,n+1Y

(i+1)
n + pX(i+1)).

Then Y
(i+1)
n + pX(i+1) = νn,n+1Y

(i+1)
n + pX(i+1) and, moding out pX(i+1),

we obtain

(Y (i+1)
n + pX(i+1))/pX(i+1) = νn,n+1(Y

(i+1)
n + pX(i+1)/pX(i+1)).

Nakayama’s Lemma yields

Y (i+1)
n + pX(i+1)/pX(i+1) = 0, i.e., Y (i+1)

n ⊆ pX(i+1).

Thus Y
(i+1)
m ⊆ pX(i+1) and λ̃

(i+1)
n = λ̃

(i+1)
m = λ̃(i+1) for all m ≥ n.

Remark 3.2. Note that assuming |X(1)
n | = |X(1)

n+1| (as in the above the-

orem) yields λ(1) = 0, and consequently λ(j) = 0 for all j ≥ 1 (see [O1, Pro-

position 3]). Of course it is still possible for λ̃(j) to be non-zero, but the
applications of the theorem are limited by this rather strong hypothesis
(which was natural for the stabilization of orders).

As seen in Proposition 2.15, if we replace the hypothesis λ̃
(i+1)
n = λ̃

(i+1)
n+1

of the previous theorem with the corresponding one on class groups, i.e.,

rkp(A(L
(i)
n+1)) = rkp(A(L

(i)
n )), then the claim remains true.

Proposition 3.3. Assume that rkp(A(L
(i)
n+1)) = rkp(A(L

(i)
n )) and |X(j)

n |
= |X(j)

n+1| for all 1 ≤ j ≤ i. Then λ̃
(i+1)
n = λ̃

(i+1)
m = λ̃(i+1) for all m ≥ n.

Proof. Let

B
(i)
n+1 := 〈 ag−1 : g ∈ G(i)

n+1, a ∈ A(L
(i)
n+1)〉 ⊆ A(L

(i)
n+1).

The hypothesis on the orders implies that Gal(L
(i)
n+1/L

(i)
n ) ' Gal(kn+1/kn)

(see also Remark 2.14(3)). Thus the action of g commutes with the norm

N
L
(i)
n+1/L

(i)
n

and one gets N
L
(i)
n+1/L

(i)
n

(B
(i)
n+1) = B

(i)
n . Hence

N
L
(i)
n+1/L

(i)
n

(pA(L
(i)
n+1) +B

(i)
n+1) = pA(L(i)

n ) +B(i)
n .

By the hypothesis on ranks, the norm map N
L
(i)
n+1/L

(i)
n

: A(L
(i)
n+1)→ A(L

(i)
n )

induces an isomorphism

N : A(L
(i)
n+1)/pA(L

(i)
n+1)

∼−→ A(L(i)
n )/pA(L(i)

n ),

which yields

A(L
(i)
n+1)/(pA(L

(i)
n+1) +B

(i)
n+1)

∼−→ A(L(i)
n )/(pA(L(i)

n ) +B(i)
n ).

But A(L
(i)
n )/(pA(L

(i)
n ) + B

(i)
n ) is canonically isomorphic to X

(i+1)
n /pX

(i+1)
n ,

so λ̃
(i+1)
n = λ̃

(i+1)
n+1 and we can apply Theorem 3.1.
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