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1. Introduction

1.1. Notation. We introduce the following notation:

X a smooth projective absolutely irreducible curve over Fq,
g the genus of X,

K the function field of X,

Φqf or Bf the number of places of K of degree f,

h the class number of X (the number of Fq-points of Jac(X)),

ZX(T ) the zeta function of X which is a rational function of T,

ωi
√
q the inverse roots of the numerator of ZX(T ),

κ the residue of ZX(q−s) = ζX(s) at s = 1,

log the Neperian logarithm loge.

By a curve we always mean a smooth projective absolutely irreducible curve.

1.2. Existing lower bounds for the class number. Our goal is to
provide estimates for the number of rational points on the Jacobian of a
smooth projective curve that use the information on the number of points
on this curve defined over Fq or over its extensions. The starting point for
all such estimates is the interpretation of the class number as the value at 1
of the numerator of the zeta function of the curve. In order to estimate it,
one uses properties of the zeta function such as its functional equation, and
the Riemann Hypothesis (Weil bounds).

From the work of Weil, we know that the class number h of a smooth pro-
jective absolutely irreducible curve X of genus g defined over Fq is bounded
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as follows:

(
√
q − 1)2g ≤ h ≤ (

√
q + 1)2g.

Considerable effort has been devoted to sharpening these bounds. Let
us cite some work in this direction. Lachaud and Martin-Deschamps [LMD]
first obtained the lower bound

h ≥ hLMD = qg−1
(q − 1)2

(q + 1)(g + 1)
,

using a formula which is a consequence of the functional equation for the
zeta function:

h =

∑g−1
n=0An +

∑g−2
n=0 q

g−1−nAn∑g
i=1 |1− ωi

√
q|2

,

where An is the number of effective divisors of degree n on X. Ever since,
methods from combinatorics were used to give good bounds for the numer-
ator and the denominator of this fraction.

In [BR], [BRT], Ballet, Rolland, and Tutdere used this approach in order
to prove rather elaborate lower bounds on h. Some of these bounds turn out
to be asymptotically optimal when g →∞, meaning that they converge to
the lower bound from the generalized Brauer–Siegel theorem for function
fields ([TVN], see also Remark 2.8). The best of their lower bounds is given
by the following theorem:

Theorem 1.1 (Ballet–Rolland–Tutdere). Let X/Fq be a curve defined
over Fq of genus g ≥ 2 and of class number h. Let D1, D2 be finite sets of
integers, (`r)r∈D1 , (mr)r∈D2 be families of integers such that:

(1) D1 ⊆ {1, . . . , g − 1};
(2) D2 ⊆ {1, . . . , g − 2};
(3) for any r ∈ D1, Φqr ≥ 1;
(4) for any r ∈ D2, Φqr ≥ 1;
(5) lr ≥ 0 and

∑
r∈D1

r`r ≤ g − 1;
(6) mr ≥ 0 and

∑
r∈D2

rmr ≤ g − 2.

Then h ≥ hBRT with

hBRT =
(q − 1)2

(g + 1)(q + 1)− Φq

( ∏
r∈D1

(
Φqr + `r

`r

)

+ qg
∏
r∈D2

[(
qr

qr − 1

)φqr
− Φqr

(
Φqr +mr

mr

) q−r�

0

(q−r − t)mr

(1− t)Φqr+mr+1
dt

])
.

From now on we denote by hBRT the best possible lower bound from
this theorem, that is, the one with an optimal choice of D1, D2, (`r)r∈D1 ,
and (mr)r∈D2 .
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In a recent article dealing with estimates for the number of points on
general abelian varieties, Aubry, Haloui, and Lauchaud [AHL] obtained cer-
tain lower bounds on class numbers that can be very sharp when the curve
in question has many rational points compared to its genus. However, these
bounds are all rather poor from the asymptotic point of view when g →∞.
Let us recall their results concerning the Jacobian of curves.

Theorem 1.2 (Aubry–Haloui–Lachaud). For a smooth absolutely irre-
ducible projective curve X defined over Fq of genus g ≥ 2 and of class
number h we have:

(1) h ≥M(q)g
(
q + 1 +

Φq − (q + 1)

g

)g
with

M(q) =
e log x1/x−1

x1/x − 1
, x =

(√
q + 1
√
q − 1

)2

.

(2) h ≥ q − 1

qg − 1

[(
Φq + 2g − 2

2g − 1

)
+

2g−1∑
r=2

Φqr

(
Φq + 2g − 2− r

2g − 1− i

)]
.

(3) If Φq ≥ g(
√
q − 1) + 1 then

h ≥
(
Φq + g − 1

g

)
− q
(
Φq + g − 3

g − 2

)
.

(4) h ≥ (q − 1)2

(g + 1)(q + 1)− Φq

[(
Φq + g − 2

g − 2

)
+

g−1∑
r=0

qg−1−1
(
Φq + r − 1

r

)]
.

We denote by hAHL the best possible lower bound for h given by (1)–(4)
of this theorem. We remark that the estimate (3) can be very sharp when g
is small and Φq is large. We will come back to that in §3.

1.3. The aim of this paper is to show how the Mertens theorem and
the explicit Brauer–Siegel theorem lead to improvements of these bounds in
many cases, most notably when g is large. This is done in §2 (Corollary 2.5).
To do so we use the asymptotic theory of global fields, and more precisely
the technique of explicit formulae. The third section is devoted to numerical
experiments. We compare the bounds in several examples provided by re-
cursive asymptotically good towers of function fields. Finally, in the fourth
section we discuss further research directions and open problems.

2. Explicit formulae and their link to class numbers

2.1. Explicit formulae. Our starting point is the Mertens theorem [L]
for curves and its relation to the generalized Brauer–Siegel theorem. Our
exposition differs slightly from [L]: we take the opportunity to sharpen (and
sometimes correct) the corresponding bounds.
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Let us recall Serre’s explicit formulae from [S].

Theorem 2.1 (Explicit formula). For any sequence (vn) such that the
radius of convergence ρ of the series

∑
vnt

n is strictly positive, define ψm,v(t)
=
∑∞

n=1 vmnt
mn, and ψv(t) = ψ1,v(t). Then for t < q−1ρ, we have the

explicit formula

∞∑
f=1

fΦqfψf,v(t) = ψv(t) + ψv(qt)−
2g∑
j=1

ψv(
√
q ωjt).

We choose N ∈ N, and take vn = 1/n if n ≤ N and 0 otherwise. Applying
Theorem 2.1 with t = q−1, we obtain the identity

S0(N) = S1(N) + S2(N) + S3(N),

where

S0(N) =
N∑
n=1

n−1q−n
∑
m|n

mΦqm =
N∑
f=1

1

fqf
|X(Fqf )|,

S1(N) =
N∑
n=1

1

n
, S2(N) =

N∑
n=1

1

nqn
, S3(N) = −

2g∑
j=1

N∑
n=1

1

n
(q−1/2ωj)

n.

We transform it in order to make the desired quantities appear. For
any N ≥ 1,

S0 −
N∑
f=1

Φqf log

(
qf

qf − 1

)
︸ ︷︷ ︸

ε0(N)

+
N∑
f=1

Φqf log

(
qf

qf − 1

)

= S1 + S2 − log
q

q − 1︸ ︷︷ ︸
ε2(N)

+ log
q

q − 1

+ S3 − log(κ log q) + log
q

q − 1︸ ︷︷ ︸
ε3(N)

+ log(κ log q)− log
q

q − 1
.

To get bounds for h we will not need estimates on ε0(N) and ε2(N), but
they are useful for proving the Mertens theorem recalled later.

Lemma 2.2. We have the following bounds for εi(N):

− c1(q)

NqN/2
− c2(q)g

Nq3N/4
≤ ε0(N) ≤ 0,

− 1

(q − 1)(N + 1)qN
≤ ε2(N) ≤ 0, 0 ≤ |ε3(N)| ≤ 2g

(
√
q − 1)(N + 1)qN/2

,
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with

c1(q) =
2q(q + 1)

(q − 1)2
≤ 12 and c2(q) =

2q

q − 1

( √
q

√
q − 1

+
q3/2

q3/2 − 1

)
≤ 20.

Proof. The following inequalities hold for |x| > 1 and N > 0:∣∣∣∣log

(
x

x− 1

)
−

N∑
n=1

1

nxn

∣∣∣∣ =

∣∣∣∣ ∞∑
n=N+1

1

nxn

∣∣∣∣ ≤ 1

(N + 1)|x|N+1

∞∑
n=0

1

|x|n

≤ 1

(N + 1)|x|N (|x| − 1)
.

This implies the bounds for ε2(N).

The one for ε3(N) is derived from the classical formula [TVN, Corollary
3.1.13]

log(κ log q)− log
q

q − 1
=

2g∑
i=1

log

(
1− ωj√

q

)
.

It gives

|ε3(N)| =
∣∣∣∣− 2g∑

j=1

N∑
n=1

1

n
(q−1/2ωj)

n − log(κ log q) + log
q

q − 1

∣∣∣∣
=

∣∣∣∣ 2g∑
j=1

(
− log

(
1− ωj√

q

)
−

N∑
n=1

1

n

(
ωj√
q

)n)∣∣∣∣,
and since |ωj | = 1, we have

|ε3(N)| ≤
2g∑
j=1

1

(N + 1)
√
qN |√q − ωj |

≤ 2g

(
√
q − 1)(N + 1)qN/2

.

We finally estimate ε0(N) along the lines of [L, proof of Lemma 2]. We
first transform the expression for S0:

S0(N) =
N∑
f=1

fΦqf

[N/f ]∑
m=1

q−fm(fm)−1 =
N∑
f=1

Φqf

[N/f ]∑
m=1

1

qfmm
.

Thus,

ε0(N) = S0(N)−
N∑
f=1

Φqf log
qf

qf − 1
=−

N∑
f=1

Φqf

(
log

qf

qf − 1
−

[N/f ]∑
m=1

1

qfmm

)

= −
N∑
f=1

Φqf

∞∑
m=[N/f ]+1

1

qfmm
.
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As 1
m ≤

1
[N/f ]+1 , we get

0 ≤ −ε0(N) ≤
N∑
f=1

Φqf

([N/f ] + 1)qf [N/f ](qf − 1)
.

To estimate Φqf we use Φqf ≤
qf+1+2gqf/2

f . Thus

0 ≤ −ε0(N) ≤ 1

N

N∑
f=1

qf + 1 + 2gqf/2

(qf − 1)qf [N/f ]
.

We split the last sum in two, using the fact that for f > [N/2] we have
[N/f ] = 1, and for f ≤ [N/2] we have f [N/f ] ≥ N − f :

−ε0(N) ≤ 1

N

[N/2]∑
f=1

qf + 1 + 2gqf/2

qN−f (qf − 1)
+

1

N

N∑
f=[N/2]+1

qf + 1 + 2gqf/2

qf (qf − 1)

≤ 1

N

([N/2]∑
f=1

qf + 1

qf − 1
qf−N +

N∑
f=[N/2]+1

qf + 1

qf − 1
q−f

)

+
2g

N

([N/2]∑
f=1

qf

qf − 1
qf/2−N +

N∑
f=[N/2]+1

qf

qf − 1
q−3f/2

)

≤ q + 1

(q − 1)N

([N/2]∑
f=1

qf−N +

N∑
f=[N/2]+1

q−f
)

+
2gq

N(q − 1)

([N/2]∑
f=1

qf/2−N +

N∑
f=[N/2]+1

q−3f/2
)

≤ (q + 1)(q−[N/2]−1 + q−N+[N/2])

(q − 1)N(1− q−1)

+
2gq

N(q − 1)

(
q−N+[N/2]/2

1− q−1/2
+
q−3([N/2]+1)/2

1− q−3/2

)
≤ 2(q + 1)q

(q − 1)2
· 1

NqN/2
+

2q

q − 1

( √
q

√
q − 1

+
q3/2

q3/2 − 1

)
g

Nq−3N/4
.

Remark 2.3. The bound for ε0(N) provides a correction to [L, Lemma 2],
and the bound for ε3(N) corrects Lemma 5 there. It can be easily checked
that these bounds are also valid in the more general situation of varieties
over finite fields treated in [L].
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2.2. Bounds for the class number. Using the calculations from the
previous section and applying the class number formula

κ log q =
hq1−g

q − 1
,

we get the following theorem.

Theorem 2.4. Let X be a smooth projective absolutely irreducible curve
defined over Fq of class number h. Then h is given by the following formula
valid for any N ≥ 1:

log h = g log q +
N∑
f=1

1

fqf
|X(Fqf )| −

N∑
n=1

1 + q−n

n
− ε3(N),

or equivalently,

log h = g log q +

N∑
r=1

(
Φqr

bN/rc∑
f=1

1

fqrf

)
−

N∑
n=1

1 + q−n

n
− ε3(N),

where ε3(N) satisfies |ε3(N)| ≤ 2g
(
√
q−1)(N+1)qN/2 .

Corollary 2.5 (Bounds for the class number). The number of rational
points h on the Jacobian of X satisfies hmin(N) ≤ h ≤ hmax(N), where

hmin(N) = qg exp

( N∑
f=1

1

fqf
|X(Fqf )|−

N∑
n=1

1+q−n

n
− 2g

(
√
q−1)(N+1)qN/2

)
,

hmax(N) = qg exp

( N∑
f=1

1

fqf
|X(Fqf )|−

N∑
n=1

1+q−n

n
+

2g

(
√
q−1)(N+1)qN/2

)
.

Remark 2.6. The knowledge of a given (small) number of Φqf ’s allows
us, nevertheless, to apply Corollary 2.5 for any N. For example, in the case
of lower bounds, one can bound from below the unknown Φqf by 0, or by the
quantities arising from the Weil bounds, depending on which one is better.
We thus get a family of bounds parametrized by N , and we can choose the
best one.

2.3. Mertens theorem and class numbers. Putting together esti-
mates from Section 2.1, we find once again:

Theorem 2.7 (Mertens theorem [L]). Let X be a smooth projective ab-
solutely irreducible curve of genus g defined over Fq. Then

N∑
f=1

Φqf log

(
qf

qf − 1

)
= log(κ log q)− ε0(N) + ε2(N) + ε3(N)−

N∑
n=1

1

n
.

For any N ≥ 1, we can deduce from this a weaker form of our bound,
which might be easier to compare to Ballet–Rolland–Tutdere’s bound:
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log h = g log q +

[ N∑
f=1

Φqf log

(
qf

qf − 1

)]
−

N∑
n=1

1 + q−n

n
+ ε0(N)− ε3(N).

Remark 2.8. Theorem 2.7 implies that our bounds on h are asymptot-
ically optimal. More precisely, recall that a family of curves {Xi} over Fq of
genus gi →∞ is asymptotically exact if the limits

φqr = lim
i→∞

Φqr(Xi)

gi

exist for all r. For asymptotically exact families of curves the generalized
Brauer–Siegel theorem [TVN] states that

lim
i→∞

log h(Xi)

gi
= log q +

∞∑
r=1

φqr log

(
qr

qr − 1

)
.

We see that when gi → ∞ and then N → ∞, the bounds hmin(N) and
hmax(N) from Corollary 2.5 divided by gi converge to the right hand side of
the above equality.

3. Numerical computations. In this section, we compare the lower
bound hmin(N) given by Theorem 2.4 with hBRT and hAHL in the situation
of recursive towers. We denote by hLZ the bound from Theorem 2.4 for
the optimal choice of N. Such a number N is found by computer-aided
calculations where the missing information on the number of points on a
curve X over Fqr is obtained either from the inequality X(Fqr) ≥ X(Fqd)

when d | r, or from Serre’s bound X(Fqr) ≥ qr + 1− gb2qr/2c, depending on
which one is more precise. We follow closely [BRT, Section 5].

Recall that a tower of function fields over Fq is an infinite sequence
{Fk/Fq}k∈N of function fields such that for all k the ground field Fq is al-
gebraically closed in Fk, Fk ⊂ Fk+1, and the genus satisfies g(Fk) → ∞.
A recursive tower is a tower {Fk} of function fields over Fq such that
F0 = Fq(x0) is a rational function field and Fk+1 = Fk(xk+1) where xk+1

satisfy the equation f(xk, xk+1) = 0 for a given polynomial f(X,Y ) in
Fq[X,Y ].

3.1. The first tower of Garcia–Stichtenoth. Assume that qr is a
square, and consider the tower {Hk} = H/Fqr defined recursively by the
polynomial

f(X,Y ) = Y qr/2Xqr/2−1
+ Y −Xqr/2 ∈ Fq[X,Y ].

We also consider the recursive tower {Fk} = F/Fq of function fields defined
by the same polynomial starting with the rational function field Fq(x0). The
base change of Fk to Fqr gives Hk.
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We compare the numerical estimates from [BRT, Section 5.1] with what
we obtain using our bound hLZ. We take q = 2, r = 2 and consider the fields
H2, H3, and H4. Note an error in [BRT, Section 5.1] where for k = 3 the
genus is erroneously taken to be equal to 14 instead of 13 (this was pointed
out by Julia Pieltant). Recall that B1(Hk) denotes the number of F4-points
of the curve corresponding to Hk.

Step k g(Hk) B1(Hk) hBRT hAHL hLZ N

2 5 16 7434 12240 9230 10

3 13 30 16 911 279 581 16 271 525 520 26 274 427 880 33

4 33 56 1.43 × 1025 0.075 × 1025 4.149 × 1025 83

Here is a similar comparison for q = 2 and the tower F with B1(Fk) and
B2(Fk) denoting respectively the number of F2- and F4-rational points of
the curve corresponding to Fk:

Step k g(Fk) B1(Fk) B2(Fk) hBRT hLZ N

2 5 2 7 7 30 12

3 13 2 14 10453 42898 26

4 33 2 27 343 733 443 618 1 543 267 494 985 74

We notice that our bound is better than the other ones except for the
case of H2/F4 where we cannot beat hAHL. The situation changes, however,
if we use some additional information on the places of H2/F4. Namely, one
can calculate that B2(H2) = 0 and B3(H2) = 24. These values give the
bound hLZ = 13430 reached for N = 11. Using MAGMA we calculated that
the exact value of the class number is 16200.

3.2. The tower of Bassa–Garcia–Stichtenoth. Consider the tower
{Hk} = H/Fq3 defined recursively by the polynomial

f(X,Y ) = (Y q − Y )q−1 + 1 +
Xq(q−1)

(Xq−1 − 1)q−1
∈ Fq[X,Y ],

and let {Fk} = F/Fq be the same recursive tower over Fq. We have the
following numerical estimates for the class numbers when q = 2, that is,
over F8 for Hk and over F2 for Fk. The value of hBRT bound is taken from
[BRT, Section 5.1].

Step k g(Hk) B1(Hk) hBRT hLZ N

2 5 24 125 537 126 832 9

3 13 48 2.556 × 1013 4.039 × 1013 29

4 29 96 2.010 × 1030 5.778 × 1030 11
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Step k g(Fk) B3(Fk) hBRT hLZ N

2 5 8 3 3 5

3 13 16 771 1623 19

4 29 32 212 127 395 751 622 136 61

3.3. Composite towers. The next example is the composite tower
{Ek/Fq2} constructed in [HST]. It is obtained as a composite of the tower
of Garcia and Stichtenoth from Section 3.1 with a certain explicitly given
function field. The details can be found in [BRT, Proposition 5.11]. The
following table combines the estimates for q2 = 4:

Step k g(Ek) B1(Ek) B2(Ek) B3(Ek) hBRT hLZ N

2 55 1 12 12 3.657 × 1031 23.55 × 1031 14

3 132 1 24 24 9.198 × 1077 121.02 × 1077 15

For two other composite towers {Ek/F2} and {E′k/F8} this time based
on the tower from Section 3.2 (see [BRT, Proposition 5.17] for a detailed
description), we get the following numerical data:

Step k g(Ek) B3(Ek) B6(Ek) hBRT hLZ N

2 17 16 8 10 254 27563 30

3 49 32 16 1.718 × 1014 9.173 × 1014 94

Step k g(E′k) B1(E′k) B2(E′k) hBRT hLZ N

2 17 48 24 1.002 × 1017 2.304 × 1017 35

3 49 96 48 2.426 × 1048 13.08 × 1048 10

One more composite tower Ek/F4 introduced in [W] (see also [BRT,
Proposition 5.18]) gives us the following table:

Step k g(Ek) B1(Ek) B2(Ek) B3(Ek) hBRT hLZ N

2 30 1 9 9 4.625 × 1016 18.329 × 1016 52

3 89 1 27 27 2.236 × 1052 21.39 × 1052 16

For the composite tower Ek/F9 from [BRT, Proposition 5.20] we obtain:

Step k g(Ek) B1(Ek) B2(Ek) hBRT hLZ N

2 15 36 4 8.563 × 1014 18.76 × 1014 30

3 46 72 8 7.470 × 1045 41.64 × 1045 10

Finally, for yet another composite tower Ek/F4 from [BRT, Proposition
5.22] we get:
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Step k g(Ek) B1(Ek) B2(Ek) hBRT hLZ N

2 25 36 9 1.415 × 1018 3.835 × 1018 56

3 124 108 27 3.501 × 1086 36.23 × 1086 16

In all these examples with one exception we manage to improve on the
previously known bounds.

4. Open questions. Several natural questions arise in connection with
the bounds obtained in this paper.

Question 4.1. Is it possible to compare the bounds hBRT, hAHL, and
hLZ?

We would like to have a more or less explicit description of the cases
when each of the bounds is the best one. In the above examples our bound
hLZ always turned out to be better than hBRT. However, we were not able to
establish this fact in general. Comparing the bounds hLZ and hBRT does not
seem to be easy, in particular due to the fact that the number N correspond-
ing to the optimal hmin(N) can vary significantly and does not correspond
at all to the number of known Φqr ’s.

Question 4.2. Can one improve (or even optimize) the bound hLZ using
different test functions in the explicit formulae?

Oesterlé managed to get the best possible bounds for |X(Fqr)| available
from explicit formulae using the linear programming approach (see [S]).
This technique, however, does not seem to be applicable directly in our
case due to the non-linearity of the problem in question. The optimization
seeming difficult, it would be interesting at least to find examples where
a different choice of test functions in the explicit formulae leads to better
bounds than hLZ.

Question 4.3. What are the analogues of the above bounds in the num-
ber field case?

This question seems to be more directly accessible than the previous
ones, since there are both the Mertens theorem and an explicit version of
the Brauer–Siegel theorem available in the number field case [L], [LZ]. Nev-
ertheless, analytic components of the proofs will certainly be more substan-
tial, and the application of the Generalized Riemann Hypothesis might be
necessary in certain cases.
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