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1. The problem. Let a, b, c be fixed coprime integers with min(a, b, c)
> 1. As an application of his p-adic analogue of the Thue–Siegel method,
Mahler [15] proved in 1933 that the equation

(1) ax + by = cz

has finitely many solutions (x, y, z) in positive integers. His method is in-
effective in the sense that it gives no indication on the number of possible
solutions for a fixed triple (a, b, c). Such an information has been obtained
only in particular instances. Thus, Sierpiński [20] showed that (2, 2, 2) is the
unique solution in positive integers to the equation 3x+4y = 5z. In the same
journal, Jeśmanowicz [10] conjectured the uniqueness of the solution to (1)
in case (a, b, c) is a Pythagorean triple. This conjecture is still open, despite
the efforts of many authors.

In analogy to Jeśmanowicz’s conjecture, Terai [23] claimed that (1) al-
ways has at most one solution. Simple counterexamples to this statement
have been found by Cao [4], who attempted to correct it by adding the hy-
pothesis max(a, b, c) > 7. It turns out that this condition is not sufficient to
entail the sought-for uniqueness. A family of counterexamples has been found
by Le (see [14]), who also stated the following form of Terai’s conjecture.

Conjecture 1.1. For given coprime integers a, b, c > 1, the Diophan-
tine equation (1) has at most one solution in integers x, y, z > 1.

Starting with [23] and [24], much work has been devoted to the case
when (1) has a solution of the form (2, 2, r), with r greater than 1 and odd.
This implies in particular that c is odd and exactly one of a, b is even. For
definiteness, suppose that a is even and therefore b is odd. Most of the recent
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results concern the case

(2) a ≡ 2 (mod 4), b ≡ 3 (mod 4), gcd(a, b) = 1, r > 1 odd, a2 + b2 = cr.

The conjecture is established in this case under one of the following addi-
tional hypotheses:

(α) (Terai [25]) b ≡ 3 (mod 8), b ≥ 30a and
(
a
d

)
= −1, where d > 1 is a

divisor of b and
(
a
d

)
denotes the Jacobi symbol,

(β) (Cao [4]) c is a prime power,
(γ) (Cao–Dong [5]) b ≥ 25.1a,
(δ) (Le [14]) c > 3 · 1027 and r > 7200.

Further partial confirmations of the conjecture are referred to in the papers
cited above.

Contrary to what is claimed in [14], the last result quoted above does
not imply that the conjecture holds with the exception of finitely many
pairs (c, r). One of the aims of this paper is to prove that indeed there are
at most finitely many values for which the conjecture can be refuted. On the
way we shall prove other results for the positive solutions to the Diophantine
simultaneous equations

(3) a2 + b2 = cr, a2 + by = cz,

where

(4) r, z > 1 are odd, a ≡ 2 (mod 4), b ≡ 3 (mod 4), gcd(a, b) = 1.

As a consequence of our deliberations, several improvements on the re-
sults (α)–(δ) are obtained. Thus, we prove that, if the conditions stated
in (2) hold, in any hypothetical counterexample to Conjecture 1.1 each of a,
b, c must have at least two prime divisors. Moreover, we strengthen (α) and
(γ) by showing that the inequality b > 0.218 a entails the truth of Terai’s
conjecture. With regard to (δ), we are able to improve the bound on r to
770. Our proofs approach these cases from a different perspective and are
much shorter than the published ones, although they involve a harder com-
putational component.

We give here a rough description of our procedure. In the hypotheses of
our work, c is a sum of two coprime squares. We generate all such decompo-
sitions for c up to 4 · 1010 with the help of Cornacchia’s algorithm (see [18]
and [2] for very simple proofs of its correctness). We notice that, when com-
pared to the obvious method (for c fixed and 1 ≤ u <

√
c test whether c−u2

is a square), for our range of values Cornacchia’s algorithm is more than
ten times faster. To each such decomposition of c one associates values a
and b as in (2). We show that the existence of a solution to system (3)–(4)
implies that a and b are comparatively big in comparison to c. The resulting
inequalities relating a, b and c impose stringent restrictions on y, r, and z.



A conjecture on exponential equations 253

This description is vague; details are given in Section 3, after we recall
classical facts, some of them going back at least to Lagrange. Additional
information on the putative solutions of (3) are given in Section 3. Section 4
contains the proofs of our main results, among which are the following.

Theorem 1.2. There are at most finitely many quadruples (a, b, c, r) for
which (2) holds and (1) has more than one solution in integers x, y, z > 1.
For all of these quadruples, we have r < 770.

The method of proof is ineffective since it gives no explicit bound on c
beyond which Terai’s conjecture holds in case (2).

Theorem 1.3. Let u and r be positive integers with u ≡ 2 (mod 4) and
r ≡ 3 (mod 4). Put

a =
(r−1)/2∑
j=0

(−1)j
(
r

2j

)
ur−2j , b =

(r−1)/2∑
j=0

(−1)j
(

r

2j + 1

)
ur−1−2j , c = u2 + 1.

Then (1) has a unique solution in integers x, y, z > 1.

Theorem 1.4. If a or b is a prime power then the system (3) has no
solutions subject to the restrictions from (4).

The last part of the paper is devoted to improvements of bounds on
the parameters associated to a putative solution to system (3). They are
meant to shrink the search domains for the components of a solution to a
manageable size according to the present-day technology.

Although Terai’s conjecture remains open, we have pushed the analysis
further than ever before; and there is significant hope that our results can be
improved by either complementing them with brand new ideas or dedicated
computations.

2. Arithmetic restrictions. We use a result of Lagrange (1741), Leçons
sur le calcul des fonctions, which makes recurrent appearance in the study
of Diophantine equations, as well as in the theory of finite fields, Chebyshev
polynomials and many other areas of mathematics. For the sake of complete-
ness, we sketch its proof.

Lemma 2.1. Let X and Y two commuting indeterminates and let n ≥ 1
be a positive integer. Then

Xn + Y n =
bn/2c∑
j=0

cn,j (−XY )j(X + Y )n−2j ,

where the cn,j are nonnegative integers which are defined recursively by

cn,j = 0 if j < 0 or j > bn/2c,
c1,0 = 1, c2,0 = 1, c2,1 = 2, cn+1,j = cn,j + cn−1,j−1 for n ≥ 2.
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More precisely ,

cn,j =
(n− j − 1)!n
(n− 2j)! j!

.

Proof. The result is obvious for n≤ 2, including the initial values c1,0 = 1,
c2,0 = 1, c2,1 = 2. The general case can be obtained by induction from the
formula

Xn+1 + Y n+1 = (Xn + Y n)(X + Y )−XY (Xn−1 + Y n−1),

which implies the recursive relation

cn+1,j = cn,j + cn−1,j−1 for n ≥ 2.

By completely working out the details, one can get the closed form for the
coefficients cn,j .

We shall repeatedly use the well-known structure of integers satisfying
the first equation from (3).

Lemma 2.2. If X, Y and Z are coprime positive integers such that

X2 + Y 2 = Zn,

where n is an odd integer and X is even, then there exist coprime positive
integers u and v, with u even and v odd , and λ1, λ2 ∈ {−1, 1} such that

X + Y i = λ1ε
n, ε = u+ vλ2i, Z = u2 + v2.

Moreover , if ε = |ε|eθi/2 then

X = Zn/2|cos(nθ/2)|, Y = Zn/2|sin(nθ/2)|.

The former part is proved as in Mordell’s book [17, pp. 122–123]; the
latter assertion is an obvious consequence of the preceding formulas.

In the present case, using the relations a2 + b2 = cr and a2 + by = cz, we
get exponential expressions for a, b and by/2.

Corollary 2.3. There are positive integers u, v, u1, v1, with u, u1 even
and v, v1 odd , such that c = u2 + v2 = u2

1 + v2
1 and

a = 1
2 |ε

r + ε̄r| = cr/2|cos(rξ)|, b = 1
2 |ε

r − ε̄r| = cr/2|sin(rξ)|

and

a = 1
2 |ε

z
1 + ε̄z1| = cz/2|cos(zξ1)|, by/2 = 1

2 |ε
z
1 − ε̄z1| = cz/2|sin(zξ1)|,

where ε = u+ vi, ε1 = u1 + v1i, tan ξ = v/u, and tan ξ1 = v1/u1.

On combining the previous results, we get alternative expressions for a,
b and by/2.
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Corollary 2.4. The values of a and b satisfy

a = ±u
(r−1)/2∑
j=0

cr,j(−c)j(4u2)(r−1)/2−j , b = ±v
(r−1)/2∑
j=0

cr,jc
j(−4v2)(r−1)/2−j

and

a = ±u1

(z−1)/2∑
j=0

cz,j(−c)j(4u2
1)(r−1)/2−j ,

by/2 = ±v1
(z−1)/2∑
j=0

cz,jc
j(−4v2

1)(z−1)/2−j .

From the last formula it follows that

by/2 ≡ ±v1zc(z−1)/2 (mod v3
1),

in particular

p | v1 ⇒ vp(v1) ≥ y/2 ≥ 3 if gcd(p, z) = 1.

3. Bounds for a, b, c. From our standard hypotheses on a, b, c stated
in (3) and (4) it follows that c ≡ 5 (mod 8). As recalled in Lemma 2.2, the
first equation from (3) implies that there exist positive integers u and v such
that

(5) c = u2 + v2.

By [4], we may also suppose that c has at least two prime divisors. Then it is
easily seen that one has c ≥ 85. Much better lower bounds on c are derived
as follows. With the help of Corollary 2.3, from each decomposition (5) of c
we get values of a and b satisfying (2) for a suitable r. If the corresponding
system (3) has a solution, we find that a > cz/µ and b > cr/λ for certain
positive reals µ, λ. Such inequalities allow for comparison of the exponents
r, y, z. The resulting inequalities involve these values µ, λ. Changing the
point of view, we reverse the reasoning and infer from µλ ≤ 2y that either
a < cz/µ or b < cr/λ. This game is easily played on a computer and consists of
computations of suitable continued fractions and of bounds for linear forms
in the logarithms of algebraic numbers.

To put this strategy at work, additional information is needed. Useful
facts are given by the next result, proved in several places, for instance
in [14].

Lemma 3.1. With the above notation and hypotheses, let (x, y, z) be a
solution to (1) with (x, y, z) 6= (2, 2, r). Then x = 2, y ≡ 2 (mod 4), y ≥ 6
and z is odd.
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Let us come back to the notation of Lemma 2.2 and put ε = eiθ/2 and

α := ε/ε̄ =
u2 − v2 + 2uvi

u2 + v2
eθi.

Since α is a root of the irreducible integer polynomial
(u2 + v2)T 2 − 2(u2 − v2)T + u2 + v2,

whose Mahler’s measure is equal to u2 + v2, the absolute logarithmic height
of α is

h(α) = 1
2 log(u2 + v2) = 1

2 logZ.

We also have

min{X,Y } ≥ Zn/2

π
min
k′∈Z
|nθ − k′π|.

Let k be an integer such that mink′∈Z |nθ − k′π| = |nθ − kπ| and put
Λ = n logα− k log(−1).

Then

min{X,Y } ≥ Zn/2

π
|Λ| and min{X,Y } ≥ 0.99Zn/2 min{|Λ|, 0.001},

where Λ is a linear form in two logarithms of algebraic numbers.
3.1. A first application of linear forms. In a number fieldK embedded in

the complex field, containing a root of unity ζ = eiπ/m, where m is maximal,
and a number α of modulus one which is not a root of unity, a linear form

Λ = n logα− ikπ
as above can be written as

Λ = n logα−mk log ζ.

We remark that changing α into a suitable αζ` if necessary we can assume
that |logα| ≤ π/(2m). We may work under this hypothesis without changing
the notation because h(ζ`α) = h(α).

On using the main result of Laurent–Mignotte–Nesterenko [12], it is pos-
sible to prove that

(6) z > 55000 implies a > cz/(2
√

3).

On using relations a2 + by = cz and c = u2
1 + v2

1, by a computation of a
suitable continued fraction we verify that

(7) for 85 ≤ c < 4 · 1010, z > 10 implies a > cz/(2
√

3).

Similarly, from a2 + b2 = cr and c = u2 + v2 for some integers u, v which
may be different from u1, v1, we obtain

(8) for 85 ≤ c < 4 · 1010, r > 10 implies b > cr/(2
√

3).

This information is exploited in conjunction with the following remarks.
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Lemma 3.2. Assume both conditions (3) and (4) hold. Then:

(a) If for some µ > 0 one has a ≥ cz/µ then 2z < µr.
(b) If for some λ > 0 one has b ≥ cr/λ then yr < λz.
(c) If µ1, µ2 > 0 are such that µ1µ2 ≤ 2y then a ≥ cz/µ1 and b ≥ cr/µ2

cannot simultaneously hold. In particular ,

a < cz/(2
√

3) or b < cr/(2
√

3).

Proof. (a) From a ≥ cz/µ and a2 + b2 = cr it readily follows that
c2z/µ< cr.

(b) If b ≥ cr/λ then cyr/λ ≤ by < cz.
(c) The first assertion follows directly from (a) and (b). The last part

follows from this because y ≥ 6 by Lemma 3.1.

Using this lemma, we ruled out the small values of r and z (precisely,
those with 2 < r < z < 10) and prove that c cannot be comparatively small.
After around two weeks of computation we verified the following result.

Lemma 3.3. Assume the system of equations (3) has solutions satisfy-
ing (4). Then c > 4 · 1010.

3.2. A second application of linear forms. From now on we consider
c > 4 · 1010 without further explicitly mentioning it. In order to improve
the bounds on r and z obtained in the previous subsection, we apply a very
recent result of Laurent [11].

Lemma 3.4. Consider a nonzero linear form

Λ = b1 logα1 − b2 logα2,

where α1 and α2 are nonzero algebraic numbers, both different from 1, and
b1 and b2 are positive integers. Put

D = [Q(α1, α2) : Q]/[R(α1, α2) : R].

Let K be an integer ≥ 3, L an integer ≥ 2, and R1, R2, S1, S2 positive
integers. Let ρ and µ be real numbers with ρ > 1 and 1/3 ≤ µ ≤ 1. Put
R = R1 +R2 − 1, S = S1 + S2 − 1, N = KL, and

g =
1
4
− N

12RS
, σ =

1 + 2µ− µ2

2
,

b =
((R− 1)b2 + (S − 1)b1)

2

(K−1∏
k=1

k!
)−2/(K2−K)

.

Let a1, a2 be positive real numbers such that

ai ≥ ρ|logαi| − log |αi|+ 2D h(αi),
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for i = 1, 2. Suppose that

Card{αr1αs2; 0 ≤ r < R1, 0 ≤ s < S1} ≥ L,(I)
Card{rb2 + sb1; 0 ≤ r < R2, 0 ≤ s < S2} > (K − 1)L(II )

and also that

(III ) K(σL− 1) log ρ− (D + 1) logN −D(K − 1) log b
− gL(Ra1 + Sa2) > c(N),

where
c(N) =

2
N

log(N !N−N+1(eN + (e− 1)N )).

Then
|Λ′| ≥ ρ−µKL,

where

Λ′ = Λmax
{
LSeLS|Λ|/(2b2)

2b2
,
LReLR|Λ|/(2b1)

2b1

}
.

In our case α1 = α (up to a power of i), α2 = i, b1 = r or z, and b2 = k.
(To work with the linear form associated to the relation a2 + by = cz we
only need to take above b1 = z instead of b1 = r.) For c = 4 · 1010 + 5, we
choose the parameters as follows: L = 8, ρ = 7.7, µ = 0.56, K = dmLa1a2e,
R1 = 4, S1 = 2, R2 = d

√
mLa2e, and S2 = d(1 + (K − 1)L)/R2e, where

m = 0.1166, and we get

|Λ| > c−0.2113r for r ≥ 771,

which implies

a > cz/(2
√

3) and b > cr/(2
√

3) for r ≥ 771.

Taking into account Lemma 3.2(b), one concludes that r ≤ 769.
Now, combining Lemma 3.2(a) and Lemma 3.2(c), we see that if the

system has a solution then r ≤ 769 and z ≤ 983. The detailed argument
is the following: we apply Laurent’s result twice, a first computation for
z ≥ 985 gives an upper bound for µ2 which combined with part (a) implies
r ≥ 641; then a second computation for r ≥ 641 gives an upper bound for
µ1 with µ1µ2 < 12, and part (c) leads to a contradiction. Thus z ≤ 983.
Moreover, it is easy to check that the greater c, the better our estimates, so
that the conclusion holds for all c > 4 · 1010.

Arguing in the same way, we can establish tighter bounds for r and z,
provided a higher lower bound on y is available.

Lemma 3.5. If the Diophantine system (3) has solutions satisfying (4)
then in all cases

r ≤ 769 and z ≤ 983.
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Moreover ,
y ≥ 10 ⇒ r ≤ 539 and z ≤ 759,
y ≥ 14 ⇒ r ≤ 461 and z ≤ 681,
y ≥ 18 ⇒ r ≤ 419 and z ≤ 647,
y ≥ 22 ⇒ r ≤ 395 and z ≤ 627,
y ≥ 602 ⇒ r ≤ 263 and z ≤ 539.

3.3. Elementary lower bounds on b. Let ε = u + iv = |ε|eiξ, where
c = u2 + v2, with u even, and |ε| =

√
c. Then tan ξ = v/u and

b = 1
2 |ε

r − ε̄r| = cr/2|sin(rξ)|
with r ≥ 3. In this subsection we derive lower bounds on b from lower bounds
on v.

Lemma 3.6. With the above notation,

r ≤ π/ξ − 1 ⇒ b ≥ vc(r−1)/2 ≥ vc.
In particular , b ≥ vc(r−1)/2 whenever r ≤ uπ/v − 1.

Proof. The hypothesis 3 ≤ r ≤ π/ξ − 1 implies that ξ ≤ π/4 and 3ξ ≤
rθ ≤ π − ξ, and therefore sin(rξ) ≥ sin ξ = v/

√
c.

For the last part, note that the hypothesis r ≤ π/ξ − 1 holds if r ≤
uπ/v − 1 because 0 < ξ < tan ξ = v/u.

Despite its innocuous appearance, the lemma just proved plays an im-
portant role in subsequent reasonings. Thus, v ≤ 925 implies u/v > 216
(recall our standing hypothesis c > 4 · 1010) and then the previous lemma
gives b ≥ vc(r−1)/2 ≥ cr/3 (since 3 ≤ r). In view of Lemma 2.1, it follows
that one always has b ≥ v. Therefore, b ≥ 925.

More importantly, with the help of Lemma 3.6 we shall derive a strikingly
sharp bound for the quotient y/z.

Lemma 3.7. We always have

b ≥ π

r + 1

(
1 +

π2

(r + 1)2

)−1/2√
c

and

y < z

(
2 +

9.982
log b

)
.

Moreover , if y > 600 then

y < z

(
2 +

8.863
log b

)
.

In particular , always
y < 1778.
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Proof. From our previous study we know that

(9) b ≥
{
c(r−1)/2 ≥ c if (r + 1)v < πu,
v otherwise.

Notice that (r + 1)v ≥ πu implies

c ≤
(

1 +
(r + 1)2

π2

)
v2,

so that in all cases b satisfies

b ≥ π

r + 1

(
1 +

π2

(r + 1)2

)−1/2√
c.

Now we consider the upper bounds for y. From (9) we get

c ≤

{
b if (r + 1)v < πu,

v2 +
(r + 1)2

π2
v2 otherwise.

Hence,

c ≤
(

1 +
(r + 1)2

π2

)
b2.

Using the inequality by < cz one gets

(10) y < z

(
2 +

log(1 + (r + 1)2/π2)
log b

)
.

If y ≤ 10 the second estimate of the lemma is trivial, hence we suppose
y ≥ 14. Then r < 462, and after a simple computation we get the stated
inequality.

When y > 600 we know from Lemma 3.5 that r ≤ 263 and the third
estimate follows. The last one is deduced by using the fact that b ≥ 925 and
z < 540 whenever y ≥ 600.

3.4. Estimates on a. Our next goal is to obtain some estimates on a.
Put b = cλ. The information we have up to know allows us to conclude
that 1/2 − (log 1800)/log c < λ < r/2. We use this knowledge to prove the
following.

Lemma 3.8. Put a = b(y−λ
′)/2. Then λ′ is positive and satisfies

λ′ >
log c
log b

(z − r − 10−22) >
2
r

(2− 10−22).

Proof. From the second equation in (3) we get

cz(1− c−z+r) < by < cz

and since z ≥ r + 2 this implies

z log c+ log(1− c−2) < y log b < z log c,
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while the first equation in (3) and the definition of λ′ imply

(y − λ′) log b < r log c.

Hence
z log c− 10−21 < r log c+ λ′ log b,

and therefore

2 ≤ z − r < 10−22 + λ′
log b
log c

10−22 + λ′λ,

by the definition of λ. In other words

λ′ >
1
λ

(z − r − 10−22),

and in particular

λ′ >
2
r

(2− 10−22) > 0.

4. Main results. Recall the result of Corollary 2.3: we have seen that
c = u2 + v2 = u2

1 + v2
1 for some positive integers, with u, u1 even and v, v1

odd, and that

a = 1
2 |ε

r + ε̄r| = 1
2 |ε

z
1 + ε̄z1|, b = 1

2 |ε
r − ε̄r|, by/2 = 1

2 |ε
z
1 − ε̄z1|,

where ε = u + vi and ε1 = u1 + v1i. It follows that, up to sign, a, b and
by/2 are values of binary linear recursive sequences. If (u, v) = (u1, v1) then
the term by/2 has no primitive divisors, so that on checking tables of binary
Lucas sequences having terms without primitive divisors given in [3] and [1]
we recover Cao’s result [4] mentioned in Introduction.

Theorem 4.1. If c is a prime power then the system (3) has no solutions
subject to restrictions from (4).

Now we are in a position to prove that the conjecture holds perhaps with
the exception of finitely many pairs (c, r).

Subtracting the two equations from (3) results in the Diophantine equa-
tion

(11) by − b2 = cz − cr.
Since 6 ≤ y and 5 ≤ z, for fixed exponents (y, r, z) one gets an algebraic
curve of positive genus. The absolute irreducibility and the genus of the curve
defined by (11) are given by a theorem of Davenport, Lewis and Schinzel [9].

Lemma 4.2. Let f(X) and g(Y ) be polynomials with integral coefficients
of degree n > 1 and respectively m > 1. Let D(λ) = disc(f(X) + λ) and
E(λ) = disc(g(Y ) + λ). Suppose there are at least n/2 distinct roots of
D(λ) = 0 for which E(λ) 6= 0. Then f(X) − g(Y ) is irreducible over the
complex field. Further , the genus of the curve f(x) − g(y) = 0 is positive
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except possibly when m = 2 or m = n = 3. Apart from these possible ex-
ceptions, the equation f(x) − g(y) = 0 has at most finitely many integral
solutions.

Stickelberger’s formula [21] (cf. [22]) for the discriminant of a trinomial
gives

disc(by − b2 + λ) = −λ(yy/2λy/2−1 − 2(y − 2)y/2−1)2,

disc(cz − cr + λ) = (−1)z(z−1)/2λr−1(zzλz−r − (z − r)z−rrr),
so that the last quoted result applies.

Combining these classical facts with some of our results in the previous
sections, we obtain the main result of the paper.

Theorem 4.3. There are at most finitely many quadruples (a, b, c, r) for
which (2) holds and (1) has more than one solution in integers x, y, z > 1.
For all of these quadruples, we have r < 770.

Proof. For each fixed pair of odd numbers (r, z), 1 < r < z, any solu-
tion to the system (3) subject to (4) corresponds to an integer point on a
curve (11) of positive genus. By Siegel’s seminal paper [19], such an equation
has only finitely many integral solutions. According to Lemma 3.5, in any
compatible system (3) one has r < 770 and z ≤ 983. Moreover, y is bounded
from above by 1800 (see Lemma 3.7). Therefore, a compatible system (3)
gives rise to finitely many nonrational plane curves, each of which can have
only finitely many integer points.

The case when c is the successor of a perfect square has received a lot of
attention from people working on Terai’s conjecture (cf. [6] and the references
therein). Our next result improves on all published results on this case.

Theorem 4.4. If in the representation for c derived from Lemma 2.2 one
has v = 1, then the system (3) has no solutions subject to the restrictions
from (4).

Proof. We argue by reduction to absurd. Assume that c = u2 + 1, and
consequently b = ±

∑(r−1)/2
j=0 cr,j c

j(−4)(r−1)/2−j . Suppose that (x, y, z) is
a solution to the simultaneous equations (3) satisfying all the conditions
from (4). From Lemma 2.2 applied for n = r we know that a + ib =
η1(u+ η2i)r with η1, η2 ∈ {±1}, thus

a ≡ ±ru (mod u3), b ≡ ±
(

1−
(
r

2

)
u2

)
(mod u4),

and it follows that

cz = a2 + by ≡ r2u2 +
(
1− 1

2r(r − 1)yu2
)
≡ 1 + zu2 (mod u4),



A conjecture on exponential equations 263

that is, 1
2r(r − 1) y + z ≡ r2 (mod u2). On noting that the left-hand side of

this relation is greater than the right-hand side (because y ≥ 6), one obtains
the first inequality from the chain

(12) u2 + r2 ≤ 1
2r(r − 1)y + z < 1

2r
2y.

The second inequality holds since z < ry/2. Indeed, cry/2 = (a2 + b2)y/2 >
a2 + by = cz. Since in this case u2 ≥ 4 · 1010, (12) readily contradicts the
bounds r < 770 and y < 1800 already obtained.

We are now in a position to prove Terai’s conjecture when b is a prime
power. The proof relies on the observation that b is of the form ±vUr, where

Ur = Ur(α, β) =
αr − βr

α− β
is the rth Lucas number associated to the pair (α, β) = (u + vi, u − vi). In
a subsequent proof we shall use the fact that a = ±uŨr, with

Ũr = Ũr(α̃, β̃) =
α̃r − β̃r

α̃− β̃
the rth Lehmer number associated to the pair (α̃, β̃) = (u + vi,−u + vi).
Recall that a prime divisor of Ur, respectively Ũr, is called primitive if it
does not divide

(13) (α− β)2U1 · · ·Ur−1 = −4v2U1 · · ·Ur−1,

respectively

(14) (α̃2 − β̃2)2Ũ1 · · · Ũr−1 = −16u2v2Ũ1 · · · Ũr−1.

Bilu, Hanrot and Voutier [3] showed that for n > 30, the nth Lu-
cas and Lehmer numbers have primitive divisors. Moreover, together with
Abouzaid [1] they gave a complete list of n and (α, β), respectively (α̃, β̃),
for which Ur(α, β) or Ũr(α̃, β̃) does not have a primitive divisor.

Theorem 4.5. If b is a prime power then the system (3) has no solutions
subject to the restrictions from (4).

Proof. Let p be an odd prime and s a positive integer such that b = ps.
In view of the result just proved, we conclude that if the system (3) has
a solution satisfying (4), then p divides v. Therefore, either Ur = 1 or its
only prime divisor p is not primitive (see (13)). Checking the relevant tables
from [3] and [1], one finds that necessarily r = 3, 5, 7 or 13. Moreover, when
r = 3, c would be even, in contradiction with (4). For r = 5, no candidates
for (α, β) yield an integer value for v, while for r = 7 or 13 the resulting
value for u is not an integer.

To the best of our knowledge, the literature contains nothing of the kind
of our next result.
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Theorem 4.6. If a is a prime power then the system (3) has no solutions
subject to the restrictions from (4).

Proof. As explained before, we use the equality a = ±uŨr with u ≥ 2.
We proceed as in the previous proof, reasoning about the Lehmer pair (α̃, β̃)
instead of the Lucas pair (α, β). Since the differences are insignificant, the
details can be safely left to the reader.

5. Further results. In subsequent reasonings we shall need to know
that v1 6= 1. This fact follows from the following.

Lemma 5.1. With the notation of the previous section we have the fol-
lowing two results:

min{u1/v1, v1/u1} ≤ 0.01 ⇒ r ≤ 659 and z ≤ 845

and
min{u1/v1, v1/u1} ≥ 0.001856.

In particular ,
min{u1, v1} ≥ 372.

Proof. With the notation ε1 = u1 + iv1 = |ε|eiξ1 and ξ′1 = π/2− ξ1, the
corresponding linear form is

Λ = z(2iξ1)− k(iπ/2) = z(−2iξ′1)− k′(iπ/2)

and when ξ1 or ξ′1 is small we can get much better estimates in the application
of Laurent’s lower bound. Technically, we can take a much larger radius of
interpolation and we obtain the above upper bounds for r and z.

The proof of the second result is elementary. We have a = cz/2|cos(zξ1)| =
cz/2|sin(zξ′1)|. Hence the condition (z + 1)ξ1 < π/2 implies

|cos(zξ1)| ≥ cos(π/2− ξ1) = sin ξ1 = v1/
√
c,

where 0 < ξ1 < tan ξ1 = v1/u1. It follows that
v1
u1

<
π

2 · 846
= 0.001856733 . . . ⇒ a > cz/2−1 ≥ cr/2.

Since a2 + b2 = cr, this is a contradiction that proves the lower bound v1/u1

≥ 0.001856. A similar reasoning leads to the inequality u1/v1 ≥ 0.001856.
Now, since u2

1 + v2
1 > 4 · 1010, a simple computation gives min{u1, v1}

≥ 372.

In a similar way we can prove partially analogous results concerning the
pair (u, v).

Lemma 5.2. The following implication holds:

min{u/v, v/u} ≤ 0.01 ⇒ r ≤ 553 and z ≤ 705.
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If the Diophantine system (3) has solutions satisfying (4) with

b ≥ c(r−1)/2

(which is true if v(r + 1) < πu) then

y ≥ 6 ⇒ r ≤ 101 and z ≤ 299.

Moreover , again under the hypothesis b ≥ c(r−1)/2,
y ≥ 10 ⇒ r ≤ 47 and z ≤ 227, y ≥ 14 ⇒ r ≤ 31 and z ≤ 209,
y ≥ 18 ⇒ r ≤ 23 and z ≤ 197, y ≥ 22 ⇒ r ≤ 19 and z ≤ 189,
y ≥ 30 ⇒ r ≤ 13 and z ≤ 185, y ≥ 50 ⇒ r ≤ 7 and z ≤ 161,
y ≥ 70 ⇒ r ≤ 5 and z ≤ 155, y ≥ 98 ⇒ r ≤ 3 and z ≤ 147,

and there is no solution for y ≥ 142.

We add some other estimates related to b.

Lemma 5.3. If the Diophantine system (3) has solutions satisfying (4)
then

ry/2 = z + 2t with t ≥ 1,

and
b < cr/2−2/y.

Moreover , if
b ≥ (1 + 10−20) cr/2−4/y

then
ry/2 = z + 2.

If ry/2 = z + 2 then

y ≥ 6 ⇒ r ≤ 101, y ≥ 10 ⇒ r ≤ 47, y ≥ 14 ⇒ r ≤ 29,
y ≥ 18 ⇒ r ≤ 19, y ≥ 22 ⇒ r ≤ 17, y ≥ 26 ⇒ r ≤ 13,
y ≥ 30 ⇒ r ≤ 11, y ≥ 38 ⇒ r ≤ 9, y ≥ 42 ⇒ r ≤ 7,
y ≥ 50 ⇒ r ≤ 5, y ≥ 66 ⇒ r = 3,

and there is no solution for y ≥ 102.

Proof. We give a proof just for the first two assertions. From the relations

(a2 + b2)y/2 > a2 + by = cz

we deduce ry/2 > z and the first assertion follows since ry/2 and z are both
odd.

If b ≥ (1 + 10−20)cr/2−4/y then, since by > (1 − 10−21)cz, we see that
z > ry/2− 4 and the relation z = ry/2− 2 follows from the first assertion.

The remaining estimates result from computation with the help of lower
bounds on linear forms.
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Our next result improves upon the main results of [25], [5] (see (α) and
respectively (γ) in Introduction) and [13] (the reader is warned that in Le’s
paper b denotes the unique even number among a and b).

Proposition 5.4. If system (3) has solutions subject to the restrictions
from (4) then

a > 4.608 b, c > 3y−10, y ≤ 2z + 4.

Moreover ,
y ≤ 2z − 4 for y ≥ 34

and
y ≥ 602 ⇒ r ≤ 149 and z ≤ 319.

In particular ,
y ≤ 634.

Proof. When y ≤ 10 one has c > 10y because c > 4 · 1010. For the
same reason, c > 2.2y when y is between 14 and 30. It is much harder to
obtain similar inequalities for higher values of y. We now prove that always
c > 2.1716y.

As seen above, v1 has a prime divisor p. Recall that in Lagrange’s formula
given in Lemma 2.1 the coefficients for n odd are

cn,j =
(n− j − 1)!n
(n− 2j)! j!

,

where 0 ≤ j ≤ (n − 1)/2, and the quotient (n − j − 1)!/j! is an integer. It
follows that

vp(cn,j) ≥ vp(n)− vp((n− 2j)!) > vp(n)− n− 2j
p− 1

≥ vp(n)− n− 2j
2

.

As p divides v1, it does not divide c, and therefore

vp(cz,jc(−4v2
1)(z−1)/2−j) = vp(cz,j) + (z − 1− 2j)vp(v1)

≥ vp(z)− 1
2(z − 1− 2j) + (z − 1− 2j)vp(v1)

≥ vp(z) + 1
2(z − 1− 2j)vp(v1) > vp(z)

for 0 ≤ j < (z − 1)/2.
Corollary 2.4 yields

yvp(b) = 2(vp(z) + vp(v1)).

Having in mind the upper bounds for z given in Lemma 3.5, we see that for
y ≥ 34 we have v3(z) ≤ 5, and vp(z) ≤ 3 for p ≥ 5. Consequently, for p = 3
one obtains

c > v2
1 ≥ 3y−10 ≥ 3y(1−5/17) > 2.1716y.

For p ≥ 5 one has c > py−6 ≥ 5y−6 > 3y−10, so that the claim that c >
2.1716y is true for any solution of the system (3) satisfying (4).
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Set provisionally µ = b2/cr. Then cz > by implies that

µy/2 < cz−ry/2 ≤ c−2 < 2.1716−2y.

Hence,
a = b

√
µ−1 − 1 > b

√
2.17164 − 1 > 4.608 b.

Since a2 < cz−2 and c > 1010 we have by > (1 − 10−20)cz, and the
inequality c > 2.1716y implies

b > 2.171z.

The inequalities relating y and z are proved in three steps. First, we show
that we always have y ≤ 2z+ 12. Next, we disprove the equalities y = 2z+ 8
and y = 2z+12 by combining information already available with some more
computations. Similar arguments are employed to show that one cannot have
y = 2z + 4 for y ≥ 34, while y 6= 2z follows from a result of Darmon and
Merel mentioned in Remark 2 below. Here are the details.

The upper bound

y < z

(
2 +

log(1 + (r + 1)2/π2)
log b

)
,

combined with the lower bound b > 2.171z, leads to

y < 2z +
log(1 + (r + 1)2/π2)

log 2.171
.

The bound y ≤ 2z + 12 is trivially satisfied for y ≤ 22, and for y ≥ 22 we
have seen that r < 396, so that

y < 2z +
log(1 + 3962/π2)

log 2.171
< 2z + 12.5,

which implies y ≤ 2z + 12. To show that the equality in this relation never
holds, one argues similarly to the case y = 2z + 4 for y ≥ 34 detailed below.
Then one repeats the reasoning to show that y 6= 2z + 8, so that we always
have

y ≤ 2z + 4.

Suppose that y = 2z + 4 for some y ≥ 34. Chen’s result recalled in the
proof of Theorem 5.6 implies y ≥ 38 and we verify by a computation with
linear form estimates that

y ≥ 38 ⇒ r ≤ 239.

From the relation by < cz, we get

y = 2z + 4 ⇒ b < c1/2−2/y.

Moreover, we know that

b < c(r−1)/2 ⇒ u < (r + 1)v/π ⇒ c < (1 + (r + 1)2/π2)v2.
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Put b = vb′; then b′ is a positive integer. The above facts imply

y = 2z + 4 ⇒ c <

(
1
b′

√
1 +

(r + 1)2

π2

)y/2
.

Now we consider v1. We have v1 > u1π/(2(z + 1)), thus

v2
1 >

(
1 +

4(z + 1)2

π2

)−1

c.

Moreover, we can write

v1 = w
y/2
1 /w0, where w0 | gcd(z, v2

1)

and b = w1b
′′, where b′′ is a positive integer.

If b′ = 1, a short computer verification shows that w1 < 9 for y ≥ 38.
Since w1 is an odd integer greater than 1, one has w1 ∈ {3, 5, 7}. But we
know that b is not a power of a prime, hence b′ ≥ 3, with b′ ≥ 5 when w1 = 3.
Using now b′ ≥ 3, another computer verification leads to w1 ∈ {3, 5} and
w1 = 3 for y ≥ 102.

Now we apply again Laurent’s result but with the much better lower
bound c > 3y−10 (better for y ≥ 34 than c > 4 ·1010) and we get for example

y ≥ 102 ⇒ r ≤ 181 and z ≤ 373,
y ≥ 302 ⇒ r ≤ 157 and z ≤ 329,
y ≥ 602 ⇒ r ≤ 149 and z ≤ 319.

Comparing the previous estimates we conclude that we always have y ≤
634.

Corollary 5.5. Assume (2) holds and b > 0.218 a. Then Conjecture 1.1
is true.

It is very likely that actually there are no solutions to (3) under the
conditions stated in (4). This is the case under the hypothesis of our last
result.

Theorem 5.6. The system (3) has no solutions (r, y, z) subject to the
restrictions (4) in which z is divisible by 3 and y 6= 6, 10, 14, 18, 30, 42, 50,
54, 62, 70, 90, 98, 126, 150, 162, 186, 210, 250, 270, 294, 310, 350, 378, 434,
450, 486, 490, 558, 630.

Proof. I. Chen [7] very recently proved that for any prime satisfying the
restrictions 7 < p < 107 and p 6= 31 there are no coprime integers A, B, C
satisfying

A2 +B2p = C3.

This confirms Terai’s conjecture in case z is a multiple of 3 and y has a
prime divisor p > 7, p 6= 31. The only values of the y-component in a
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solution of (3)–(4) not covered by Chen’s result are listed in the statement,
by taking into account Proposition 5.4.

The following remarks are helpful when trying to further reduce the num-
ber of candidate pairs (y, z).

Remark 1. When r divides z, we may remove the multiples of 3 from
this list because Mignotte and Pethő [16] have proved that if there are points
with both coordinates greater than 1 on the curve Xm−X = Y n− Y , then
gcd(m,n) = 1.

Remark 2. A deep result of Darmon and Merel [8], according to which
the equation Xn+Y n = Z2 has no solutions in nonzero integers when n ≥ 4,
implies that gcd(y, z) ≤ 3 always holds.
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