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On square values of quadratics
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Andrew Bremner (Tempe, AZ)

1. We investigate the following problem. Given a positive integer N ,
does there exist a quadratic function f(x) = ax2 + bx+ c in Z[x] that is not
identically square, and which takes square values for N consecutive values
of x? Examples with N = 8 are known (Allison [1]), where the quadratic has
an axis of symmetry midway between two integers; and all such examples
may be described in terms of the points on an elliptic curve of rational rank 1.
When the quadratic fails this symmetry condition, then examples only with
N = 7 are known; see Allison [2], who by computer search discovers two such
examples. In this note, we pursue two approaches, constructing thirteen new
examples (given at (27)–(31), (49)–(56)), some with quite large coefficients,
for example

f(x) = 20832169413896281x2 − 98230455975155336x

+ 174196838754626704,

which is square for x = 0,±1,±2,±3.

2. We reprise the methods of Allison [2], and consider first the case
where the quadratic has an axis of symmetry about an integral value of x.
Suppose N ≥ 5. By translation, we may assume that b = 0, and f(0) = l2,
f(±1) = k2, f(±2) = m2. Then 4k2 − 3l2 = m2. If N ≥ 7, then necessarily
f(±3) = n2, so that

4k2 − 3l2 = m2, 9k2 − 8l2 = n2.

But this intersection of two quadrics, on taking (1, 1, 1, 1) as a zero point,
represents an elliptic curve with a cubic model

y2 = x(x2 − 59x+ 864).

This curve, of conductor 30, has rank 0, and its only rational points are the
torsion points, which lead to f(x) being identically square. So non-square
quadratics in this case can only occur with N at most 5.
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96 A. Bremner

Consider second the case that the quadratic has an axis of symmetry
halfway between two integers. Suppose N ≥ 6. By translation, there is no
loss of generality in supposing that a+ b = 0, and

f(0) = f(1) = l2, f(−1) = f(2) = k2, f(−2) = f(3) = m2.

Then (a, b, c) =
(1

2(k2 − l2),−1
2(k2 − l2), l2

)
, and 3k2 − 2l2 = m2. Now

f(−3) = f(4) = 6k2 − 5l2, so that N ≥ 8 demands

3k2 − 2l2 = m2, 6k2 − 5l2 = n2.

This latter is the equation of an elliptic curve, with a cubic model

y2 = x(x2 − 27x+ 180);

this curve is of rank 1, and points (k, l) satisfying (k2 − l2)(k2 − 9l2) 6= 0
provide non-square quadratics that are square for values of x = −3, . . . , 4.
So in the case N = 8 there is an infinite family of non-square quadrat-
ics, corresponding to multiples of the generator of infinite order of the
Mordell–Weil group. For example, the smallest two points are given by
(k, l) = (67, 73), (3089, 2231) leading to the respective quadratics:

f(x) = −420x2 + 420x+ 5329,(1)

f(x) = 2282280x2 − 2282280x+ 4977361.(2)

If we seek solutions with N ≥ 10, then f(−4) = f(5) = 10k2 − 9l2, so that

3k2 − 2l2 = m2, 6k2 − 5l2 = n2, 10k2 − 9l2 = p2.

This latter defines a curve of genus 5, so possesses only finitely many ratio-
nal points. It seems plausible that these are given by precisely (±k,±l) =
(1, 1), (3, 1) (corresponding to the quadratic being a perfect square), but we
are unable to show this. It seems likely that no non-square f(x) exists with
half-integer symmetry in the case N = 10.

3. The more interesting case is where f(x) does not display either of the
above symmetries. Suppose N ≥ 7. Without loss of generality, suppose that

f(−3) = p2, f(−2) = q2, f(−1) = r2,

f(0) = s2, f(1) = t2, f(2) = u2, f(3) = v2.

Then

9a− 3b+ c = p2,

4a− 2b+ c = q2,

a− b+ c = r2,

c = s2,
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a+ b+ c = t2,

4a+ 2b+ c = u2,

9a+ 3b+ c = v2.

Accordingly,
6r2 − 8s2 + 3t2 = p2,

3r2 − 3s2 + t2 = q2,

r2 − 3s2 + 3t2 = u2,

3r2 − 8s2 + 6t2 = v2.

(3)

The condition that the corresponding quadratic f(x) is not a perfect square
is that

(r + 2s+ t)(r + 2s− t)(r − 2s+ t)(r − 2s− t) 6= 0.(4)

The symmetry
(
p
v
q
u
r
t
s
s
t
r
u
q
v
p

)
of (3) corresponds to replacing b by −b, so

henceforth, numerical solutions of (3) will be assumed to satisfy p ≤ v.
Allison [2] ran a computer search and found two solutions (up to sym-

metry) to the equations (3). These solutions,

(p, q, r, s, t, u, v) = (53, 173, 217, 233, 227, 197, 127),

(526, 337, 160, 113, 274, 461, 652)

deliver the quadratics

f(x) = −4980x2 + 2220x+ 54289,(5)

f(x) = 37569x2 + 24738x+ 12769,(6)

which have the property that they are square for the values of x = −3, . . . , 3.
Originally, we hoped to find infinitely many examples in this case for

N = 7, by exhibiting a parametrized curve on the surface represented by
the equations at (3), but we were unable to do so. Such a curve induces a
parametrized curve on the variety, also a surface,

V :





6r2 − 8s2 + 3t2 = p2,

3r2 − 3s2 + t2 = q2,

r2 − 3s2 + 3t2 = u2,

(7)

and it is with this latter surface that we continue the investigation. Its
points correspond to quadratics f(x) with N = 6, and by finding curves on
the surface V , we are able to give infinitely many such quadratics. Satisfying
the fourth equation at (3) demands finding rational points on curves of genus
greater than 1, and our parametrizations of (7) lead in this way to several
new quadratics where N = 7.

The variety V is the intersection of three quadrics in P5, and is non-
singular. Accordingly V is a K3 surface. It contains the 32 straight lines
shown in Table 1.
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Table 1. 32 lines on V

`1 : p = 3r + 2s, q = 2r + s, t = r + 2s, u = 2r + 3s

`2 : −p = 3r + 2s, q = 2r + s, t = r + 2s, u = 2r + 3s

`3 : p = 3r + 2s, −q = 2r + s, t = r + 2s, u = 2r + 3s

`4 : −p = 3r + 2s, −q = 2r + s, t = r + 2s, u = 2r + 3s

`5 : p = 3r + 2s, q = 2r + s, −t = r + 2s, u = 2r + 3s

`6 : −p = 3r + 2s, q = 2r + s, −t = r + 2s, u = 2r + 3s

`7 : p = 3r + 2s, −q = 2r + s, −t = r + 2s, u = 2r + 3s

`8 : −p = 3r + 2s, −q = 2r + s, −t = r + 2s, u = 2r + 3s

`9 : p = 3r + 2s, q = 2r + s, t = r + 2s, −u = 2r + 3s

`10 : −p = 3r + 2s, q = 2r + s, t = r + 2s, −u = 2r + 3s

`11 : p = 3r + 2s, −q = 2r + s, t = r + 2s, −u = 2r + 3s

`12 : −p = 3r + 2s, −q = 2r + s, t = r + 2s, −u = 2r + 3s

`13 : p = 3r + 2s, q = 2r + s, −t = r + 2s, −u = 2r + 3s

`14 : −p = 3r + 2s, q = 2r + s, −t = r + 2s, −u = 2r + 3s

`15 : p = 3r + 2s, −q = 2r + s, −t = r + 2s, −u = 2r + 3s

`16 : −p = 3r + 2s, −q = 2r + s, −t = r + 2s, −u = 2r + 3s

`17 : p = 3r − 2s, q = 2r − s, t = r − 2s, u = 2r − 3s

`18 : −p = 3r − 2s, q = 2r − s, t = r − 2s, u = 2r − 3s

`19 : p = 3r − 2s, −q = 2r − s, t = r − 2s, u = 2r − 3s

`20 : −p = 3r − 2s, −q = 2r − s, t = r − 2s, u = 2r − 3s

`21 : p = 3r − 2s, q = 2r − s, −t = r − 2s, u = 2r − 3s

`22 : −p = 3r − 2s, q = 2r − s, −t = r − 2s, u = 2r − 3s

`23 : p = 3r − 2s, −q = 2r − s, −t = r − 2s, u = 2r − 3s

`24 : −p = 3r − 2s, −q = 2r − s, −t = r − 2s, u = 2r − 3s

`25 : p = 3r − 2s, q = 2r − s, t = r − 2s, −u = 2r − 3s

`26 : −p = 3r − 2s, q = 2r − s, t = r − 2s, −u = 2r − 3s

`27 : p = 3r − 2s, −q = 2r − s, t = r − 2s, −u = 2r − 3s

`28 : −p = 3r − 2s, −q = 2r − s, t = r − 2s, −u = 2r − 3s

`29 : p = 3r − 2s, q = 2r − s, −t = r − 2s, −u = 2r − 3s

`30 : −p = 3r − 2s, q = 2r − s, −t = r − 2s, −u = 2r − 3s

`31 : p = 3r − 2s, −q = 2r − s, −t = r − 2s, −u = 2r − 3s

`32 : −p = 3r − 2s, −q = 2r − s, −t = r − 2s, −u = 2r − 3s
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A point on any line corresponds to f(x) being a perfect square. Further,
V contains the eight conics

C1 : r = s, q = t, u = p, p2 = −2s2 + 3t2,

C2 : r = −s, q = t, u = p, p2 = −2s2 + 3t2,

C3 : r = s, q = −t, u = p, p2 = −2s2 + 3t2,

C4 : r = −s, q = −t, u = p, p2 = −2s2 + 3t2,

C5 : r = s, q = t, u = −p, p2 = −2s2 + 3t2,

C6 : r = −s, q = t, u = −p, p2 = −2s2 + 3t2,

C7 : r = s, q = −t, u = −p, p2 = −2s2 + 3t2,

C8 : r = −s, q = −t, u = −p, p2 = −2s2 + 3t2.

(8)

A point on a conic corresponds to f(x) having an axis of symmetry halfway
between two integers, which case has already been discussed.

Consider the intersection of V with the family of hyperplanes

u− p = λ(r − s).(9)

On V we have u2 − p2 = −5(r2 − s2), so that on the intersection

u+ p = − 5
λ

(r + s)(10)

giving

2u = λ(r − s)− 5
λ

(r + s), 2p = −λ(r − s)− 5
λ

(r + s),(11)

with

Eλ :





12λ2q2 = r2(25 + 22λ2 + λ4) + rs(50− 2λ4)

+ s2(25− 14λ2 + λ4),

12λ2t2 = r2(25− 14λ2 + λ4) + rs(50− 2λ4)

+ s2(25 + 22λ2 + λ4).

(12)

Eλ possesses theQ(λ) pointOλ(r, s, q, t) = (1−λ, −1−λ, 3−λ, 3+λ) (whose
locus as λ varies is the straight line `19), so that Eλ is an elliptic curve over
Q(λ). For finitely many values of λ the curve can acquire singularities or
even split. The singular elements of the pencil occur at the following values
of λ, with the corresponding Kodaira classification: λ = 0 (I2), ∞ (I2),
±1 (I4), ±5 (I4), ±

√
−2 (I1), ±5/

√
−2 (I1). Indeed there are the following

decompositions:

(13)

λ = 0 : C2, C4,

λ =∞ : C5, C7,

λ = 1 : `10, `12, `14, `16,
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(13)
[cont.]

λ = −1 : `1, `3, `5, `7,

λ = 5 : `18, `20, `22, `24,

λ = −5 : `25, `27, `29, `31,

λ = ±
√
−2 : nodal quartic,

λ = ± 5√
−2

: nodal quartic.

A cubic model for Eλ is given by

Eλ : T 2 = S(S2 + 4(25 + 55λ2 + λ4)S + 4(λ2 − 1)2(λ2 − 25)2),(14)

and this is a base-change, given by µ = λ2, of the elliptic curve over Q(µ)

Fµ : T 2 = S(S2 + 4(25 + 55µ+ µ2)S + 4(µ− 1)2(µ− 25)2).(15)

This latter equation defines a rational elliptic surface, and it is known from
results of Shioda (see Shioda [12]) that the C(µ) group of points on Fµ is
generated by those points in which the S-coordinate is a polynomial in µ
of degree at most 2. A straightforward machine computation discovers that
there are precisely twelve such points (including the point at infinity), and
that Fµ(C(µ)) is of rank 2 and generated by

Q1 = (4(µ− 1)2, −12(µ− 1)2(µ+ 9)),

Q2 = ((µ− 1)(µ− 25), −3(µ− 1)(µ− 25)(µ+ 5))
(16)

of infinite order, and (0, 0) of order 2.
However, to compute the Néron–Severi rank of V , equivalently of the

K3 surface defined by Eλ (and to compute the associated generators of
Eλ(C(λ))), is harder.

To find a set of generators for NS(V,C) over Z, we use ideas of Swinner-
ton-Dyer [13], to which article the reader is referred for full details (see also
Bremner [3]–[5] for other application of these methods). The group NS(V,C)
is spanned over Z by

(a) any non-singular fibre of the pencil Eλ,
(b) the locus of the point Oλ,
(c) the components of the singular fibres in the pencil Eλ,
(d) the loci of the generators of the group Eλ(C(λ)).

For (b), we have seen that the locus of Oλ is the line `19. For (c), the
components are listed at (13). This provides 16 independent elements of
NS(V,C). Since the rank of NS(V,C) is at most 20, it follows that the rank
of the group Eλ(C(λ)) is at most 4.
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Now the curve Fµ has torsion group generated by (0, 0), and this point
is divisible by 2 on Eλ, with the torsion group of Eλ of order 4 generated by

T = [−2(λ2 − 1)(λ2 − 25), 36λ(λ2 − 1)(λ2 − 25)].

The points Q1, Q2 of Fµ correspond to the following (independent) points
of Eλ:

P1 = (4(λ2 − 1)2,−12(λ2 − 1)2(λ2 + 9)),

P2 = ((λ2 − 1)(λ2 − 25),−3(λ2 − 1)(λ2 − 25)(λ2 + 5))
(17)

thereby generating a subgroup of Eλ(C(λ)) of rank 2, and contributing to a
subgroup of NS(V,C) of rank 18.

In fact, the rank of Eλ(C(λ)) is indeed exactly 2, and this can be shown
by techniques developed by Jasper Scholten [10]. I am most grateful to him
for undertaking the relevant computation in this example.

The idea is to consider primes p for which V has good reduction. The
reduced surface V has Néron–Severi rank at least equal to that of V ; so
if such a prime p can be found with the Néron–Severi rank of V equal
to 18, then necessarily the rank of NS(V,C) is equal to 18. Consider the
`-adic cohomology group H2(VQ,Q`) for some prime ` 6= p. Let Frp be the
Frobenius morphism at p, which acts linearly on the group. By a conjecture
of Tate, proved for K3 surfaces over a finite field, the Néron–Severi rank of V
equals the number of eigenvalues of Frp which are p times a root of unity. And
the latter can be computed by counting points on the surface over various
finite fields (in this example, over Fp and Fp2), and using the Lefschetz trace
formula. For our example, the smallest primes of good reduction are 11
and 13. At p = 11, the characteristic polynomial of Frobenius is computed
as (x−11)18(x+ 11)2(x2−6x+ 121), which tells us that the 11-adic Néron–
Severi rank of V is 20, not sufficient for our purposes. However, at p = 13,
the characteristic polynomial of Frobenius equals (x − 13)18(x4 + 14x3 +
208x2 + 2366x + 28561), implying that the 13-adic Néron–Severi rank is
indeed equal to 18.

Knowing that the rank is 2, it follows that the subgroup G generated
by P1 and P2 is of finite index in the full group of points modulo tor-
sion. The height pairing matrix of P1, P2 (see, for instance, Kuwata [9])
is readily calculated to equal

( 1
1/2

1/2
1/2

)
, of determinant 1/4; and so from

Kuwata (ibid.), it follows that if G is a proper subgroup of Eλ(C(λ)) mod-
ulo torsion, then 2 divides the index of G in Eλ(C(λ)). Accordingly, at
least one of the points P1, P2, P1 + P2 (up to torsion) is divisible by
2 in Eλ(C(λ)). But this is easily shown not to be the case, so that P1
and P2 are in fact generators for Eλ(C(λ)) modulo torsion. As a corollary,
Eλ(C(λ)) = Eλ(Q(λ)).
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The mapping between Eλ and Eλ sets up the following correspondences:

(18)

r s q t Point of Eλ
1− λ −1− λ −3 + λ 3 + λ 0

1− λ −1− λ −3 + λ −3 + λ P1 + T

1− λ −1− λ 3− λ 3 + λ P1 − T
1− λ −1− λ 3− λ −3− λ 2T

1 + λ −1 + λ −3− λ 3− λ P1

1 + λ −1 + λ −3− λ −3 + λ T

1 + λ −1 + λ 3 + λ 3− λ −T
1 + λ −1 + λ 3 + λ −3 + λ P1 + 2T

−5 + λ 5 + λ 5− 3λ 5 + 3λ P2 + T

−5 + λ 5 + λ 5− 3λ −5− 3λ P1 − P2

−5 + λ 5 + λ −5 + 3λ 5 + 3λ P1 − P2 + 2T

−5 + λ 5 + λ −5 + 3λ −5− 3λ P2 − T

5 + λ −5 + λ 5 + 3λ 5− 3λ P1 − P2 − T
5 + λ −5 + λ 5 + 3λ −5 + 3λ P2 + 2T

5 + λ −5 + λ −5− 3λ 5− 3λ P2

5 + λ −5 + λ −5− 3λ −5 + 3λ P1 − P2 + T

and the locus of P1 as λ varies is the line `28, that of P2 the line `11, and
that of T the line `32.

Accordingly, the following divisors span NS(V,C) over Z:

(19) `19;C2, C4, C5, C7, `1, `3, `5, `7, `10, `12, `14, `16, `18, `20, `22, `24,

`25, `27, `29, `31; `28, `11, `32.

The intersection matrix of these 24 divisors is straightforward to write down,
and has rank 18. By considering appropriate linear combinations over Z, it
follows easily that the following 18 divisors, which we shall denote respec-
tively by Γ1, . . . , Γ18, generate NS(V,C) over Z:

(20) `1, `3, `4, `5, `6, `7, `9, `10, `11, `13, `14, `15, `17, `18, `19, `21, `25, C1.

Note that NS(V,Q) = NS(V,C), and so to any curve Γ defined over Q on V
there thus correspond uniquely determined integers m1, . . . ,m18 such that
Γ ∼ m1Γ1 + . . . + m18Γ18. The genus of Γ is a quadratic form in the mi,
given by

pa(Γ ) =
1
2

(Γ.Γ ) + 1

where (Γ.Γ ) is the self intersection number (see Shafarevich [11, p. 5]).



Square values of quadratics 103

Following simple algebra, there results

(21) 1
2deg(Γ )2 − 4(Γ.Γ )

=
1
2

(m1 −m2 +m3 −m4 −m5 −m6 +m7 −m8 −m9 +m10 −m11

+m12 −m13 −m14 +m15 +m16 −m17)2

+ (m1 −m2 +m3 −m4 +m5 +m6 −m7 +m8 +m9 +m10 −m11

−m12 +m15)2

+ (m1 −m2 +m3 −m7 +m10 −m13 +m14 +m15 +m17)2

+ (m2 +m4 −m5 −m6 −m8 −m9 +m11 −m16 +m18)2

+ (m1 +m3 −m4 −m10 + 2m11 +m12 −m15 +m16)2

+ (m1 −m2 +m3 +m4 −m10 −m15 −m16 −m18)2

+ (m2 −m12 − 2m13 +m14 +m16 +m17 −m18)2

+ (m2 −m4 −m7 + 2m10 −m12 +m13 − 2m15)2

+ 2(m2 +m5 −m6 +m8 −m9 −m11 +m12)2

+ (2m1 − 2m3 −m4 −m7 −m13 −m18)2

+ (m13 −m14 −m16 −m17 − 2m18)2

+ (m4 − 2m6 −m7 + 2m9 +m18)2

+ (m4 − 2m5 −m7 + 2m8 −m18)2

+ 2(m7 −m12 +m14 −m17)2

+ (m14 −m16 +m17)2

+ 2(m14 −m17)2

+ 2m2
16.

This is now in a form suitable for machine computation. Given the degree
and self-intersection number of Γ , it is possible to tabulate the finitely many
sets of integers m1, . . . ,m18 that are solutions of (21). In addition, since we
are only interested in irreducible curves Γ , further restrictions are imposed
on the mi by insisting that Γ have non-negative intersection number with
every known curve lying on the surface. In this manner, it is computed first
that the only irreducible rational curves on V of degrees 1 and 2 are the
known lines and conics. There are no irreducible cubics of genus 0, and, up
to symmetry, precisely four irreducible quartics of genus 0. Representative
divisors (in terms of the basis Γ1, . . . , Γ18) of the symmetry classes are

{1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1},
{1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 1},
{1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 1},
{1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1}.

(22)
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Representative parametrizations for the symmetry classes are as follows:

p : q : r : s : t : u = 3m4 + 12m3n+ 20m2n2 − 8mn3 − 3n4 :(23)

3m4 + 12m3n+ 4m2n2 − 3n4 :

3m4 + 10m3n− 2m2n2 − 6mn3 + 3n4 :

3m4 + 6m3n− 2m2n2 − 10mn3 + 3n4 :

3m4 − 4m2n2 + 12mn3 − 3n4 :

3m4 − 8m3n− 20m2n2 + 12mn3 − 3n4,

p : q : r : s : t : u = 3m4 + 89m3n− 101m2n2 + 5mn3 + 24n4 :(24)

3m4 + 63m3n− 63m2n2 + 7mn3 − 14n4 :

9m4 + 5m3n+ 41m2n2 − 71mn3 + 4n4 :

15m4 − 11m3n− 43m2n2 + 73mn3 − 6n4 :

21m4 − 21m3n− 63m2n2 + 35mn3 − 16n4 :

27m4 − 29m3n− 59m2n2 − 25mn3 + 26n4,

p : q : r : s : t : u = 6m4 + 26m3n+ 97m2n2 + 13mn3 − 40n4 :(25)

2m4 + 34m3n+ 45m2n2 + 17mn3 − 26n4 :

2m4 + 28m3n+ 25m2n2 − 25mn3 + 12n4 :

6m4 + 20m3n+ 7m2n2 − 47mn3 + 2n4 :

10m4 + 26m3n− 27m2n2 − 11mn3 − 16n4 :

14m4 + 34m3n− 47m2n2 + 17mn3 + 30n4,

p : q : r : s : t : u = 4m4 + 14m3n− 20m2n2 + 9mn3 − 9n4 :(26)

4m4 + 2m3n+ 4m2n2 − 15mn3 + 9n4 :

4m4 − 6m3n+ 2m2n2 + 15mn3 − 9n4 :

4m4 − 10m3n− 2m2n2 + 9mn3 − 9n4 :

4m4 − 10m3n+ 4m2n2 + 3mn3 + 9n4 :

4m4 − 6m3n+ 20m2n2 − 21mn3 − 9n4.

The condition that (23) gives a point on (3) becomes

9m8 − 108m7n− 72m6n2 + 876m5n3 + 478m4n4 − 932m3n5

+ 376m2n6 − 60mn7 + 9n8 = 2,

a curve of genus 3 with only finitely many rational points. Computer search
with |m| + n ≤ 500 produces solutions with (m,n) = (0, 1), (1, 0), (−1, 1),
(1, 1), (−2, 1), (1, 2), (−3, 1), (−1, 3), (1, 3), (3, 1), (7, 9), (55, 19). The latter
two points correspond to non-square polynomials f(x), the first recovering
the quadratic f(x) listed at (6), the second giving
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(27)

(m,n) = (55, 19),

(p, q, r, s, t, u, v) = (10477119, 8670314, 6875821, 5106636,

3402469,−1942706, 1633911),

f(x) = 3349123623505x2 − 17850059564040x+ 26077731236496.

In similar vein, (24) gives a point on (3) provided

1089m8 − 2382m7n− 1589m6n2 − 2996m5n3 + 13587m4n4

+ 9394m3n5 − 11207m2n6 − 1416mn7 + 1296n8 = 2,

with known points at (m,n) = (0, 1), (1, 0), (−1, 1), (1, 1), (2, 1), (−1, 3),
(1, 3), (−3, 2), (1, 7), (4, 5), (7, 3), (−2, 9), (−13, 1), (−5, 17), (−89, 90). New
non-square f(x) arise from the following points:

(28)

(m,n) = (−5, 17),

(p, q, r, s, t, u, v)

= (40196,−80351, 98726,−107179,−108064, 101579, 86074),

f(x) = −775012455x2 + 965502510x+ 11487338041;

(29)

(m,n) = (−89, 90),

(p, q, r, s, t, u, v) = (−6735041,−5812061, 4881537,

− 3938125,−2969567, 1938531, 572321),

f(x) = 815037309304x2 − 7505537657440x+ 15508828515625.

The curve (25) gives a point on (3) provided

324m8 + 1536m7n− 404m6n2 − 3572m5n3 + 11297m4n4

+ 1462m3n5 − 8311m2n6 + 1816mn7 + 1936n8 = 2,

with known points at (m,n) = (0, 1), (1, 0), (−1, 1), (1, 1), (−2, 1), (1, 2),
(3, 2), (−2, 5), (−5, 3), (1, 7), (−8, 1), (−9, 2), (−7, 8), (−13, 4), (16, 17), deliv-
ering the following new non-square f(x):

(m,n) = (−9, 2),

(p, q, r, s, t, u, v) = (3131,−2351,−1761, 1589, 1949, 2631, 3449),

f(x) = 924940x2 + 348740x+ 2524921.

(30)

The curve (26) gives a point on (3) provided

16m8 + 16m7n+ 276m6n2 − 944m5n3 + 1408m4n4 − 1584m3n5

+ 117m2n6 + 810mn7 + 81n8 = 2,

with known points at (m,n) = (0, 1), (1, 0), (−1, 1), (1, 1), (−1, 2), (1, 2),
(2, 1), (−3, 1), (3, 1), (−3, 2), (3, 2), (3, 4), (7, 2), (6, 5), (11, 14), delivering the
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following new non-square f(x):

(31)

(m,n) = (11, 14),

(p, q, r, s, t, u, v)

= (−28621, 10460, 12651,−31162, 50423,−69816, 89255),

f(x) = 380193121x2 + 1191215564x+ 971070244.

In like manner, we find that up to symmetry, there are 10 quintics of genus 0.
One such is provided by the divisor `1 + `3 + `5 − `10 + `21 + `22 + `30 with
parametrization

p : q : r : s : t : u = 285a5 + 55a4b− 110a3b2 + 6a2b3 + 5ab4 − b5 :(32)

165a5 + 57a4b+ 18a3b2 − 22a2b3 − 3ab4 + b5 :

15a5 + 209a4b− 2a3b2 − 30a2b3 − ab4 + b5 :

15a5 − 209a4b− 2a3b2 + 30a2b3 − ab4 − b5 :

165a5 − 57a4b+ 18a3b2 + 22a2b3 − 3ab4 − b5 :

285a5 − 55a4b− 110a3b2 − 6a2b3 + 5ab4 + b5.

For the corresponding v to be rational, we seek points on the curve of genus 4

162225a10 − 43890a9b− 162971a8b2 + 12152a7b3 + 43786a6b4

+ 1876a5b5 − 3670a4b6 − 392a3b7 + 85a2b8 + 14ab9 + b10 = 2.

The only points found occur at (a, b) = (0, 1), (−1, 1), (1, 1), (1, 2), (−1, 3),
(1, 3), (−1, 5), (1, 5) with only (a, b) = (1, 2) delivering a non-square f(x),
but one already known, that at (1).

4. As an alternative approach to the problem of discovering points on
(3), we recall that the intersection of two quadrics in P4 is a Del Pezzo sur-
face, and birationally equivalent to the plane. We represent the intersection
of two quadrics at (3) upon the plane as follows. In the equations (3) put

r + t = R, r − t = T, p− v = P, p+ v = V,

q + u = Q, q − u = U, s = S

and there results

V 2 = −P 2 + 9R2 − 32S2 + 9T 2,(33)

U2 = −Q2 + 4R2 − 12S2 + 4T 2,(34)

2RT = QU,(35)

3RT = PV.(36)

The first and fourth quadrics intersect where

3R = βP, V = βT, 32S2 = P 2(β2 − 1)− T 2(β2 − 9).
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The latter has point at (P, T, S) = (2, 2, 1), and on putting P : T = 2S+A :
2S +B the following parametrization results:

P : T : S = 2(9A2(β2 − 1)− 2AB(β2 − 9) +B2(β2 − 9)) :(37)

− 2(9A2(β2 − 1)− 18AB(β2 − 1) +B2(β2 − 9)) :

− β(9A2(β2 − 1)−B2(β2 − 9)).

This gives the representation on the plane

P : R : S : T : V = 6(9A2(β2 − 1)− 2AB(β2 − 9) +B2(β2 − 9)) :(38)

2β(9A2(β2 − 1)− 2AB(β2 − 9) +B2(β2 − 9)) :

β(9A2(β2 − 1)−B2(β2 − 9)) :

− 2(9A2(β2−1)−18AB(β2−1) +B2(β2−9)) :

− 2β(9A2(β2−1)−18AB(β2−1) +B2(β2−9))

from which, with G = A−B,

p : r : s : t : v = 8β2(β + 3)B2 + 48β2BG− 9(β − 3)(β2 − 1)G2 :(39)

8β2(β + 1)B2 + 16β3BG+ 9(β − 1)(β2 − 1)G2 :

β(8β2B2 + 18(β2 − 1)BG+ 9(β2 − 1)G2) :

8β2(β − 1)B2 + 16β3BG+ 9(β + 1)(β2 − 1)G2 :

8β2(β − 3)B2 − 48β2BG− 9(β + 3)(β2 − 1)G2.

Then the remaining equations for q, u demand:

2 = 64β4(β + 2)2B4(40)

+ 32β4(5β2 + 16β + 27)B3G

+ 4β2(49β4 + 306β2 − 99)B2G2

+ 36β2(β2 − 1)(5β2 − 16β + 27)BG3

+ 81(β2 − 1)2(β − 2)2G4,

2 = 64β4(β − 2)2B4(41)

+ 32β4(5β2 − 16β + 27)B3G

+ 4β2(49β4 + 306β2 − 99)B2G2

+ 36β2(β2 − 1)(5β2 + 16β + 27)BG3

+ 81(β2 − 1)2(β + 2)2G4.

The first equation (40) above may be considered a quartic cover over Q(β)
of an elliptic curve, and using standard techniques (see for example Cassels
[6, Chapter 8]), we can obtain a cubic model for this curve, together with
the relevant mapping. Computation gives the cubic model

T 2 = S(S2 + 2(11β4 + 18β2 + 99)S − 135(β2 − 1)2(β2 − 9)2),(42)
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with mapping from (42) to (40) given by

B/G =
−135β(β2−1)2(β2−9)−β(5β2 +16β + 27)S + (β + 2)T

8β(15β2(β2 − 1)(β2 − 9) + (β + 2)2S)
.(43)

Note that the symmetry β 7→ −β taking (41) to (40) implies that (41)
is also a quartic cover of the same elliptic curve (42), with corresponding
mapping obtained from (43).

Accordingly, to find B : G simultaneously satisfying (41) and (40), we
seek two points (S1, T1), (S2, T2) on the curve (42) with corresponding values
of B, G equal, that is,

(44)
(−135β(β2 − 1)2(β2 − 9)− β(5β2 + 16β + 27)S1 + (β + 2)T1)

8β(15β2(β2 − 1)(β2 − 9) + (β + 2)2S1)

=
(−135β(β2 − 1)2(β2 − 9)− β(5β2 − 16β + 27)S2 + (β − 2)T2)

8β(15β2(β2 − 1)(β2 − 9) + (β − 2)2S2)
.

To deal with the case where the denominator of the left hand side of (44) is
zero, we observe the following identity on the curve (42):

(45)
(−135β(β2 − 1)2(β2 − 9)− β(5β2 + 16β + 27)S + (β + 2)T )

8β(15β2(β2 − 1)(β2 − 9) + (β + 2)2S)

=
(45(β2 − 1)2 − S)(27(β2 − 1)(β2 − 9) + S)

−8β(135β(β2−1)2(β2−9) + β(5β2 + 16β + 27)S + (β + 2)T )
.

If the denominator of the left hand side of (44) is zero, then

S1 = −15β2(β2 − 1)(β2 − 9)/(β + 2)2,

with corresponding T1 given by

T1 = ±60β(β2 − 1)(β2 − 9)(β4 + 5β3 − 9β − 9)/(β + 2)3.

With the lower sign, the left hand side of (44) takes the value 1 : 0; and
with the upper sign, using (45), it takes the value

−3(β2 − 1)(β2 + 9β + 9)(β4 + 3β3 − 3β − 3)
4β2(β + 2)2(β4 + 5β3 − 9β − 9)

.(46)

Now B : G = 1 : 0 certainly provides a point on both (40) and (41), but
leads to the trivial form f(x) = (x − β)2. If B/G is given by (46), then
there is a corresponding point on (40), and the condition that there is a
corresponding point on (41) becomes

2 = 4β26 + 108β25 + 1329β24 + 10312β23 + 58422β22 + 252210β21(47)

+ 820285β20 + 1949724β19 + 3108555β18 + 1905066β17

− 6380310β16 − 25572924β15 − 49193973β14 − 52414560β13

− 5467221β12 + 87813396β11 + 169671834β10 + 172959138β9
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+ 94201299β8 + 883548β7 − 42120891β6 − 31882086β5

− 7017354β4 + 5091336β3 + 4730481β2 + 1653372β + 236196.

This hyperelliptic curve of genus 12 can be searched for solutions (we find
only β = ±1,−2,±3, leading to no new forms f). So in what follows, we
shall assume that the denominator of the left hand side of (44) does not
vanish. By replacing β by −β, we can also assume that the right hand side
of (44) does not vanish.

Then on clearing denominators, (44) takes the form

(48) 60β(β2−1)(β2−9)((β4 + 5β3−9β−9)S1− (β4−5β3 + 9β−9)S2)

+ 8β2(β2 + 11)S1S2 + 15β2(β2 − 1)(β2 − 9)((β + 2)T1 − (β − 2)T2)

+ (β2 − 4)((β − 2)S2T1 − (β + 2)S1T2) = 0.

A search procedure can be instituted, where first, for given β (and it is
only necessary to consider β > 0), as many independent points as possible
are found on (42). Both Connell’s Apecs [7] and Cremona’s mwrank [8]
programs were invaluable for this purpose, and oftentimes with luck we
were able to compute the exact value of the rank, and even on occasion an
actual basis for the group of rational points. (It perhaps should be noted
that the Q(β)-rank of (42) is 3, and over the range we considered, given by
numerator(β) + denominator(β) ≤ 100, the maximum rank found was 7, on
nine occasions). Second, letting the point (S1, T1) run through small linear
combinations of the known points (in practice, we allowed the coefficients of
the linear combinations to be at most 2 in absolute value) the condition (48)
is now a linear relation connecting S2, T2 on the curve (42). The coefficient
of T2 is −(β−2)(15β2(β2−1)(β2−9)+(β+2)2S1), which by our assumption
on the non-vanishing of the denominator at (44) is non-zero. Hence T2 is
determined in terms of S2, in turn determining (S2, T2), which may or may
not be rational of course.

In this way, the following additional solutions to (3) were discovered, in
the range numerator(β) + denominator(β) ≤ 100. The given ranks of (42)
are unconditionally correct.

(49)

β = 19/4 (rank = 5),

(p, q, r, s, t, u, v) = (−5207, 3025, 337,−41, 2969, 5153, 7295),

f(x) = 4462584x2 + 4350696x+ 1681;

(50)

β = 14/9 (rank = 6),

(p, q, r, s, t, u, v) = (−2256701, 1444880,−1051139,

1464358,−2281673, 3207796,−4170865),

f(x) = 1011118085961x2 + 2050569240804x+ 2144344352164;
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(51)

β = 41/9 (rank = 6),

(p, q, r, s, t, u, v) = (−4630, 2713, 1544,−2551, 4442, 6485, 8572),

f(x) = 4550049x2 + 8673714x+ 6507601;

(52)

β = 53/4 (rank = 5),

(p, q, r, s, t, u, v) = (−490912179, 325332727, 178638667,

138585489, 260238115, 421266649, 590280507),

f(x) = 30611887161775936x2 + 17906051575608168x

+ 19205937761369121;

(53)

β = 7/64 (rank = 7),

(p, q, r, s, t, u, v)

= (1343701, 929731, 530581,−238499,−436459, 826051, 1237931),

f(x) = 179124555120x2 − 45509869440x+ 56881773001;

(54)

β = 71/8 (rank = 6),

(p, q, r, s, t, u, v)

= (−53331, 36943, 25885, 27567, 40429, 57391, 75747),

f(x) = 392329144x2 + 482235408x+ 759939489;

(55)

β = 67/28 (rank = 7),

(p, q, r, s, t, u, v) = (−810171421, 673785150,−541534361,

417368948,−311124657, 247112534,−258833915),

f(x) = 20832169413896281x2 − 98230455975155336x

+ 174196838754626704;

(56)

β = 61/38 (rank = 5),

(p, q, r, s, t, u, v)

= (−89255, 69816,−50423, 31162,−12651, 10460,−28621),

f(x) = 380193121x2 − 1191215564x+ 971070244.
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