On certain congruences for Fourier coefficients of classical cusp forms

by

TSUNEO ISHIKAWA (Osaka)

For any even integer $k \geq 12$, let S_k denote the space of cusp forms of weight k on the full modular group $SL(2,\mathbb{Z})$. The Eisenstein series E_4 and E_6 are given by

$$E_4(z) = 1 + 240 \sum_{n=1}^{\infty} \left(\sum_{d|n} d^3 \right) q^n$$

$$= 1 + 240q + 2160q^2 + 6720q^3 + 17520q^4 + 30240q^5 + \dots,$$

$$E_6(z) = 1 - 504 \sum_{n=1}^{\infty} \left(\sum_{d|n} d^5 \right) q^n$$

$$= 1 - 504q - 16632q^2 - 122976q^3 - 532728q^4 - \dots$$

where $q=e^{2\pi iz}$, and we also define $\Delta(z)=(E_4^3-E_6^2)/1728\in S_{12}$ and $j(z)=E_4^3/\Delta(z)$, the modular invariant. It is well known that any cusp form $f(z)\in S_k$ can be written uniquely as

(1)
$$f(z) = \Delta(z)^m E_4(z)^{\delta} E_6(z)^{\varepsilon} g(j(z)) = \sum_{n=1}^{\infty} \gamma(n) q^n$$

for some polynomial $g(x) \in \mathbb{C}[x]$ of degree $\leq m-1$, where $\gamma(n)$ are the Fourier coefficients, m is positive integer, and $k=12m+4\delta+6\varepsilon$ automatically with $\delta \in \{0,1,2\}, \ \varepsilon \in \{0,1\}.$

The classical Gauss hypergeometric series are defined as follows:

$$_{2}F_{1}(a,b,c;x) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}(1)_{n}} x^{n}$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 11F11; Secondary 33C05, 11F30.

124 T. Ishikawa

where $(a)_n = a(a+1)(a+2)\dots(a+n-1)$. We define the function F(t) and the coefficients $\alpha(n)$ of t^n in F(t), for the above k, m, ε and polynomial g:

(2)
$$F(t) = t^m g\left(\frac{1}{t}\right) \sqrt{1 - 1728t}^{\varepsilon - 1} {}_2F_1\left(\frac{1}{12}, \frac{5}{12}, 1; 1728t\right)^{k-2} = \sum_{n=1}^{\infty} \alpha(n)t^n.$$

We know that $\alpha(n)$ satisfies a linear recurrence, since the function F(t) is a solution of a certain linear differential equation.

In this paper, we study the congruence properties of $\gamma(n)$ and $\alpha(n)$. For Fourier coefficients of cusp forms, many congruences are known, for example, for the Ramanujan τ -function, $\tau(n) \equiv \sum_{d|n} d^{11} \pmod{691}$ (see e.g. Swinnerton-Dyer [5]). Our congruences may be different from those. Our results are as follows:

THEOREM. Let p be a prime. If $g(t) \in \mathbb{Z}_p[t]$ in (1), (2), then

$$\gamma(p) \equiv \alpha(p) \pmod{p}$$
.

In particular, if a cusp form f(z) is a normalized $(\gamma(1) = 1)$ common eigenfunction of Hecke operators, then for any positive integer r,

$$\gamma(p)\alpha(p^r) \equiv \alpha(p^{r+1}) + p^{k-1}\alpha(p^{r-1}) \pmod{p^{r+1}}.$$

Example. Put k = 12. We have

$$f(z) = \Delta(z) = \sum_{n=1}^{\infty} \tau(n)q^n = q \prod_{n=1}^{\infty} (1 - q^n)^{24},$$

where $\tau(n)$ is the Ramanujan τ -function. The first few values of $\tau(n)$ are $1, -24, 252, -1472, 4830, \dots$ Now, let

$$\sum_{n=1}^{\infty} \alpha(n)t^n = \frac{t}{\sqrt{1 - 1728t}} \, {}_{2}F_{1}\left(\frac{1}{12}, \frac{5}{12}, 1; 1728t\right)^{10}$$

$$= t + 1464t^2 + 2197944t^3 + 3393216960t^4 + 5343171374520t^5 + \dots$$

Since $\Delta(z)$ is a normalized common eigenfunction of Hecke operators (see e.g. Ogg [2]), we have

$$\tau(p)\alpha(p^r) \equiv \alpha(p^{r+1}) + p^{11}\alpha(p^{r-1}) \ (\operatorname{mod} p^{r+1})$$

for prime p and integer $r \ge 0$. Then, if $\tau(p) \not\equiv 0 \pmod{p}$, we can determine $\tau(p)$ by using $\alpha(p^r)$ from the Ramanujan conjecture: $|\tau(p)| \le 2p^{11/2}$.

We shall need two lemmas in order to prove our theorem.

Lemma 1. We have

(a)
$$E_4(z) = {}_2F_1(1/12, 5/12, 1; 1728/j(z))^4,$$

(b)
$$E_6(z) = \sqrt{1 - 1728/j(z)} {}_2F_1(1/12, 5/12, 1; 1728/j(z))^6$$
.

Proof. See Theorems 3 and 4 in Stiller [4]. \blacksquare

LEMMA 2. Let $A(t) = \sum_{n=0}^{\infty} a(n)t^n$ and $t(u) = \sum_{n=1}^{\infty} c(n)u^n$ (c(1) = 1) be two formal power series with coefficients in \mathbb{Z}_p (p prime), and denote by b(n) the coefficient of u^n in $B(u) = A(t(u)) \frac{u}{t(u)} \frac{dt(u)}{du}$. If a(0) = 0, then

- (a) $a(p) \equiv b(p) \pmod{p}$,
- (b) for all integers r > 0 and $s_1(p), s_2(p) \in \mathbb{Z}_p$, conditions (i), (ii) below are equivalent:
 - (i) $a(p^{r+1}) + s_1(p)a(p^r) + ps_2(p)a(p^{r-1}) \equiv 0 \pmod{p^{r+1}}$,
 - (ii) $b(p^{r+1}) + s_1(p)b(p^r) + ps_2(p)b(p^{r-1}) \equiv 0 \pmod{p^{r+1}}$.

Proof. (a) is clear, since

$$\sum_{n=1}^{\infty} \frac{a(n)}{n} t^n = \int A(t) \frac{dt}{t} = \int B(u) \frac{du}{u} = \sum_{n=1}^{\infty} \frac{b(n)}{n} u^n.$$

(i) implies

$$\sum_{n=1}^{\infty} \frac{a(n)}{n} t^n + s_1(p) \sum_{n=1}^{\infty} \frac{a(n)}{pn} t^{pn} + ps_2(p) \sum_{n=1}^{\infty} \frac{a(n)}{p^2 n} t^{p^2 n} \in \mathbb{Z}_p[[t]].$$

Since $t(u)^{pn} - t(u^p)^n$, $t(u)^{p^2n} - t(u^{p^2})^n \in p\mathbb{Z}_p[[t]]$, we have

$$\sum_{n=1}^{\infty} \frac{a(n)}{n} t(u)^n + s_1(p) \sum_{n=1}^{\infty} \frac{a(n)}{pn} t(u^p)^n + ps_2(p) \sum_{n=1}^{\infty} \frac{a(n)}{p^2 n} t(u^{p^2})^n$$

$$= \int A(t(u)) \frac{dt(u)}{t(u)} + s_1(p) \int A(t(u^p)) \frac{dt(u^p)}{t(u^p)} + ps_2(p) \int A(t(u^{p^2})) \frac{dt(u^{p^2})}{t(u^{p^2})}$$

$$= \int (B(u) + s_1(p)B(u^p) + ps_2(p)B(u^{p^2})) \frac{du}{u}$$

$$= \sum_{n=1}^{\infty} \frac{b(n)}{n} u^n + s_1(p) \sum_{n=1}^{\infty} \frac{b(n)}{pn} u^{pn} + ps_2(p) \sum_{n=1}^{\infty} \frac{b(n)}{p^2 n} u^{p^2 n} \in \mathbb{Z}_p[[u]].$$

This is equivalent to (ii). If c(1) = 1, we have $u \in \mathbb{Z}_p[[t]]$. Then (ii) implies (i). (For the more general case of this lemma, see Appendix in Stienstra and Beukers [3] and Proposition 3 in Beukers [1].)

Proof of Theorem. Put $E_2(z) = 1 - 24 \sum_{n=1}^{\infty} (\sum_{d|n} d) q^n$. Since E_4 and E_6 are modular forms of weight 4 and 6, respectively, and

$$E_2\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 E_2(z) + \frac{6c(cz+d)}{\pi i}, \quad \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2,\mathbb{Z}),$$

it is not hard to check that

$$\frac{d}{dq}E_4 = \frac{E_2E_4 - E_6}{3q}, \quad \frac{d}{dq}E_6 = \frac{E_2E_6 - E_4^2}{2q}, \quad \frac{d}{dq}\Delta = \frac{E_2\Delta}{q}.$$

126 T. Ishikawa

Let $t(q) = 1/j(z) = q - 744q^2 + \dots$ It follows easily that

$$\frac{q}{t(q)}\,\frac{dt(q)}{dq} = \frac{E_6}{E_4}.$$

From (2) and Lemma 1, we have

$$\begin{split} F(t(q)) & \frac{q}{t(q)} \, \frac{dt(q)}{dq} \\ & = \left(\frac{\Delta}{E_4^3}\right)^m g(j) \sqrt{1 - \frac{1728}{j}}^{\varepsilon - 1} {}_2F_1\!\left(\frac{1}{12}, \frac{5}{12}, 1; \frac{1728}{j}\right)^{12m + 4\delta + 6\varepsilon - 2} \cdot \frac{E_6}{E_4} \\ & = \Delta^m E_4^{\delta + 1} E_6^{\varepsilon - 1} g(j) \cdot \frac{E_6}{E_4} = f(z). \end{split}$$

If f(z) is a normalized common eigenfunction of Hecke operators, then for any positive integer r,

$$\gamma(p)\gamma(p^r) = \gamma(p^{r+1}) + p^{k-1}\gamma(p^{r-1}).$$

From Lemma 2, our Theorem follows.

References

- F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), 201–210.
- [2] A. Ogg, Modular Forms and Dirichlet Series, Benjamin, New York, 1969.
- [3] J. Stienstra and F. Beukers, On the Picard-Fuchs equation and formal Brauer group of certain elliptic K3 surfaces, Math. Ann. 271 (1985), 269–304.
- [4] P. T. Stiller, Classical automorphic forms and hypergeometric functions, J. Number Theory 28 (1988), 219–232.
- [5] H. P. F. Swinnerton-Dyer, On l-adic representations and congruences for coefficients of modular forms, in: Lecture Notes in Math. 350, Springer, Berlin, 1973, 1–55.

Department of Mathematics

Osaka Institute of Technology

Ohmiya, Asahi-ku, Osaka 535-8585, Japan

E-mail: ishikawa@ge.oit.ac.jp