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of classical cusp forms
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For any even integer k > 12, let S; denote the space of cusp forms of
weight & on the full modular group SL(2,Z). The Eisenstein series E4 and
FEg are given by

2) = 1+240§: (Zd3)q"

n=1 dn

=1 + 240q + 2160¢* + 6720¢> + 17520¢" + 30240¢° + .. .,

Eo(z)=1— 504§: (Zd5)q”

n=1 d|n

=1 —504q — 16632¢% — 1229764> — 532728¢* — . ..

where ¢ = 2™ and we also define A(z) = (Ej — E2)/1728 € S15 and
j(2) = E3/A(z), the modular invariant. It is well known that any cusp form
f(2) € Sk can be written uniquely as

(1) f(z) = A(z)"E4(2)°Es(2 Z'y

for some polynomial g(x) € Clz] of degree < m — 1, where y(n) are the
Fourier coefficients, m is positive integer, and k = 12m + 46 + 6 automati-
cally with § € {0,1,2}, e € {0, 1}.

The classical Gauss hypergeometric series are defined as follows:

oo

)n(D)n
oF1(a,b,c;x) = Za

()n(1)n
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where (a), = a(a+1)(a+2)...(a+n—1). We define the function F(¢) and
the coefficients a(n) of t" in F'(t), for the above k, m,e and polynomial g:

k—2 0o
m 1 e—1 1 9 n
n=1

We know that a(n) satisfies a linear recurrence, since the function F'(¢) is a
solution of a certain linear differential equation.

In this paper, we study the congruence properties of v(n) and a(n).
For Fourier coefficients of cusp forms, many congruences are known, for
example, for the Ramanujan 7-function, 7(n) = >_,, d' (mod691) (see
e.g. Swinnerton-Dyer [5]). Our congruences may be different from those.
Our results are as follows:

THEOREM. Let p be a prime. If g(t) € Zy[t] in (1), (2), then
7(p) = a(p) (modp).

In particular, if a cusp form f(z) is a normalized (y(1) = 1) common eigen-
function of Hecke operators, then for any positive integer r,

Y(p)alp”) = a(p™th) +pF ! .
EXAMPLE. Put k£ = 12. We have

a(p"™") (modp

f2)=A>E) => )¢ =q [0 —-q)*,
n=1 n=1

where 7(n) is the Ramanujan 7-function. The first few values of 7(n) are
1, -24,252, —1472, 4830, ... Now, let

oo ¢ 1 5 10
a(n)t = ——— S F | —, —,1;1728¢
nz::l W = T ? 1(12 12 )
=t + 1464¢> + 21979443 + 3393216960t + 5343171374520t° + . ..

Since A(z) is a normalized common eigenfunction of Hecke operators (see
e.g. Ogg [2]), we have

T(Pa®@’) =al@™™) +pa@(@ ") (modp™)

for prime p and integer r > 0. Then, if 7(p) # 0 (mod p), we can determine
7(p) by using a(p") from the Ramanujan conjecture: |7(p)| < 2p'1/2.

We shall need two lemmas in order to prove our theorem.
LEMMA 1. We have

(a) Ea(2) = oF1(1/12,5/12,1;1728/(2))",

(b) Es(z) = /1 —1728/j(z) o F1(1/12,5/12,1; 1728/ (2))S.

Proof. See Theorems 3 and 4 in Stiller [4]. m
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LEMMA 2. Let A(t) =Y ,° qa(n)t™ and t(u) = >0~ c(n)u™ (¢(1) =1)

n n=1
be two formal power series with coefficients in Z, (p prime), and denote by

b(n) the coefficient of u™ in B(u) = A(t(u)) = di(w) -y a(0) =0, then

t(u) du
(a) a(p) = b(p) (modp),
(b) for all integers r > 0 and s1(p), s2(p) € Z,, conditions (i), (ii) below
are equivalent:

(i) a(p™t?) + s1(p)a(p”) + ps2(p)a(p™') = 0 (modp™ ),
(i) b(p™*1) + s1(p)b(p") + ps2(p)b(p"™™') = 0 (mod p™*1).

Proof. (a) is clear, since

~—

(i) implies

= b(n) = bn) . = b(n) 2,
= M) S e ) S M e g )
n=1 n=1 pn n=1 p=n
This is equivalent to (ii). If ¢(1) = 1, we have u € Z,][[t]]. Then (ii) implies
(1). (For the more general case of this lemma, see Appendix in Stienstra and
Beukers [3] and Proposition 3 in Beukers [1].) m

Proof of Theorem. Put Es(z) =1 — 24 Zzozl(zd‘nd)q”. Since E4 and
FEg are modular forms of weight 4 and 6, respectively, and

az+b 6c(cz + d) a b
E = d)*E —_ = L(2,Z
(E50) = dpE + HEED (4 D) esuea),
it is not hard to check that
d E>E, — Fg d EyEs — E3 d EyA
—FBy=——F1—, —Eg=—— :
dq 3q dq 2q dq q
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Let t(q) = 1/j(z) = ¢ — 744¢*> + ... It follows easily that

_a_dtlg) _ Es
t(q) dq Ey

From (2) and Lemma 1, we have

Flt(a) i 2

A m 179 e—1 1 172 12m—+46+6e—2 E
=\ =3 g(j) 1—2 2 I —7371;ﬁ =8
E3 ] 121277 Ey

E
= A"ESM B 9(5) - 7 = f(2).
Ey
If f(z) is a normalized common eigenfunction of Hecke operators, then for
any positive integer r,

Y P") = (") +p
From Lemma 2, our Theorem follows. =

kfl,y(prfl).
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