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1. Introduction. A form (i.e., a homogeneous polynomial) defined over
a field K is said to be anisotropic if it has only the trivial zero in K. In
the 1930’s E. Artin [3] conjectured that for every prime p and any d ≥ 1,
an anisotropic form, with coefficients in the field of p-adic numbers Qp, of
degree d has at most d2 variables. Terjanian [15] disproved the conjecture by
exhibiting a 2-adic quartic form in 18 variables with no nontrivial 2-adic zero;
subsequently, he [16] gave such an example with 20 variables. Generalizing
Terjanian’s construction, Browkin [5] gave counterexamples for each prime
p, but always in fewer than d3 variables. Later investigations concerning
a problem of Hilbert and Kamke allow Arkhipov and Karatsuba [1, 2] to
prove that for each prime p, there are infinitely many natural numbers d
such that the number of variables required to guarantee the existence of a
nontrivial p-adic zero for a form of degree d may need to be exponentially
large in terms of d. The latter result was slightly sharpened independently
by Brownawell [7], and by Lewis and Montgomery [13] via the introduction
of a more efficient principle of p-adic interpolation. Note that we currently
possess no counterexample of odd degree. Thus Artin’s conjecture is still
open in particular for prime degrees.

It is still of interest to know precisely when the conjecture is true. It has
been verified in case d = 2 (see [11] for short proof), in case d = 3 [9, 12] and
in case d = 5 [11] provided the residue class field has at least 47 elements.
But, it is impressive that Ax and Kochen [4], by employing methods from
Mathematical Logic, were able to show that Artin’s conjecture is very nearly
true in general. They proved that there exists a function p0(d) such that the
conjecture is true for all p > p0(d). In [10], there is an analogous result which
states that to each natural number d ≥ 2, there corresponds a function p(d)
such that, if p is a prime number > p(d) and f ∈ Zp[X1, . . . ,X2d+1] is a
form of degree d, then the congruence f(X1, . . . ,X2d+1) ≡ 0 (mod p2) has
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a primitive zero (an element (x1, . . . , xn) ∈ Znp is primitive if there exists
i ∈ {1, . . . , n} such that p does not divide xi). The argument used to derive
this result does not enable one to calculate explicit estimates for p(d). But
there is in principle no barrier to providing such (see [8], where it is shown
that p(4) ≤ 37).

In this paper we give an explicit upper bound for the quantity p(d) and
construct, in a similar manner analyzed in [6] and described in [16], for each
prime p > 3 other counterexamples to Artin’s conjecture of degree D, where
D is any multiple of p2 − p.

2. Constructions. It is well known that a form f , with coefficients in
a ring of p-adic integers Zp, in n variables is anisotropic if and only if there
exists a natural number k ≥ 1 such that if f(x1, . . . , xn) ≡ 0 (mod pk), then
x1 ≡ . . . ≡ xn ≡ 0 (mod p). When this holds we say that f is anisotropic
modulo pk.

Whenever r and s are natural numbers with 0 ≤ r ≤ s, and f is a
polynomial involving the variables Xr, . . . ,Xs, we denote by f (m), where
m ≥ 0, the polynomial f(Xm+r, . . . ,Xm+s).

If p is a prime number and d ≥ 1 an integer, nd denotes a normic form,
with coefficients in the ring of p-adic integers Zp, of degree d in d variables
that is anisotropic modulo p.

Let p be a prime number > 3. Let k be a natural number with 2 ≤ k ≤
p− 2.

The form v ∈ Zp[X1,X2] of degree p2 − p defined by

v(X1,X2) = X
(p−1)(p−k)
1 (Xp−1

1 −Xp−1
2 )k +Xp2−p

2

satisfies
v(x1, x2) ≡ 1 (mod p2)

for every primitive (x1, x2) ∈ Z2
p.

Let d be a natural number with d ≥ 1. Consider the form f(X) ∈
Zp[X1, . . . ,X2d] of degree D = d(p2 − p), defined by

f = v(nd, n
(d)
d ).

Then
f(x1, . . . , x2d) ≡ 1 (mod p2)

whenever x1, . . . , x2d are not all congruent to 0 modulo p.
Put now

g =
p2−2∑

i=0

f (2di).
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It is clear that g is a form, with coefficients in Zp, of degree D in 2d(p2− 1)
variables that satisfies

g(x) ≡ r (mod p2)

with 1 ≤ r ≤ p2 − 1 for every primitive x.
Put N = dD(p2 − 1). We define an element h of Zp[X1, . . . ,XN ] by

h =
p−1∑

i=0

p2ig(2di(p2−1)).

h is a counterexample of degree D to Artin’s conjecture since h is anisotropic
modulo pD and N > D2.

3. Homogeneous diophantine equations modulo p2. We remark
that in order to get a counterexample of degree d to Artin’s conjecture, it
suffices to construct a form, with coefficients in a ring Zp, of degree d in
2d+ 1 variables that is anisotropic modulo p2.

Indeed, let p be a prime number and f ∈ Zp[X1, . . . ,X2d+1] be a form
of degree d that is anisotropic modulo p2.

If d is even, put

f1 =
d−2∑

i=0

pif ( i2 (2d+1)) with i even.

If d is odd, put

f2 =
d−1∑

i=0

pif ( i2 (2d+1)) with i even.

It is easy to see that both f1 and f2 are anisotropic modulo pd.
We now give an explicit upper bound for the quantity p(d) mentioned in

the introduction.

Theorem 3.1. Let f ∈ Zp[X1, . . . ,X2d+1] be a form of degree d. Assume
that p > 250d5 and d(d− 1)2 + (2pd5)1/2 + 2dφ ≤ p, where φ = 2dk2k , with
k =

(
d+1

2

)
. Then the congruence

(1) f(X1, . . . ,X2d+1) ≡ 0 (mod p2)

has a primitive zero.

Proof. Let F = f̄ denote the reduction of f modulo p.

First case. If F = 0, then it follows from Chevalley’s theorem that (1)
has a primitive zero.

Second case. If F is reducible, then F = F1F2. Let f1, f2 be two forms
such that F1 = f1 and F2 = f2. We then write f = f1f2 + ph for some form
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h ∈ Zp[X1, . . . ,X2d+1]. The system of congruences




f1(X1, . . . ,X2d+1) ≡ 0 (mod p),

f2(X1, . . . ,X2d+1) ≡ 0 (mod p),

h(X1, . . . ,X2d+1) ≡ 0 (mod p)

satisfies the hypotheses of Chevalley’s theorem. So it has a primitive zero
that satisfies (1).

Third case. Assume that F is irreducible but not absolutely. Let F1 be
an irreducible factor of F over the algebraic closure Fp of Fp. We normalize
F1 by requiring that the leading coefficient (in some lexicographic ordering
of the monomials) is 1. Let K be the field obtained from Fp by adjoining the
coefficients of F1. Writem=[K : Fp]. There are thenm Fp-homomorphisms,
denoted σi, i=1, . . . ,m, from K into Fp. For each i ∈ {1, . . . ,m}, σi(F1) is
irreducible over Fp and divides F . For i 6= j, we have (σi(F1), σj(F1))=1. So,
since Fp[X1, . . . ,X2d+1] is UFD, the product

∏m
i=1 σi(F1) divides F . But this

product has coefficients which are invariant under conjugation. Hence, it has
coefficients in Fp. Since F is irreducible over Fp, there exists a constant c ∈
Fp such that F =c

∏m
i=1 σi(F1). Each factor σi(F1) has degree exactly d/m.

Let now {e1, . . . , em} be a basis of K, considered as an Fp-vector space,
and G1, . . . , Gm ∈ Fp[X1, . . . ,X2d+1] be forms such that F1 =

∑m
i=1 Giei.

Then

F = c
m∏

i=1

( m∑

j=1

Gjσi(ej)
)

= G(G1, . . . , Gm),

where G is a form, with coefficients in Fp, of degree d. Thus, if G = g and
Gi = gi for i ∈ {1, . . . ,m}, we may write f = g(g1, . . . , gm) + ph for some
form h ∈ Zp[X1, . . . ,X2d+1]. By Chevalley’s theorem, the system





g1(X1, . . . ,X2d+1) ≡ 0 (mod p),
. . .
gm(X1, . . . ,X2d+1) ≡ 0 (mod p),

h(X1, . . . ,X2d+1) ≡ 0 (mod p)

has a primitive zero that satisfies (1).
Fourth case. Now assume that F is absolutely irreducible. It then follows

from [14, p. 210, Theorem 5A] that the number N of zeros of F in F2d+1
p

satisfies
|N − p2d| < p2d−1((2pd5)1/2 + 2dφ).

Since deg(F ) < p, there exists i0 ∈ {1, . . . , 2d + 1} such that ∂F/∂Xi0

6= 0. Hence, F and ∂F/∂Xi0 have no common factor of degree ≥ 1 since F
is irreducible. By [14, p. 152, Lemma 3C], the number N ′ of common zeros
of F and ∂F/∂Xi0 satisfies

N ′ ≤ p2d−1(d− 1)2d.
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So, if d(d− 1)2 + (2pd5)1/2 + 2dφ ≤ p, then F has a nonsingular Fp-rational
zero. Therefore (1) has a primitive zero by Hensel’s lemma. This completes
the proof of the theorem.
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[10] E. M. Hanine, Équations diophantiennes modulo p2, Colloq. Math. 64 (1993), 275–
286.

[11] D. B. Leep and C. C. Yeomans, Quintic forms over p-adic fields, J. Number Theory
57 (1996), 231–241.

[12] D. J. Lewis, Cubic homogeneous polynomials over p-adic number fields, Ann. of
Math. 56 (1952), 473–478.

[13] D. J. Lewis and H. L. Montgomery, On zeros of p-adic forms, Michigan Math. J.
30 (1983), 83–87.

[14] W. M. Schmidt, Equations Over Finite Fields. An Elementary Approach, Lecture
Notes in Math. 536, Springer, 1976.
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