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On p-adic Siegel–Eisenstein series of weight k

by

Yoshinori Mizuno (Bonn)

1. Introduction. In [3], Katsurada and Nagaoka introduced a p-adic

Siegel–Eisenstein series G̃
(2)
(k,(p+2k−1)/2) of weight k. In the present paper, we

show that this series is a Siegel–Eisenstein series of degree two, weight k and
level p. As a corollary it is a modular form. We also present a simple formula
for the Fourier coefficients of a Siegel–Eisenstein series of degree two and
prime levels.

Let E
(2)
k be the Siegel–Eisenstein series of degree two, weight k and level

one,

E
(2)
k (Z) =

∑

{C,D}

det(CZ + D)−k, Z ∈ H2,

where the sum is taken over all pairs {C, D} which occur as the second

matrix row of representatives of Γ
(2)
∞ \Sp2(Z) with the standard notations

and H2 = {Z = tZ ∈ M2(C); ℑZ > O} is the Siegel upper half-space
of degree two. This has a Fourier expansion with respect to e(tr(TZ)) in-
dexed by T ∈ L2, the set of all half-integral positive semi-definite sym-
metric matrices of size two. Here e(x) = e2πix as usual. Take a prime p
and a natural number k such that p > 2k and k ≡ (p − 1)/2 (mod2). Put
km = k + pm−1(p − 1)/2. If the p-adic convergence

lim
m→∞

{ ∑

T∈L2

Am(T )e(tr(TZ))
}

=
∑

T∈L2

B(T )e(tr(TZ)) (p-adically)

is understood as

inf
T∈L2

{ordp(B(T ) − Am(T ))} → ∞ as m → ∞,

then Katsurada–Nagaoka [3] defined a p-adic Siegel–Eisenstein series by
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G̃
(2)
(k,(p+2k−1)/2) = lim

m→∞

−Bkm

2km
E

(2)
km

(p-adically).

In this paper, we give a description of this p-adic Siegel–Eisenstein series as
a Siegel–Eisenstein series of degree two, weight k and level p.

Let χp be the Legendre symbol. For any integer k > 3 such that k ≡
(p − 1)/2 (mod2), a Siegel–Eisenstein series E

(2)
k,χp

of degree two, weight k

and character χp on Γ
(2)
0 (p) is defined in the standard way as

E
(2)
k,χp

(Z) =
∑

{C,D}

χp(detD) det(CZ + D)−k, Z ∈ H2,

where the sum is taken over all pairs {C, D} which occur as the second

matrix row of representatives of Γ
(2)
∞ \Γ (2)

0 (p),

Γ
(2)
0 (p) = {γ ∈ Sp2(Z); C ≡ O (modp)}, Γ (2)

∞ = {γ ∈ Sp2(Z); C = O}.

Let F
(2)
k,χp

be the twist of E
(2)
k,χp

,

F
(2)
k,χp

(Z) = p−k detZ−kE
(2)
k,χp

(−(pZ)−1).

Then E
(2)
k,χp

, F
(2)
k,χp

∈ Mk(Γ
(2)
0 (p), χp), the space of all Siegel modular forms

of degree two, weight k and character χp on Γ
(2)
0 (p). The following identity

will be proved in Section 3.

Theorem 1. For k > 3, one has

G̃
(2)
(k,(p+2k−1)/2) =

−Bk,χp

2k

{
E

(2)
k,χp

+ (−1)k pk−2(1 − p)

p2k−3 − 1
F

(2)
k,χp

}
,

where Bk,χp is the kth generalized Bernoulli number.

In [3], some genus theta series were employed rather than E
(2)
k,χp

to show

G̃
(2)
(k,(p+2k−1)/2) ∈ Mk(Γ

(2)
0 (p), χp) and thus various explicit formulas for local

densities of quadratic forms [2], [6] were needed. One can think that the use

of E
(2)
k,χp

is rather natural. However it could not be used because no explicit

formula for its Fourier coefficients was available at that time. Such a formula
has now been obtained in [4] and it is crucial to proving Theorem 1.

The proof of Theorem 1 contains a simple formula for the Fourier coef-
ficients of a linear combination of Siegel–Eisenstein series defined by

E(2)
k,χp

=
−Bk,χp

2k
{E(2)

k,χp
+ (−1)kp1−kF

(2)
k,χp

}.

This was introduced in [5] and a formula for its Fourier coefficients was
given in case p ≡ 1 (mod4). Theorem 2 below generalizes it to any odd
prime. Recall that the Bernoulli numbers Bm and the generalized Bernoulli
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numbers Bm,χ are defined by

∞∑

m=0

Bm
tm

m!
=

tet

et − 1
,

∞∑

m=0

Bm,χ
tm

m!
=

f∑

a=1

χ(a)teat

eft − 1

for any primitive character χ of conductor f .

Theorem 2. The Fourier expansion of E(2)
k,χp

is given by

E(2)
k,χp

(Z) =
∑

T∈L2

p|det 2T

Ak(T )e(tr(TZ)),

where the summation extends over all T ∈ L2 (the set of all half-integral

positive semi-definite symmetric matrices of size two) such that det 2T is

divisible by p, and the Ak(T ) are given as follows. For T such that rkT = 1,
we have Ak(T ) =

∑
d|e(T ) χp(d)dk−1 and Ak(O) = −Bk,χp/(2k). For T > O

such that det 2T is divisible by p, we have

Ak(T ) =
2Bk−1,χDK

B2k−2

∑

d|e(T )

χp(d)dk−1
∑

a|f/d

µ(a)χDK
(a)ak−2σ2k−3

(
f/d

a

)
,

where Bk−1,χ and B2k−2 are the Bernoulli numbers, DK is the discriminant

of K = Q(
√

(−det 2T )/p∗) with p∗ = (−1)(p−1)/2p, the natural number f is

defined by −det 2T = p∗DKf2, χDK
is the Kronecker symbol of K, e(T ) is

the content of T , σs(n) =
∑

d|n ds and µ is the Möbius function.

It seems interesting to compare this formula with [1, Corollary 2, p. 80].

2. Fourier coefficients of Siegel–Eisenstein series. In this section
we prove Theorem 2. The proof contains formulas needed to show Theo-
rem 1. We sketch it only to record the results, as it is similar to that given
in [5].

The following two propositions give explicit forms for the Fourier coeffi-

cients of the Siegel–Eisenstein series E
(2)
k,χp

and F
(2)
k,χp

. The formula for F
(2)
k,χp

follows from an explicit formula for the Siegel series. See [3, Proposition 2.3,
p. 104] for example.

Proposition 1. The Fourier expansion of F
(2)
k,χp

is given by

pkΓ (k)L(k, χp)

(2πi)k
F

(2)
k,χp

(Z)

=
∑

T∈L2, T>O

{ ∑

d|e(T )

χp(d)dk−1e0
χp

(−det 2T

d2

)}
e(tr(TZ)),
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(1) e0
χp

(D) = (−1)kαk|D|k−3/2 L(k − 1, χDK
χp)

L(2k − 2, χ2
p)

Υ k−1
DK ,χp

(f),

where L(s, χ) is the Dirichlet L-function, Γ (s) is the gamma function, DK

is the discriminant of K = Q(
√

D), the natural number f is defined by D =
DKf2, χDK

is the Kronecker symbol of K, αk = 22−ki−kπk−1/2/Γ (k−1/2),

(2) Υ s
DK ,χ(f) =

∑

d|f

µ(d)χDK
(d)χ(d)d−sσ1−2s,χ2(f/d),

σs,χ2(f) =
∑

d|f χ2(d)ds and µ is the Möbius function.

Theorem 1 in [4] yields the following result.

Proposition 2. The Fourier expansion of E
(2)
k,χp

is given by

pkΓ (k)L(k, χp)

τp(χp)(−2πi)k
E

(2)
k,χp

((
τ z

z τ ′

))
=

−Bk,χp

2k

+
∑

m≥0, n≥0, r∈Z

4mn≥r2, (n,r,m) 6=(0,0,0)

( ∑

d|(n,r,m)

χp(d)dk−1e∞χp

(
r2 − 4mn

d2

))
e(nτ+rz+mτ ′)

with τp(χp) =
∑p

r=1 χp(r)e
2πir/p, e∞χp

(0) = 1 and e∞χp
(D) given for D < 0 by

e∞χp
(D) = (−1)kαk|D|k−3/2 L(k − 1, χDK

χp)

L(2k − 2, χ2
p)

Υ k−1
DK ,χp

(f)(3)

×
∑

e≥1

p−(k−1/2)eε3
peC∞

χp,p(D, pe),

where DK , f , αk and Υ k−1
DK ,χp

(f) are as in Proposition 1, εd = 1 or i according

as d ≡ 1 (mod4) or 3 (mod4), and

C∞
χp,p(D, pe) =

∑

d∈(Z/peZ)∗

χp(d)e+1epe(dD), em(x) = e2πix/m.

Put p∗ = (−1)(p−1)/2p and take δp ∈ {0, 1} such that k ≡ δp (mod2).
Hence p∗ is a prime discriminant. A key proposition to prove Theorem 2 is

Proposition 3. For D < 0 such that D ≡ 0, 1 (mod4)we have

e∞χp
(D) + (−1)kiδpp−(k−1/2)e0

χp
(D) = iδpαk|D|k−3/2p−(k−3/2) LD/p∗(k − 1)

ζ(2k − 2)
.

Here αk is as in Proposition 1 and LD(s) = L(s, χDK
)Υ s

DK ,χ0
(f), where

we use the symbol (2) for the principal character χ0 (χ0(Z) = {1}), the

natural number f is defined by D = DKf2 with the discriminant DK of

K = Q(
√

D), χDK
is the Kronecker symbol of K, and we set LD/p∗(s) = 0

if D is not divisible by p.
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We sketch the proof. It follows from (1) and (3) that for D = DKf2,

e∞χp
(D) + (−1)kiδpp−(k−1/2)e0

χp
(D)

= (−1)kαk|D|k−3/2 L(k − 1, χDK
χp)

L(2k − 2, χ2
p)

Υ k−1
DK ,χp

(f)

×
{∑

e≥1

p−(k−1/2)eε3
peC∞

χp,p(D, pe) + (−1)kiδpp−(k−1/2)
}
.

Then C∞
χp,p(D, pe) was evaluated in Proposition 4 of [4]:

Lemma 1.

(I) If D is not divisible by p, then

C∞
χp,p(D, pe) =

{−1, e = 1,

0, e ≥ 2.

(II) If D is divisible by p, let pm be the exact power of p dividing D.

Then

(a) for e ≤ m,

C∞
χp,p(D, pe) =

{
pe−1(p − 1), e is odd ,

0, e is even,

(b) for e = m + 1,

C∞
χp,p(D, pe) =

{−pm, m is even,

χp(D/pm)iδppm+1/2, m is odd ,

(c) for e ≥ m + 2, C∞
χp,p(D, pe) = 0.

From this, we have the following two lemmas.

Lemma 2. For D = DKf2, suppose that DK is divisible by p. Then

e∞χp
(D) + (−1)kiδpp−(k−1/2)e0

χp
(D)

= iδpαk|D|k−3/2 L(k − 1, χDK/p∗)

ζ(2k − 2)
Υ k−1

DK ,χp
(f)

× p−(k−3/2)
1 − p(3−2k)(mp+1) − χDK/p∗(p)p−(k−1)(1 − p(3−2k)mp)

1 − p3−2k
,

where χDK/p∗ is the Kronecker symbol
(DK/p∗ )

and pmp is the exact power

of p dividing f .



198 Y. Mizuno

Lemma 3. For D = DKf2, suppose that DK is not divisible by p. Let

pmp be the exact power of p dividing f . Then

e∞χp
(D) + (−1)kiδpp−(k−1/2)e0

χp
(D)

= iδpαk|D|k−3/2 L(k − 1, χDKp∗)

ζ(2k − 2)
Υ k−1

DK ,χp
(f)p−(k−3/2) 1 − p(3−2k)mp

1 − p3−2k
,

where χDKp∗ is the Kronecker symbol
(DKp∗ )

.

Proposition 3 follows from these lemmas in the same way as in [5, Sec-
tion 2]. Propositions 1–3 imply Theorem 2.

3. G̃
(2)
(k,(p+2k−1)/2) is a Siegel–Eisenstein series. Put

γk,p =
Bk,χp

2k

1 − p2−2k

pk−2(1 − p3−2k)
.

The next proposition implies Theorem 1.

Proposition 4. For k > 3, one has

G̃
(2)
(k,(p+2k−1)/2) = E(2)

k,χp
+ (−1)kγk,pF

(2)
k,χp

.

Proof. Applying the Siegel operator shows the coincidence of the con-
stant terms and rank one parts. In fact both sides have the same image

−Bk,χp

2k
+

∑

n≥1

∑

d|n

χp(d)dk−1e(nτ).

To show the coincidence of the rank two parts, we denote by a(T ) the T th
Fourier coefficient of the left-hand side, by b(T ) that of the right-hand side

and by C(T ) that of F
(2)
k,χp

. Hence b(T ) = Ak(T )+(−1)kγk,pC(T ). An explicit

formula for a(T ) is given in [3, (6.4), p. 113], and Ak(T ) and C(T ) follow
from Propositions 1 and 2. By these results, b(T ) has the form

(4) b(T ) =
∑

d|e(T )

χp(d)dk−1c

(−det 2T

d2

)
,

where e(T ) is the content of T and c(D) for D < 0 is given by

c(D) = {e∞χp
(D) + (−1)kiδpp−(k−1/2)e0

χp
(D)}

− (−1)kiδpp3/2−k 1 − p2−2k

1 − p3−2k
e0
χp

(D)

with the notations of Section 2. Let DK be the discriminant of K = Q(
√

D)
and f a natural number defined by D = DKf2. Put mp = ordp f . Then
Lemmas 2 and 3 imply the following simple expression for c(D), depending
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on divisibility of DK by p. If DK is not divisible by p, then

c(D) =
2Bk−1,χDKp∗

B2k−2
f2k−3Υ k−1

DK ,χp
(f)

p(3−2k)mp

1 − p2k−3
.

If DK is divisible by p, then

c(D) =
2Bk−1,χDK/p∗

B2k−2
f2k−3Υ k−1

DK ,χp
(f)p(3−2k)mp

1 − χDK/p∗(p)pk−2

1 − p2k−3
.

It is easy to see that a(T ) given in [3, (6.4), p. 113] has the same form as
in (4). Hence the desired result follows.

This proposition implies Theorem 1 and completes the proof.
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