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On p-adic Siegel-Eisenstein series of weight k
by

Y OSHINORI MI1ZUNO (Bonn)

1. Introduction. In [3], Katsurada and Nagaoka introduced a p-adic
2

)
k,(p+2k—1)/2)
show that this series is a Siegel-Fisenstein series of degree two, weight k& and

level p. As a corollary it is a modular form. We also present a simple formula
for the Fourier coefficients of a Siegel-Eisenstein series of degree two and
prime levels.

Siegel-Eisenstein series (~?E of weight k. In the present paper, we

Let E,(f) be the Siegel-Eisenstein series of degree two, weight k and level
one,

EP(Z)= Y det(CZ+D)™*, ZeH,
{¢.D}
where the sum is taken over all pairs {C, D} which occur as the second

matrix row of representatives of I CEg)\SpQ(Z) with the standard notations
and Hy = {Z = 'Z € My(C); SZ > O} is the Siegel upper half-space
of degree two. This has a Fourier expansion with respect to e(tr(77)) in-
dexed by T € Lo, the set of all half-integral positive semi-definite sym-
metric matrices of size two. Here e(x) = €*™* as usual. Take a prime p
and a natural number k such that p > 2k and k = (p — 1)/2 (mod2). Put
km =k +p™ 1(p —1)/2. If the p-adic convergence

nlii“oo{ 3 Am(T)e(tr(TZ))} = Y BT)e(tx(T2))  (p-adically)
TeLy TeLs

is understood as

inf {ord,(B(T) — An(T))} — 00 as m — oo,
TeLs
then Katsurada—Nagaoka [3]| defined a p-adic Siegel-Eisenstein series by
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~(2) — By, (2) .
Gl prk—1)/2) = ok, E,”  (p-adically).

In this paper, we give a description of this p-adic Siegel-Eisenstein series as
a Siegel-Eisenstein series of degree two, weight k£ and level p.
Let x, be the Legendre symbol. For any integer k& > 3 such that k& =

(p—1)/2 (mod2), a Siegel-Eisenstein series E,E?))(p of degree two, weight k
and character x, on I 0(2) (p) is defined in the standard way as

(Z)= > xp(det D)det(CZ + D)%,  Ze Hy,
{C,D}

(2)
Ek’XP

where the sum is taken over all pairs {C, D} which occur as the second
matrix row of representatives of Fg)\FéQ)(p),

IP(p) = {7 € Spp(2); C = 0 (modp)}, I'®) = {7 € Spy(Z); C = O}
Let F ,gzp be the twist of Elfip,

2 _ k(2 _
F) (2)=p*det 277 B (—(p2)7).
Then E,(”)< 7F152>2,, € Mk(FéQ)(p),Xp), the space of all Siegel modular forms

of degree two, weight k£ and character x, on I; 0(2) (p). The following identity
will be proved in Section 3.

THEOREM 1. For k > 3, one has

—B k—2 1—
~(2) _ “Bex [ L@ P (L=P) )
G lo(pt2k—1)/2) = ok . {Ek,xp +(-1) 3 _ 1 Fk,xp}’
where By, is the kth generalized Bernoulli number.
In [3], some genus theta series were employed rather than E,(f))(p to show

@)
G e (pr26-1)/2)

densities of quadratic forms [2], [6] were needed. One can think that the use

€ My (I, 0(2)(])), Xp) and thus various explicit formulas for local

of E( ) is rather natural. However it could not be used because no explicit
formula for its Fourier coefficients was available at that time. Such a formula
has now been obtained in [4] and it is crucial to proving Theorem 1.

The proof of Theorem 1 contains a simple formula for the Fourier coef-
ficients of a linear combination of Siegel-Eisenstein series defined by

B
2 —Dg, 2 2
Slg’;p = 72];(” {El(w)@ +( 1)"“]01 k ,5»213}

This was introduced in [5] and a formula for its Fourier coefficients was
given in case p = 1 (mod4). Theorem 2 below generalizes it to any odd
prime. Recall that the Bernoulli numbers B, and the generalized Bernoulli
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numbers By, , are defined by

S S " - x(a)tent
D Bnin= g 2 B =it
m=0 m=0

for any primitive character x of conductor f.

THEOREM 2. The Fourier expansion of 5(2) s given by

= > AD)e(tx(TZ)),

TeLo

p|det 2T
where the summation extends over all T € Lo (the set of all half-integral
positive semi-definite symmetric matrices of size two) such that det 2T is
divisible by p, and the Ax(T) are given as follows. For T such that tkT =1,
we have Ax(T) =3 c(m) Xp(d)d* ™ and Ay(O) = =By, /(2k). For T > O
such that det 2T is divisible by p, we have

: d
= T_X;K Xp(d)d* D pla)xpy (a)ak~ 202k—3<%>7
dle(T) alf/d
where By_1, and Bag_o are the Bernoulli numbers, Dy is the discriminant
of K = Q(\/(—det 27 /p*) with p* = (—=1)®=Y/2p_ the natural number f is
defined by —det 2T = p*Dg f?, Xp, is the Kronecker symbol of K, e(T) is
the content of T, o5(n) = 3 g, d° and p is the Mobius function.

It seems interesting to compare this formula with [1, Corollary 2, p. 80].

2. Fourier coefficients of Siegel-Eisenstein series. In this section
we prove Theorem 2. The proof contains formulas needed to show Theo-
rem 1. We sketch it only to record the results, as it is similar to that given
in [5].

The following two propositions give explicit forms for the Fourier coeffi-

cients of the Siegel-Eisenstein series E,(f))(p and F; ,52)217. The formula for F,gzp

follows from an explicit formula for the Siegel series. See [3, Proposition 2.3,
p. 104] for example.

ProroOSITION 1. The Fourier expansion of F,gzp s given by

p"I'(k)L(k, xp) e

(2mi)k k’XP(Z)
B k1,0 —det 2T oltr
—TEL;W{%;)X (d)d (—d )} ((T2)),
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_ L(k_]-7XD X) —
0 _(_1\k k—3/2 K AP k—1
(1) 5, (D) = (—1)* | D| L@E—2.3) o)

where L(s,x) is the Dirichlet L-function, I'(s) is the gamma function, D
is the discriminant of K = @(\/5), the natural number f is defined by D =
Dk f?, xp, is the Kronecker symbol ofK o = 227 ki—hpk=1/2 /P (k—1/2),

(2) Th () = D mld)xpy (d)x(d)d o1 _ey2(f/d),
df

oo (f) =2 a xX2(d)d* and p is the Mobius function.
Theorem 1 in [4] yields the following result.

PROPOSITION 2. The Fourier expansion of E,(f))(p s given by

p"I(K)L(k,xp) @ ([T 2\) _ —Brx
Nk Ekx / -
Tp(Xp) (—2mi) e\ \z 7 2k

+ ) (dZ Xp(d)d* ! ;(%))e(nT—}—rz_ka/)

m>0,n>0,7€Z (n,r,m)
4ngT2’ (narvm);&(oi)’o)

with 7,(xp) = S0, xp(r)e?™ /P, ex (0) =1 and €5 (D) given for D <0 by

o _ L(k_ ]-7XD X ) —
() D)= (D el TR ()
' Xp
x D p RO (D),
e>1

where Dg, f, ai and TB;X (f) are as in Proposition 1, e = 1 ori according

as d =1 (mod4) or 3 (mod4), and
Cp(Dp) = D X (D), ena) = T
de(Z/peL)*
Put p* = (—1)P"Y/2p and take &, € {0,1} such that k = §, (mod?2).
Hence p* is a prime discriminant. A key proposition to prove Theorem 2 is

PROPOSITION 3. For D < 0 such that D = 0,1 (mod4)we have
LD/p* (k - ].)

C(2k —2)
Here ay is as in Proposition 1 and Lp(s) = L(s,xDx )T, 1, (f), where
we use the symbol (2) for the principal character xo (xo(Z) = {1}), the
natural number f is defined by D = Dy f? with the discriminant Dy of
K = Q(vVD), xp, is the Kronecker symbol of K, and we set Lppy(s) =0

if D is not divisible by p.

ex (D) + (—1)ki5pp—(k—1/2)e?<p(D) — % | D|F=3/2p(k=3/2)
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We sketch the proof. It follows from (1) and (3) that for D = D f?,

ex (D) + (=1)Fifrp= VD (D)

_ L(k; - 17 XDy X )
_ k k—3/2
- (_1) ak’D| / L(2k‘ —2, ;%)p DKvXp(f)

{Zp (k— 1/2e3 pr( %) + (— l)k,tdp (k— 1/2)}

e>1
Then C3 (D, p®) was evaluated in Proposition 4 of [4]:
LEMMA 1.

(I) If D is not divisible by p, then
o0 o -1, e=1,
pr( ) = 0, e>2.

(IT) If D is divisible by p, let p™ be the exact power of p dividing D.
Then

(a) fore <m,

-1 .
. . pH(p—1), e isodd,
Cxp,p( 7)) = {O

, e 1s even,
(b) fore=m+1,

C (D.pf) = —p™, m is even,
Xpp\ P )= Xp(D/pm)i‘stmH/Q, m s odd,
(c) fore=m+2, C¥ (D,p°) =0.

From this, we have the following two lemmas.

LEMMA 2. For D = Dy f?, suppose that Dk is divisible by p. Then

e (D) + (—1)Filep 1208 (D)
. _ (k - 15XD / *) _
= Zépak’D‘k 3/2 C(Qk _ 2}; . TgK%Xp(f)

« p(k=3/2) 1 — pB3=2k)(mp+1) _ XD /p* (p)p~*—D (1 — pB-2k)my)

1—p32k ’

where X p, /p« 15 the Kronecker symbol (DK—/p*) and p™ 1is the exact power
of p dividing f.
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LEMMA 3. For D = Dy f?, suppose that Dy is not divisible by p. Let
p™r be the exact power of p dividing f. Then

e;op (D) + (—1)ki5pp_(k_1/2)€?<p (D)
) 1— p(372k)mp

. a9 Lk —1, * _ il
—_ Z5pak|D’k‘ 3/2 ( XDgp )Tk 1 (f) (k—3/2 - _p3_2k ’

C(2k —2) Drcoxp

where X pyp s the Kronecker symbol (M).

Proposition 3 follows from these lemmas in the same way as in [5, Sec-
tion 2]. Propositions 1-3 imply Theorem 2.

3. G2

(o (p+2k—1)/2) is a Siegel-Eisenstein series. Put

Ve,p = 2k pF2(1— pp2k)’

The next proposition implies Theorem 1.

PrRoPOSITION 4. For k > 3, one has
~(2) (2) (2)
G(k (p+2k—1)/2) — 5k,xp T (_1) kol Xp'

Proof. Applying the Siegel operator shows the coincidence of the con-
stant terms and rank one parts. In fact both sides have the same image

_ 7Xp +ZZX}) dk 1 n,]_)

n>1 djn
To show the coincidence of the rank two parts, we denote by a(7T) the T'th
Fourier coefficient of the left-hand side, by b(T') that of the right-hand side
and by C(T') that of F,gizp. Hence b(T) = A(T)+(—1)* 4 ,C(T). An explicit
formula for a(T') is given in [3, (6.4), p. 113], and Ax(T) and C(T') follow
from Propositions 1 and 2. By these results, b(T") has the form

(@ W)= 3 ol =52,

dle(T)
where e(T) is the content of T" and ¢(D) for D < 0 is given by
(D) = {e5, (D) + (—1)ki5"p_(k_1/2)6?<p(D)}
2-2k

1_
P32k
_(_1) / 1—p3—2k Xp(D)

with the notations of Section 2. Let Dy be the discriminant of K = Q(v/D)
and f a natural number defined by D = Dg f2. Put my, = ord, f. Then
Lemmas 2 and 3 imply the following simple expression for ¢(D), depending
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on divisibility of D by p. If Dk is not divisible by p, then

C(D) _ 2Bk_1’XDKP* f2k—3Tk71 (f) p(3—2k’)mp
- B2k—2 Dk xp 1— p2k—3 ’
If Dy is divisible by p, then

k—2
_ 2w ks (-, L X0l (B

¢(D) Bor_» DX 1— p2h—3

It is easy to see that a(T) given in [3, (6.4), p. 113] has the same form as
in (4). Hence the desired result follows.

This proposition implies Theorem 1 and completes the proof.
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