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1. Introduction. One of the most remarkable congruences for binomial
coefficients, due to Gauss (1828), is related to the representation of an odd
prime p as a sum of two squares. It is a well-known theorem of Fermat that
p can be written as a sum of two squares if and only if p ≡ 1 (mod 4), and
that the representation is unique up to sign and order of the summands. Let
us now fix p and a such that

(1.1) p ≡ 1 (mod 4), p = a2 + b2, a ≡ 1 (mod 4).

The theorem of Gauss can now be stated as follows.

Theorem 1 (Gauss). Let the prime p and the integer a be as in (1.1).
Then

(1.2)
(

(p− 1)/2
(p− 1)/4

)
≡ 2a (mod p).

For a proof and generalizations of this result see, e.g., [2, p. 268]. Beukers
[3] first conjectured an extension to a congruence (mod p2), and this was
first proved by Chowla, Dwork, and Evans [4].

Theorem 2 (Chowla, Dwork, Evans). Let p and a be as in (1.1). Then

(1.3)
(

(p− 1)/2
(p− 1)/4

)
≡
(
1 + 1

2pqp(2)
)(

2a− p

2a

)
(mod p2).

Here qp(m) is the Fermat quotient to base m (p - m), defined for odd
primes p by

(1.4) qp(m) :=
mp−1 − 1

p
.
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Congruences such as (1.3) have been very useful in large-scale computations
to search for Wilson primes; see [6] or [7]. While the congruences (1.2) and
(1.3) have been extended to numerous other binomial coefficients (see [2]),
it is one of the purposes of this paper to extend them to a congruence
modulo p3.

Theorem 3. Let p and a be as in (1.1). Then(
(p− 1)/2
(p− 1)/4

)
≡
(

2a− p

2a
− p2

8a3

)
(1.5)

×
(
1 + 1

2pqp(2) + 1
8p

2(2Ep−3 − qp(2)2)
)

(mod p3).

Here En denotes the nth Euler number, defined in (4.4). The second
main result, Theorem 7, of which Theorem 3 is a consequence, concerns
quotients of what we call Gauss factorials. These quotients resemble binomial
coefficients, and we will prove congruences modulo arbitrarily high powers
of p. This will be done in Sections 2 and 3, and in Section 4 we derive
Theorem 3 from the results of Section 2.

In much the same way as just outlined one can derive (mod p3) con-
gruences also for numerous other binomial coefficients. Here we will restrict
ourselves to the following important classical case. In analogy to (1.1) we
fix an odd prime p and integers r, s such that

(1.6) p ≡ 1 (mod 6), 4p = r2 + 3s2, r ≡ 1 (mod 3), s ≡ 0 (mod 3).

The integer r is then uniquely determined. The following congruence, analo-
gous to Gauss’ Theorem 1, is due to Jacobi (1837); see [2, p. 291] for remarks
and references.

Theorem 4 (Jacobi). Let p and r be as in (1.6). Then

(1.7)
(

2(p− 1)/3
(p− 1)/3

)
≡ −r (mod p).

In analogy to Theorem 2, this congruence has also been extended, ap-
parently independently by Evans and Yeung; see [2, p. 293] for remarks and
references.

Theorem 5 (Evans; Yeung). Let p and r be as in (1.6). Then

(1.8)
(

2(p− 1)/3
(p− 1)/3

)
≡ −r +

p

r
(mod p2).

For the usefulness of this congruence, see [6] or [7]. We are now ready to
state the following extension.

Theorem 6. Let p and r be as in (1.6). Then

(1.9)
(

2(p− 1)/3
(p− 1)/3

)
≡
(
−r +

p

r
+
p2

r3

)(
1 + 1

6p
2Bp−2

(
1
3

))
(mod p3).
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Here Bn(x) is the nth Bernoulli polynomial; for a definition see (5.5).
The proof of this result, in Section 5, is analogous to the development in
Sections 2–4. We conclude this paper with several remarks in Section 6.

2. Gauss factorials and the p-adic gamma function. We found it
convenient to introduce the following notation. For positive integers N and
n let Nn! denote the product of all integers up to N that are relatively prime
to n, i.e.,

(2.1) Nn! =
∏

1≤j≤N
gcd(j,n)=1

j.

In a previous paper [5] we called these products Gauss factorials, a termi-
nology suggested by the theorem of Gauss which states that for any integer
n ≥ 2 we have

(2.2) (n− 1)n! ≡
{−1 (mod n) for n = 2, 4, pα, or 2pα,

1 (mod n) otherwise,
where p is an odd prime and α is a positive integer. Note that the first case
in (2.2) indicates exactly those n that have primitive roots. For references,
see [8, p. 65].

Departing from (1.3) we were able to prove the congruence

(2.3)

(p2−1
2

)
p
!((p2−1

4

)
p
!
)2 ≡ 2a− p

2a
(mod p2),

with p and a as in (1.1). The proof is similar to (but easier than) that of
Theorem 3. Based on numerical experiments, using the computer algebra
system Maple [14], it was easy to conjecture

(2.4)

(p3−1
2

)
p
!((p3−1

4

)
p
!
)2 ≡ 2a− p

2a
− p2

8a3
(mod p3).

In this section and the next we are going to prove this, and in fact the
following general congruence.

Theorem 7. Let p and a be as in (1.1) and let α ≥ 2 be an integer.
Then (pα−1

2

)
p
!((pα−1

4

)
p
!
)2 ≡ 2a− C0

p

2a
− C1

p2

8a3
− · · · − Cα−2

pα−1

(2a)2α−1
(2.5)

= 2a− 2a
α−1∑
j=1

1
j

(
2j − 2
j − 1

)(
p

4a2

)j
(mod pα),

where Cn := 1
n+1

(
2n
n

)
is the nth Catalan number, which is always an integer.
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If the summation on the right is considered 0 for α = 1, then Gauss’
Theorem 1 can also be seen as a special case of (2.5).

As in the proofs of Theorem 2 and its generalizations in [4] and [2], the
p-adic gamma function and its connection with Jacobi sums will be useful
here. Following the exposition in [2, p. 277], we fix an odd prime p and define
a function F on the nonnegative integers by F (0) := 1 and

(2.6) F (n) := (−1)n
∏

0<j<n
p-j

j (n ≥ 1),

with (2.6) interpreted so that F (1) = −1. Let now Qp denote the p-adic
completion of Q, and Zp the ring of p-adic integers in Qp. The p-adic gamma
function is then defined by

(2.7) Γp(z) = lim
n→z

F (n) (z ∈ Zp),

where n runs through any sequence of positive integers p-adically approach-
ing z. For the existence of this limit and for other properties see, e.g., [2,
p. 277] or [12, pp. 40 ff.]. Among the properties we require here is the fact
that for any positive integer n,

(2.8) z1 ≡ z2 (mod pn) implies Γp(z1) ≡ Γp(z2) (mod pn).

The Jacobi sum over the finite field Fp is defined as follows. If χ and ψ
are characters on Fp, then the Jacobi sum J(χ, ψ) is defined by

J(χ, ψ) =
∑
a

χ(a)ψ(1− a),

where a runs through the elements of Fp. See, e.g., [2, Sect. 2.1] for a some-
what more general definition.

The following properties are used in this paper. First, let p = 4f + 1 be
a prime and let g be a primitive root modulo p. Define the integers a4 and
b4 by

(2.9) p = a2
4 + b24, a4 ≡ −

(
2
p

)
(mod 4), b4 ≡ a4g

(p−1)/4 (mod p),

where
(

2
p

)
is the Legendre symbol. For a fixed g the integers a4, b4 are

uniquely determined and differ from a and b in (1.1) only (possibly) in sign.
Next, let χ be a character (mod p) of order 4 such that χ(g) = i. Then from
Table 3.2.1 in [2] we have

J(χ, χ) = (−1)f (a4 + ib4),(2.10)

J(χ3, χ3) = (−1)f (a4 − ib4).(2.11)

Furthermore, let P be a prime ideal in the ring of integers Z[i] dividing the
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prime p. Then it follows from Theorem 2.1.14 in [2, p. 66] that

(2.12) J(χ, χ) ≡ 0 (mod P ).

Finally, the connection between Jacobi sums and the p-adic gamma function
is a consequence of the deep Gross–Koblitz formula for Gauss sums. There
is no need to go into details here; instead we just quote a special case of
identity (9.3.7) in [2, p. 278], namely

(2.13) J(χ3, χ3) =
Γp(1− 1/2)
Γp(1− 1/4)2

.

3. Proof of Theorem 7. With the above definitions and preparations
we are now in a position to prove Theorem 7. Continuing to use the ideas
in [2, Ch. 9], we apply (2.8) to (2.13) and obtain

(3.1) J(χ3, χ3) ≡ Γp(1 + (pα − 1)/2)
Γp(1 + (pα − 1)/4)2

(mod pα).

Since the arguments of Γp are now integers, we have

J(χ3, χ3) ≡ F (1 + (pα − 1)/2)
F (1 + (pα − 1)/4)2

(mod pα),

and finally, comparing (2.6) with (2.1),

(3.2) J(χ3, χ3) ≡ −

(pα−1
2

)
p
!((pα−1

4

)
p
!
)2 (mod pα).

Here we have used the fact that 1+(pα − 1)/2 ≡ 1 (mod 2), which accounts
for the minus sign in (3.2).

With a view to evaluating the right-hand side of (2.11), we note that
(2.10) with (2.12) gives

(3.3) (a4 + ib4)α ≡ 0 (mod Pα).

Since this holds for any prime ideal P dividing the prime p, we may conclude
that this congruence holds also modulo pα. We now expand the left-hand
side of (3.3) and separate real and imaginary parts, to obtain

(3.4) −ib4
b(α−1)/2c∑

j=0

(
α

2j + 1

)
(−1)jaα−2j−1

4 b2j4

≡
bα/2c∑
j=0

(
α

2j

)
(−1)jaα−2j

4 b2j4 (mod pα).
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Because of the relationship b24 = p− a2
4, the first sum, S1, in (3.4) becomes

S1 = aα−1
4

b(α−1)/2c∑
j=0

j∑
k=0

(
α

2j + 1

)(
j

k

)(
−p
a2

4

)j−k
.

Setting ν := j − k and noting that
(
j
k

)
=
(
j

j−k
)

=
(
j
ν

)
, we get

S1 = aα−1
4

b(α−1)/2c∑
ν=0

(
−p
a2

4

)ν b(α−1)/2c∑
j=ν

(
α

2j + 1

)(
j

ν

)
.

The inner sum has an explicit evaluation as 2α−1−2ν
(
α−1−ν

ν

)
; see identity

(3.121) in [10]. Hence

(3.5) S1 = (2a4)α−1

b(α−1)/2c∑
ν=0

(
α− 1− ν

ν

)(
−p
4a2

4

)ν
.

Similarly, if S2 is the second sum in (3.4), we get

S2 = aα4

bα/2c∑
j=0

j∑
k=0

(
α

2j

)(
j

k

)(
−p
a2

4

)j−k

= aα4

b(α−1)/2c∑
ν=0

(
−p
a2

4

)ν bα/2c∑
j=ν

(
α

2j

)(
j

ν

)
.

Using the identity (3.120) in [10] to evaluate the inner sum, we obtain

(3.6) S2 =
1
2

(2a4)α
bα/2c∑
ν=0

(
α− ν
ν

)
α

α− ν

(
−p
4a2

4

)ν
.

To simplify notation, we set

y :=
−p
4a2

4

.

We now claim that

(3.7) −ib4 ≡
S2

S1
≡ a4 + 2a4

α−1∑
j=1

(−1)j−1

j

(
2j − 2
j − 1

)
yj (mod pα).

By (3.5) and (3.6) this is equivalent to∑bα/2c
ν=0

(
α−ν
ν

)
α

α−ν y
ν∑b(α−1)/2c

ν=0

(
α−1−ν

ν

)
yν
≡ 1 + 2

α−1∑
j=1

(−1)j−1

j

(
2j − 2
j − 1

)
yj (mod pα)
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or
bα/2c∑
ν=0

[(
α− ν
ν

)
α

α− ν
−
(
α− 1− ν

ν

)]
yν

≡ 2
(α−1∑
j=1

(−1)j−1

j

(
2j − 2
j − 1

)
yj
)(b(α−1)/2c∑

ν=0

(
α− 1− ν

ν

)
yν
)

≡ 2
α−1∑
j=1

b(α−1)/2c∑
ν=0

(−1)j−1

j

(
2j − 2
j − 1

)(
α− 1− ν

ν

)
yj+ν (mod pα).

It is easy to verify that(
α− ν
ν

)
α

α− ν
−
(
α− 1− ν

ν

)
= 2
(
α− 1− ν
ν − 1

)
,

which simplifies the left-hand term in the above congruence. For the right-
most term we set k := j + ν and change the order of summation. Then the
congruence above is equivalent to

(3.8)
bα/2c∑
ν=0

(
α− 1− ν
ν − 1

)
yν

≡
α−1∑
k=1

( k∑
j=1

(−1)j−1

j

(
2j − 2
j − 1

)(
α− 1 + j − k

k − j

))
yk (mod pα).

We have therefore proved our claim (3.7) if we can show that the coefficients
of the powers of y on both sides of (3.8) are identical up to power α − 1.
But this is an immediate consequence of the identity

(3.9)
∑
j≥0

(−1)j

j + 1

(
2j
j

)(
n+ j

n−m− j

)
=
(
n− 1
n−m

)
as can be seen by setting n = α−k and n−m = k−1 in (3.9). This identity
can be found, in slightly changed form, in [11, pp. 183 ff.].

To complete the proof of Theorem 7, we note that (3.7) with (2.11) and
(3.2) immediately gives (2.5). It only remains to verify that −(−1)fa4 = a.
But this follows from (2.9) and the 2nd complementary law of quadratic
reciprocity. Indeed, recall that f = (p− 1)/4; then (as is also shown in [2,
p. 108])

a4 ≡ −
(

2
p

)
≡ −(−1)

p2−1
8 = −(−1)

p−1
4

p+1
2 = −(−1)f (mod 4),

where we have used the fact that (p+ 1)/2 ≡ 1 (mod 2). Hence −(−1)fa4 ≡
1 (mod 4), and thus −(−1)fa4 = a by (1.1). The proof is now complete.
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4. Proof of Theorem 3. In order to derive Theorem 3 from Theorem 7
we need a number of auxiliary results on congruences for certain finite sums.
We begin by listing three easy congruences.

Lemma 1. For all primes p ≥ 5 we have
p−1∑
j=1

1
j
≡ 0 (mod p2),(4.1)

(p−1)/2∑
j=1

1
j
≡ −2qp(2) (mod p),(4.2)

b(p−1)/4c∑
j=1

1
j
≡ −3qp(2) (mod p).(4.3)

The congruence (4.2) also holds for p = 3. Congruences of this type were
obtained by several authors in the early 1900s, with the most extensive and
general treatment in a paper by Emma Lehmer [13]. The congruences (41)
and (43) in that paper, which are given modulo p2, immediately reduce to
(4.2) and (4.3), respectively, when taken modulo p, and (4.1) follows as a
special case from a congruence in [13, p. 353].

While Lemma 1 would be sufficient to obtain (2.3) from (1.3) and vice
versa, for the proof of Theorem 3 we need to extend these congruences. For
the following lemma we need the Euler numbers En which can be defined
by the generating function

(4.4)
2

et + e−t
=
∞∑
n=0

En
n!

tn (|t| < π).

The Euler numbers are integers, and the first few are E0 = 1, E2 = −1,
E4 = 5, E6 = −61, and E2j+1 = 0 for j ≥ 0. For further properties see, e.g.,
[1, Ch. 23].

Lemma 2. For all primes p ≥ 5 we have
p−1∑
j=1

1
j2
≡ 0 (mod p),(4.5)

(p−1)/2∑
j=1

1
j
≡ −2qp(2) + pqp(2)2 (mod p2),(4.6)

and for p ≡ 1 (mod 4),

(4.7)
(p−1)/4∑
j=1

1
j
≡ −3qp(2) + 3

2pqp(2)2 − pEp−3 (mod p2).
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The congruence (4.5) is a special case of a more general one in [13, p. 353].
(4.6) and (4.7) follow from congruences in [16, p. 290].

We will also need congruences for a number of double sums:

Lemma 3. For all primes p ≥ 5 we have∑
1≤j<k≤p−1

1
jk
≡ 0 (mod p),(4.8)

∑
1≤j<k≤(p−1)/2

1
jk
≡ 2qp(2)2 (mod p),(4.9)

and for p ≡ 1 (mod 4),

(4.10)
∑

1≤j<k≤(p−1)/4

1
jk
≡ 9

2qp(2)2 − 2Ep−3 (mod p).

Proof. As special cases of congruences in [16, p. 296] we have, for p ≥ 5,

(4.11)
(p−1)/2∑
j=1

1
j2
≡ 0 (mod p),

and for p ≡ 1 (mod 4),

(4.12)
(p−1)/4∑
j=1

1
j2
≡ 4Ep−3 (mod p).

Now note that for d = 1, 2, or 4 we have

(4.13)
∑

1≤j<k≤(p−1)/d

1
jk

=
1
2

((p−1)/d∑
j=1

1
j

)2

− 1
2

(p−1)/d∑
j=1

1
j2
.

We then see that for d = 1, the congruences (4.1) and (4.5) imply (4.8).
Likewise, for d = 2, the congruences (4.2) and (4.11) give (4.9). Finally, in
the case d = 4, the congruences (4.3) and (4.12) imply (4.10).

We are now ready to prove Theorem 3.

Proof of Theorem 3. We begin with the simple identity

p3 − 1
d

=
p2 − 1
d

p+
p− 1
d

(d = 2 or d = 4);

this shows that with s := (p2 − 1)/d we have

(4.14)
(
p3 − 1
d

)
p

! =
s−1∏
ν=0

[(νp+ 1) · · · (νp+ p− 1)]
[
(sp+ 1) · · ·

(
sp+

p− 1
d

)]
.
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Now for each ν = 0, 1, . . . , s− 1 we have

(4.15) (νp+ 1) · · · (νp+ p− 1)

≡ (p− 1)!
[
1 + νp

p−1∑
j=1

1
j

+ ν2p2
∑

1≤j<k≤p−1

1
jk

]
≡ (p− 1)! (mod p3),

where the second congruence follows from (4.1) and (4.8). Similarly,

(4.16) (sp+ 1) · · ·
(
sp+

p− 1
d

)

≡
(
p− 1
d

)
!
[
1 + sp

(p−1)/d∑
j=1

1
j

+ s2p2
∑

1≤j<k≤(p−1)/d

1
jk

]
(mod p3).

When d = 2, we use (4.6) and (4.9) to obtain

(sp+ 1) · · ·
(
sp+

p− 1
d

)
≡
(
p− 1
d

)
! [1 + sp(−2qp(2) + pqp(2)2) + s2p22qp(2)2] (mod p3).

Upon simplifying and using the fact that s ≡ −1/2 (mod p2) we get, together
with (4.15) and (4.14),

(4.17)
(
p3 − 1

2

)
p

! ≡ (p− 1)!(p
2−1)/2

(
p− 1

2

)
! (1 + pqp(2)) (mod p3).

In the case d = 4 we use (4.7) and (4.10) and the fact that now s ≡
−1/4 (mod p2). Then in complete analogy to the case d = 2, from (4.16) we
obtain (

p3 − 1
4

)
p

! ≡ (p− 1)!(p
2−1)/4

(
p− 1

4

)
!(4.18)

×
(
1 + 3

4pqp(2)− 3
32p

2qp(2)2 + 1
8p

2Ep−3

)
(mod p3).

Next we note that
1

1 + pqp(2)
≡ 1− pqp(2) + p2qp(2)2 (mod p3),

and therefore upon multiplying and simplifying we get(
1 + 3

4pqp(2)− 3
32p

2qp(2)2 + 1
8p

2Ep−3

)2
1 + pqp(2)

≡ 1 + 1
2pqp(2) + 1

8p
2(2Ep−3 − qp(2)2) (mod p3).
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Finally, if we divide (4.17) by the square of (4.18), this last congruence
together with (2.4) gives the desired congruence (1.5).

5. Proof of Theorem 6. In order to prove Theorem 6, we follow the
same development as in Sections 2–4. In particular, we first prove the fol-
lowing result which is of independent interest.

Theorem 8. Let p and r be as in (1.6) and let α ≥ 2 be an integer.
Then (2(pα−1)

3

)
p
!((pα−1

3

)
p
!
)2 ≡ −r + C0

p

r
+ C1

p2

r3
+ · · ·+ Cα−2

pα−1

r2α−1
(5.1)

= −r +
α−1∑
j=1

1
j

(
2j − 2
j − 1

)
pj

r2j−1
(mod pα),

where Cn is again the nth Catalan number.

Proof. Fix a primitive root g modulo p, and let χ be a cubic character
modulo p such that χ(g) = e2πi/3 = (−1 + i

√
3)/2. Then from Table 3.1.1

in [2, p. 106] we have

J(χ, χ) = 1
2(r + is

√
3),(5.2)

J(χ2, χ2) = 1
2(r − is

√
3),(5.3)

where r and s are as in (1.6), with the sign of s fixed by the congruence 3s ≡
(2g(p−1)/3 + 1)r (mod p). Furthermore, for any prime ideal P in the ring of
integers of Q(

√
−3) dividing p we find, again by Theorem 2.1.14 in [2, p. 66],

that J(χ, χ) ≡ 0 (mod P ), and with (5.2) we get (r+ is
√

3)α ≡ 0 (mod Pα).
As before, we may conclude that this last congruence also holds modulo pα.
We expand the left-hand side and separate real and imaginary parts:

− i
√

3 s
b(α−1)/2c∑

j=0

(
α

2j + 1

)
(−3)jrα−2j−1s2j

≡
bα/2c∑
j=0

(
α

2j

)
(−3)jrα−2js2j (mod pα).

Using the relationship 3s2 = 4p− r2, the left-hand sum, S3, becomes

S3 = rα−1

b(α−1)/2c∑
j=0

j∑
k=0

(
α

2j + 1

)(
j

k

)(
−4p
r2

)j−k
= (2r)α−1

b(α−1)/2c∑
ν=0

(
α− 1− ν

ν

)(
−p
r2

)ν
,
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where we have used identity (3.121) in [10]. Similarly, for the right-hand
sum, S4, we get (see also (3.6))

S4 =
1
2

(2r)α
bα/2c∑
ν=0

(
α− ν
ν

)
α

α− ν

(
−p
r2

)ν
.

In the same way as in Section 3 we now obtain, with z := −p/r2,

−i
√

3 s ≡ S4

S3
≡ r + 2r

α−1∑
j=1

(−1)j−1

j

(
2j − 2
j − 1

)
zj (mod pα);

see also (3.7). Now, with (5.3) this gives

(5.4) J(χ2, χ2) ≡ r + r
α−1∑
j=1

(−1)j−1

j

(
2j − 2
j − 1

)(
−p
r2

)j
(mod pα).

Next, in analogy to (2.13) and (3.1), (3.2) we have

J(χ2, χ2) =
Γp(1− 2/3)
Γp(1− 1/3)2

≡ −

(2(pα−1)
3

)
p
!((pα−1

3

)
p
!
)2 (mod pα).

Finally, this combined with (5.4) immediately gives (5.1).

The proof of Theorem 6 is analogous to that of Theorem 3 in Section 4.
For the next lemma, which supplements Lemmas 1–3, we need the Bernoulli
polynomials Bn(x), defined by the generating function

(5.5)
tetx

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π).

See Section 6 for some further remarks on the numbers Bp−2(1/3) that
appear in all the congruences in the following lemma.

Lemma 4. For all primes p ≡ 1 (mod 3) we have
(p−1)/3∑
j=1

1
j2
≡ 1

2Bp−2

(
1
3

)
(mod p),(5.6)

2(p−1)/3∑
j=1

1
j2
≡ −1

2Bp−2

(
1
3

)
(mod p),(5.7)

(p−1)/3∑
j=1

1
j
≡ −3

2qp(3) + 3
4pqp(3)2 − 1

6pBp−2

(
1
3

)
(mod p2),(5.8)

2(p−1)/3∑
j=1

1
j
≡ −3

2qp(3) + 3
4pqp(3)2 + 1

3pBp−2

(
1
3

)
(mod p2),(5.9)
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1≤j<k≤(p−1)/3

1
jk
≡ 9

8qp(3)2 − 1
4Bp−2

(
1
3

)
(mod p),(5.10)

∑
1≤j<k≤2(p−1)/3

1
jk
≡ 9

8qp(3)2 + 1
4Bp−2

(
1
3

)
(mod p).(5.11)

Proof. The congruence (5.6) can be found in [16, p. 302]. Then (5.7)
follows from the observation that

2(p−1)/3∑
j=1

1
j2

=
p−1∑
j=1

1
j2
−

(p−1)/3∑
j=1

1
(p− j)2

≡ −
(p−1)/3∑
j=1

1
j2

(mod p),

where we have used (4.5). The congruence (5.8) was proved in [16, p. 301].
To obtain (5.9), we rewrite

(5.12)
2(p−1)/3∑
j=1

1
j

=
p−1∑
j=1

1
j
−

(p−1)/3∑
j=1

1
p− j

≡ −
(p−1)/3∑
j=1

1
p− j

(mod p2),

where we have used (4.1). Using

1
j
≡ − 1

p− j
− p 1

j2
(mod p2)

(see [13, p. 359]) and (5.6), we see that (5.12) gives (5.9). Finally, (5.10)
follows from (4.13) with d = 3, together with (5.6) and (5.8). Similarly,
(5.11) follows from (4.13) with d = 3/2, together with (5.7) and (5.9).

Proof of Theorem 6. The proof is very similar to that of Theorem 3
in Section 4. First, using (4.14)–(4.16) with d = 3/2 and noting that s ≡
−2/3 (mod p2) in this case, we obtain, with (5.9) and (5.11),(

2(p3 − 1)
3

)
p

! ≡ (p− 1)!2(p2−1)/3

(
2(p− 1)

3

)
!(5.13)

×
(
1 + pqp(3)− 1

9p
2Bp−2

(
1
3

))
(mod p3).

Similarly, with d = 3 and thus s ≡ −1/2 (mod p2), we obtain, with (5.8)
and (5.10),

(5.14)
(
p3 − 1

3

)
p

! ≡ (p− 1)!(p
2−1)/3

(
p− 1

3

)
!

×
(
1 + 1

2pqp(3)− 1
8p

2qp(3)2 + 1
36p

2Bp−2

(
1
3

))
(mod p3).

Next we note that
1

1 + pqp(3)− 1
9p

2Bp−2

(
1
3

) ≡ 1− pqp(3) + p2qp(3)2 + 1
9p

2Bp−2

(
1
3

)
(mod p3),
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and therefore upon multiplying and simplifying we get(
1 + 1

2pqp(3)− 1
8p

2qp(3)2 + 1
36p

2Bp−2

(
1
3

))2
1 + pqp(3)− 1

9p
2Bp−2

(
1
3

) ≡ 1 + 1
6p

2Bp−2

(
1
3

)
(mod p3).

Finally, if we divide (5.13) by the square of (5.14) and use this last congru-
ence, then with (5.1) we get the desired congruence (1.9).

6. Further remarks

1. Numerous other congruences of the type (1.2), (1.7) and extensions
of the type (1.3), (1.8) have been obtained; see [2, Ch. 9]. For all these cases
our method can be used to derive analogues of Theorems 7 and 8, and of
Theorems 3 and 6.

2. Further extensions of Theorems 3 and 6 to congruences (mod p4)
would also be possible. However, these congruences would be increasingly
complicated and would require different values of Bernoulli polynomials
which would arise from higher analogues of Lemmas 1–4.

3. We can obtain the following direct consequence of Theorem 7.

Corollary 1. We have the p-adic expansion

J(χ3, χ3) =
Γp(1− 1/2)
Γp(1− 1/4)2

= −2a+ 2a
∞∑
j=1

1
j

(
2j − 2
j − 1

)(
p

4a2

)j
,

where χ is the character modulo p of order 4 as used in (2.11), and p and a
are as in (1.1).

This follows directly from (3.2) and (2.5). A similar expression exists for
J(χ, χ), via (2.10) and (3.7).

Similarly, from Theorem 8 we obtain

Corollary 2. We have the p-adic expansion

J(χ2, χ2) =
Γp(1− 2/3)
Γp(1− 1/3)2

= r − r
∞∑
j=1

1
j

(
2j − 2
j − 1

)(
p

r2

)j
,

where χ is the cubic character modulo p, and p and r are as in (1.6).

4. The numbers Bp−2

(
1
3

)
that occur in Theorem 6 and Lemma 4 are

interesting in their own right. To simplify notation, set bn := 3nBn
(

1
3

)
. In

(5.5) we set x = 1
3 ; then we replace t by 3t and −3t respectively, and subtract

the two resulting identities from each other. Upon simplifying the left-hand
side we then obtain

(6.1)
t

et + 1 + e−t
= −2

3

∞∑
n=0

b2n+1
t2n+1

(2n+ 1)!
.
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The sequence of numbers generated by the left-hand side of (6.1) has been
studied by Glaisher [9] as analogues to the Euler numbers defined in (4.4).
In particular, it turns out that his so-called G-numbers Gn are related to
the numbers bn by b2n+1 = (−1)n+1Gn (n ≥ 1), and in addition we have
b1 = −1

2 . Thus we have, for odd primes p ≥ 5,

Bp−2

(
1
3

)
= 32−p(−1)(p−1)/2G(p−3)/2,

where Glaisher’s G-numbers are integers, as was shown in [9], along with
numerous other properties. This connection with Glaisher’s work is also
mentioned in [13, p. 352]. Finally, see [15, A002111] for some properties,
references, and values for these numbers.
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