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Independence results for pattern sequences in distinct bases
by

YoHEI TACHIYA (Yokohama)

1. Introduction and results. Let ¢ > 2 be an integer. Then any
positive integer n has a unique representation of the form

k
(1) n:Zaiqi, a; € ¥y :={0,1,...,¢—1}, a>0.
i=0

We denote by X7 the set of all finite strings of elements in X,
E:; = {blflblfg - b ‘ b; € Zq, > 1}.

(Note that the set X does not contain the empty string.) For an integer
n > 1 having the expression , the string of digits

(n)g = agag—1---ag € X

is called the g-ary expansion of n. Let w € X7. We put w = w-w
(I times). If w = 0! for some [ > 1, we say that w is a zero pattern; otherwise
it is a nonzero pattern. We define e,(w;n) to be the number of (possibly
overlapping) occurrences of w in the g-ary expansion of an integer n > 0.
Here if w is a nonzero pattern, then in evaluating e,(w;n) we assume that
the ¢g-ary expansion of n starts with an arbitrarily long string of zeros. On
the other hand, if w is a zero pattern, then w = 0' for some [ > 1, and we
just count the number of occurrences of w in the g-ary expansion of n. We
set eq(w;0) = 0 for any w € X7. The resulting sequence

{eq(win)}nzo
is sometimes called the pattern sequence for the pattern w € X7 (cf. Allouche
and Shallit [1]). We note that the value ea(1;n) coincides with the sum of
the base-2 digits of n.
Uchida [II] gave necessary and sufficient conditions for algebraic inde-
pendence over C(z) of generating functions of pattern sequences in one g-adic
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number system. Recently, Shiokawa and the author [§] obtained similar re-
sults for pattern sequences in (g, r)-number systems (r = 0,1,...,q — 2)
with a fixed base q. Generating functions and their values defined by digital
properties of integers have also been studied in [3], [7], and [9]. In the case
of different bases, only special pattern sequences have been discussed; for
example Toshimitsu [I0] proved that for a given integer b the generating
functions of the pattern sequences {eq(b;n)}n>0 (¢ = b+ 1,b+2,...) are
algebraically independent over C(z).

In this paper, for arbitrary given nonzero patterns wy, € X7 (¢g=2,3,...)
we prove the algebraic independence of the values of the generating functions

Z eq(wg;n)2",  ¢=2,3,...,
n>0

which converge in |z| < 1. Furthermore, we derive the algebraic indepen-
dence over C(z) of the above generating functions. In particular, the latter
implies the linear independence of the pattern sequences in distinct bases

(Corollary [1]).
THEOREM 1. Let wy € Xy (q > 2) be nonzero patterns and
(2) fq(2) = Z eq(wgin)z", q¢=2,3,....
n>0

Then for any algebraic number o with 0 < |a| < 1, their values {fq(a)}g>2
are algebraically independent.

THEOREM 2. The generating functions of the pattern sequences are
algebraically independent over C(z).

By Theorem 2| a nontrivial linear combination of the functions
c1fo(z) +cafs(z) + - 4 emo1fm(2)

over C is not a rational function for |z| < 1. Hence we obtain the following:

COROLLARY 1. Let wy € X5 (¢ =2,...,m) be m — 1 nonzero patterns
and c1,...,cm_1 € C not all zero. Then the linear combination of the pattern
sequences

{erea(wa;n) + caez(wzin) 4 - - + cm—1€m(Wm; 1) fn>0
cannot be a linear recurrence sequence. In particular, the pattern sequences
{eq(wg;n)tn>0 (¢ =2,3,...) are linearly independent over C.

ExAaMPLE 1. Let w = b;_1b;_9---by be a nonzero pattern with b; €
{0,1}. Then the pattern sequences
{ea(win) >0,  {es(w;n)tn>0, -5 {em(w;n)}n>o0, ..

are linearly independent over C. For example, the sequences {e2(10;n)},>0,
{e3(10;n)} >0, and {e4(10;n)},>0 which are defined by the number of 10’s
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appearing in the dyadic, 3-ary, and 4-ary expansions of n, respectively, are
linearly independent over C.

On the other hand, within one fixed number system, the generating
functions can be algebraically dependent over C(z).

EXAMPLE 2 (Shiokawa and Tachiya [§]). In the usual dyadic expansion,
we consider the generating functions

fi(2) =D ea(01in)z",  foz) =) ea(10;m)2"
n>0 n>0

Then the sequence {e2(01;n) — e2(10;n) >0 = {0,1,0,1,...} is periodic,
and so

f1(2) = fa(2) = 1%22, |z] < 1.

EXAMPLE 3. Let w € X7. By the definition of e;(w;n), we have

q—1

eq(w;n) = Z eq(bw;n).

b=0

Therefore the pattern sequences {eq(w;n)}n>0, {€q(bw;n)}n>0 (b=0,1,...
...,q — 1) are linearly dependent over C, and so are their generating func-
tions.

2. Lemmas. In this section, we prepare some lemmas for proving The-
orem [I} Fix an integer ¢ > 2. For any nonzero pattern w = b;_1b;_9---bg
€ X with b; € Xy, let [w| denote the length [ and put v(w) = 22;10 brq®.

LEMMA 1. Let ¢ > 1 be an integer and w € E;i be a nonzero pattern.
Then for any integer d > 0, we have
1, ild
d I )
eqi(w; v(w = ,
1 ( (w)g) {0, otherwise.
Proof. We put
w = 0'a - - - ap, aj € X, ap #0, k,1 > 0.

Then v(w) = Z?:o a;(q") and (v(w)), = ai - --ag. Let h and r be integers
with

(3) d=ih+r, 0<r<i.

First we consider the case that d is divisible by 4. Since r = 0 in , the
¢*-ary expansion of the integer v(w)q? is represented as

(V('U))qd)qi = (u(w)qih)qi =ay---ag0”.
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It is clear that ey(w;v(w)g?) > 1. If eyi(w;v(w)q?) > 1, we get w =
Al - - - ao0!T™ for some integer m with 1 < m < k. Then we have

V(W) = apem@ D 4 a1 EHD 4.y gogithHi—(k=m)

_ qi(l+m) (akimqi(k—m) + ak7m71qi(k_m_l) 4t aO)

= ¢ ((w) — agg® — - — ap_ g Y,

so that (¢t — Dy(w) = 0mod ¢***++1), Noting that the integers
¢+ — 1 and ¢"* 1) are coprime, we get v(w) = 0 mod ¢+ that
is,a; = 0 for all j = 0,1,..., k. This is a contradiction and hence we obtain

eqi(w; v(w)g?) = 1.

Next we consider the case that d is not divisible by i. For the integer
r > 1 defined in , we put

(V(w)qr)qi =bgbs_1---bg € E;i, bj S Eqi, b 7’é 0,
where s = k, k + 1, since
k1= [(w(w)g] < 1((w)g)g] < |(r(w)g)g | = |((w))g| +1 =k +2.

Suppose on the contrary that e (w;v(w)q?) # 0, that is, the pattern w

appears at least once in the ¢’-ary expansion of v(w)q®:

(V(U))qd)qi = (I/(w)qr”h)qi = bgbs_1 -+~ by0".

Hence, as bs # 0, the ¢’-ary expansion of w must be of the form either

(4) w = Olbsbs—l T bsfkv
or
(5) W = bs—mbs—m—1--- bs—m—(k—H)

for some integer m with 1 < m < s, where we define b; = 0 for negative j.
If the equality is satisfied, we have

v(w)q", s =k,
¢ '(w(w)g" —bo), s=Fk+1.

Since 1 < r < 4, in any case we can deduce a contradiction. On the other
hand, if the case holds, we get

v(w) = bsfmqi(k—’—l) + bsfmflqi(k-i_l_l) 4 4 bkt
_ qi(k”*(s*m))(bs_mqi(s’m) 4t bs_m_k_lqi(sfmfkfl))
_ qi(k-l-l—(s—m))(y(w)qr . bsqis L bs_m+1qi(s—m+l)),

so that (¢"tik+H=(s—m) _ 1)y (w) = 0 mod ¢+ Since v 4 i(k + 1 —
(s —m)) > 1, we obtain v(w) = 0 mod ¢"*++1) which implies a; = 0 for
all 7 =0,1,...,k. This is a contradiction and the lemma is proved. =»

v(w) = beg™® + by_1q?* D + 4 by = {
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Let m > 2 be an integer. We set
6)  Si={(k1,. km1) €ZI7 | 0<k; <j—1,j=1,...,m—1},
(7) SnIZ{(kl,...,k‘m_l)€S|k1+"'+k‘m_1:n}.

LEMMA 2. For every integer m > 2, there exist integers di and do with
0<dy <do <m—1 such that

do#Sa#E Y Sk

n>0 n>0
n=dy modm n=do modm

where 1.5, is the number of elements of S,,.
Proof. We define

1 m—1
f(z) = A= gyt 141;[1(1 —z*) € Z[a).

Let & be a primitive mth root of unity. Then it is clear that f(£) # 0. Since
the polynomial f(x) is expressed as

f@)y=(0+a)1+z+a?)- - (I+z+a”++2"%) =) (#S.)2",
n>0

we have
(8) fl@) =cotea+ - +cpma™

where

ci= Y 4S, i=0,1,...,m—1
n>0
n=i modm

If ¢; = ¢; for all 4, 7, then by we get
FO =col+&+ -+ H=0
a contradiction. m

LEMMA 3 (Uchida [11]). Let d > 2 and | > 1 be integers. If ¢(z) € C(z)
satisfies the functional equation

o(z) = c(z%) + (1;_,2);;@)7 a(z) € C[2],
then there exists b(z) € C[z] such that
1—2)b(z
() = LR,

LemMmA 4 (Nishioka [B]). Let K be an algebraic number field and
di,...,dy > 2 be integers with logd;/logd; ¢ Q if i # j. Suppose that
fm( ) K[z]] (1 <i<t,1<j<m;) satisfy the functional equations

fig(Z%) =aij(2) fij(2) + bij(z) (1<i<t,1<j<my),
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where a;;(2),b;(2) € K(2), a;;(0) =1, and f;1(2),..., fim:(2) are alge-
braically independent over K(z) for each i = 1,...,t. If o is an algebraic
number with 0 < |a| < 1, ai’j(adf) #0 (k> 0) and all f;j(z) converge at
z = «, then the values

fijla) (1<i<t,1<j<m)
are algebraically independent.

LEMMA 5 (Kubota [2], Loxton and van der Poorten [4]; see Nishioka [6]).
Let d > 2 be an integer. Suppose that g1(z),...,g9n(2) € Cl[z]] are alge-
braically dependent over C(z) and satisfy the functional equations

gi(z%) = gi(2) + ai(z), ai(z) €C(2),i=1,...,n.
Then there exist constants cy,...,c, € C not all zero such that

c191(2) + - + cngn(2) € C(2).

3. Proofs of Theorems [1] and 2. Define
M ={qeN|q#a" for any a,n € N, n > 2}.

Then .
N\{1} = J{a®. ..} ={¢ €N|ge M,j >1}.
qeEM
Let q1,...,q € M be distinct integers, w; ; € Z;. (j =1,...,m;) be nonzero

patterns, and
fig(z) =) eglwigin)z"  (1<i<t 1<j<my).
n>0
It is easily seen that logg;/logq; ¢ Q if ¢ # j. Then by Theorem 1 in [I1]
the functional equations

1— Zqzj' Zy(wiJ)

j . .
fij(2) = -2 fig(2%) + — 7 (I<i<t1<j< m;)
1— 2%
are satisfied. Here, putting F; j(z) = (1 — 2) f; j(2), we have
j lws 1—-2 . .
Fj(2) = Fij(2%) + 2¥(i) o7 (<@t 1<j<my),
1— 2%
and so
b D;/j—1 1 Zq{cy
i kj . - H . .
Fz,](Z) - F’z,j(qu )+ Z Zq Ju(wzd) w (1 S (3 S t, 1 S] S mi),
k=0 1—2%
where D; = lem(1,...,m;). Hence, if the functions F; ;(2),..., Fjm,(2) are

algebraically independent over C(z) for each i = 1,...,¢, then by Lemma
the values F; j(a) = (1 — o) fij(o) (1 <i<t, 1< 5 <m;) are algebraically
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independent for any algebraic number o with 0 < |a| < 1. Therefore, to
prove Theorem (1} it is enough to show the algebraic independence over C(z)
of the functions

(9) Fi(z):=(1 —Z)Zeqi(wi;n)zn, 1=1,...,m,

n>0

for any fixed integer ¢ > 2 and for nonzero patterns w; € Z;‘,-.

Proof of Theorem |1, Let g > 2 be a fixed integer and w; € E{’;i (1 =
1,...,m) be nonzero patterns. In what follows, we prove the algebraic inde-
pendence over C(z) of the functions Fy(z),..., Fy(2) given in (9). We use
induction on m. By Theorem 1 in [11] the function Fj(z) is transcendental
over C(z), and hence the claim is satisfied in the case of m = 1. Let m > 2
and assume the claim is true for m — 1. Towards a contradiction, suppose
that the functions Fi(z),..., Fi,(z) are algebraically dependent over C(z).
Since they satisfy the functional equations

qD D/i_l qkill(w') 1 — qui .
(10)  F(2)=F(" )+ Y =z Ve 1= Leam,
k=0

with D = lem(1,...,m), applying Lemmal5| we see that there exist constants
c1,...,¢m € C not all zero such that

R(z) =1 Fi(2) + -+ emFn(z) € C(z).
We may suppose ¢, # 0 from the assumption of induction. Substituting 21°
for z in the above identity and using the functional equation , we have
m DJi—1

(11)  R(2) = R(z"") + 1-2 Z Z c.zqkiu(wi)l—zqki 1— 24"
B 1— 2" ‘=1 =0 ‘ 1—2 1 — ggilwiltki?

where [ := max;<j<m, |w;| and
ilwg| + ki <i(l+k) <i(l+D/i—1) < DL
Thus the functional equation (|11)) can be written as

(12) R(z) = R(z") + L= 2)alz)

1 "
with
m D/i—1 ki Dl
ki ooy 1 — 29 1— 21
a(z) = Z ciz? v(w;) =2 [ € Clz].

<+ O

hat there exists b(z) € C[z] such that

(1 —2)b(2)

1 — ,qP0D"

Using Lemma |3] we see

(13) R(:) =
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Substituting the expression into and multiplying both sides by
(1-27"")/(1 = 2), we have

1— 77" 1— 29" D
wb(z) =1 b(z?") + a(z),
where deg a(z) < ¢P!'—1. If the degree of the first term of the right-hand side
is not greater than that of the left-hand side, we get degb(z) < ¢PU=D —1.
Otherwise, the degree of the first term coincides with deg a(z); then we can
deduce degb(z) < ¢PU=1 — 1. In any case, we have

(14) degb(z) < "=V —1.
By the expression , we have

1-— qu(l_l) gP=D) ” n
b(z) = — R(z)=(1-2 ) Z ch-eqi(wi;n)z
n>0 i=1
qD<l71>—1
_ Z anz" + Z(an—&-qD(l*D - an)zn+qD(l—1)7
n=0 n>0
where a, = > ;" ciegi(wi;n). Therefore by we obtain an, = a,_ pu-1)

(n > 0), so that the sequence

(15) { Zm: cieqi(wi; n)}n>0
i=1 =

is periodic with period ¢P(¢—1).

Now we prove ¢, = 0 and deduce a contradiction. We choose integers
di,d2 (0 < dy < d2 < m—1) as in Lemma 2| Define the positive inte-
gers

0 1 m—2
m—2
Nj=v(wnm) Z Z ... Z qk1+---+km71+mfdj+DL(1+k1+mk2+---+m Em—1)
k1=0ko=0 km_1=0
for j = 1,2, where L > 0 is a sufficiently large integer. Noting that wy, € Xjn
is a nonzero pattern and

/

Ky +mko + -+ m™ 2k # KL+ mkh+ - +m™ 2k
if (k1,...,km—1) # (K|,...,k,_1), we have

m—1

m—2

0 —
ep(wi Nj) = 3 3 e pl(wy)ght bt DL) o,
k1=0  kpy—1=0
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for every i = 1,...,m. For a fixed integer ¢ > 1, if s; and s9 are nonnegative
integers with s; = s9 mod i, then the identity

81+DL) 82+DL)

eqi (wi; v(wm)q = egi(wis v(wm)q

holds. Hence for each i =1,...,m — 1 we get

i—14+m—dq

D egilwizp(wy)gt Tt

k;,=m—d;
' i—1+m—ds

)

ki=m—d2

0
(16) eqi (’LUZ, Nl) = Z . e eqi (UJ“ V(,wm)qk1+'“+km71+DL)

0
- Z o e eqi (W5 V(wyy ) g+ HEm DLy

On the other hand, by Lemma [I] we have

eqm (Wm; N Z Z eqm (Wnn; V(Wi ) g1 T Hhm—rtm=dj+DL)
k1=0 km_1=0
= #{(k1,... km-1) € S|k1 + -+ km—1 = dj mod m}
- Z ﬁs’n" j = 1727
n>0

n=d; modm

where S and S,, are the sets defined by @ and , respectively. Hence it
follows from Lemma [2 that

(17) egm (Win; N1) # egm(wm; Na).
Since the sequence is periodic with period ¢?¢—1) and Ny = Ny mod

qD(l_l) if L is large, we have
m
Z i(w;; N1) Z cieqi(wi; Na2).
=1 =1

Combining , , and the above identity, we obtain ¢, = 0. This is a
contradiction and the proof of Theorem [1|is complete. =
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Proof of Theorem[3 Suppose that the functions f,(z) (¢ =2,3,...) are
algebraically dependent over C(z), so that

(18) Z Qiy,... im (Z)fql (z)il “ fam (Z)Zm =0
0<i1, im<N

with a;, i, (2) € C[z] not all zero. Let {f1,...,0s} be a maximal subset
of the set of all the coefficients of a;, . ;.. (#) which is linearly independent
over Q. Then the polynomials a;, ;. (2) can be written as

S
Qiy,...i (2) = Zbil,...,im,j(z)ﬁj, biy,....im,j (2) € Q[2],
j=1
and so by we have

ST @ ) =0

=1 0<i,eim<N
Since (1, ..., s are linearly independent over QQ, we get

Z Bis i, (2) far (2) -+ fg (2)"™ =0

0<i1yornyim <N

for all j = 1,...,s. Noting that at least one of b;, ;. j(z) is not zero, we ob-
tain the algebraic dependence over Q(z) of the functions fq, (2), ..., fg. (%)
Hence fy, (a),..., fq,.(a) are algebraically dependent for some algebraic

number « with 0 < |a| < 1. This is a contradiction by Theorem [1| =
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