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Independence results for pattern sequences in distinct bases

by

Yohei Tachiya (Yokohama)

1. Introduction and results. Let q ≥ 2 be an integer. Then any
positive integer n has a unique representation of the form

(1) n =
k∑
i=0

aiq
i, ai ∈ Σq := {0, 1, . . . , q − 1}, ak > 0.

We denote by Σ∗q the set of all finite strings of elements in Σq,

Σ∗q := {bl−1bl−2 · · · b0 | bi ∈ Σq, l ≥ 1}.
(Note that the set Σ∗q does not contain the empty string.) For an integer
n ≥ 1 having the expression (1), the string of digits

(n)q := akak−1 · · · a0 ∈ Σ∗q
is called the q-ary expansion of n. Let w ∈ Σ∗q . We put wl = w · · ·w
(l times). If w = 0l for some l ≥ 1, we say that w is a zero pattern; otherwise
it is a nonzero pattern. We define eq(w;n) to be the number of (possibly
overlapping) occurrences of w in the q-ary expansion of an integer n > 0.
Here if w is a nonzero pattern, then in evaluating eq(w;n) we assume that
the q-ary expansion of n starts with an arbitrarily long string of zeros. On
the other hand, if w is a zero pattern, then w = 0l for some l ≥ 1, and we
just count the number of occurrences of w in the q-ary expansion of n. We
set eq(w; 0) = 0 for any w ∈ Σ∗q . The resulting sequence

{eq(w;n)}n≥0

is sometimes called the pattern sequence for the pattern w ∈ Σ∗q (cf. Allouche
and Shallit [1]). We note that the value e2(1;n) coincides with the sum of
the base-2 digits of n.

Uchida [11] gave necessary and sufficient conditions for algebraic inde-
pendence over C(z) of generating functions of pattern sequences in one q-adic
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number system. Recently, Shiokawa and the author [8] obtained similar re-
sults for pattern sequences in 〈q, r〉-number systems (r = 0, 1, . . . , q − 2)
with a fixed base q. Generating functions and their values defined by digital
properties of integers have also been studied in [3], [7], and [9]. In the case
of different bases, only special pattern sequences have been discussed; for
example Toshimitsu [10] proved that for a given integer b the generating
functions of the pattern sequences {eq(b;n)}n≥0 (q = b + 1, b + 2, . . . ) are
algebraically independent over C(z).

In this paper, for arbitrary given nonzero patterns wq ∈ Σ∗q (q = 2, 3, . . . )
we prove the algebraic independence of the values of the generating functions∑

n≥0

eq(wq;n)zn, q = 2, 3, . . . ,

which converge in |z| < 1. Furthermore, we derive the algebraic indepen-
dence over C(z) of the above generating functions. In particular, the latter
implies the linear independence of the pattern sequences in distinct bases
(Corollary 1).

Theorem 1. Let wq ∈ Σ∗q (q ≥ 2) be nonzero patterns and

(2) fq(z) =
∑
n≥0

eq(wq;n)zn, q = 2, 3, . . . .

Then for any algebraic number α with 0 < |α| < 1, their values {fq(α)}q≥2

are algebraically independent.

Theorem 2. The generating functions of the pattern sequences (2) are
algebraically independent over C(z).

By Theorem 2, a nontrivial linear combination of the functions (2)

c1f2(z) + c2f3(z) + · · ·+ cm−1fm(z)

over C is not a rational function for |z| < 1. Hence we obtain the following:

Corollary 1. Let wq ∈ Σ∗q (q = 2, . . . ,m) be m − 1 nonzero patterns
and c1, . . . , cm−1 ∈ C not all zero. Then the linear combination of the pattern
sequences

{c1e2(w2;n) + c2e3(w3;n) + · · ·+ cm−1em(wm;n)}n≥0

cannot be a linear recurrence sequence. In particular, the pattern sequences
{eq(wq;n)}n≥0 (q = 2, 3, . . . ) are linearly independent over C.

Example 1. Let w = bl−1bl−2 · · · b0 be a nonzero pattern with bi ∈
{0, 1}. Then the pattern sequences

{e2(w;n)}n≥0, {e3(w;n)}n≥0, . . . , {em(w;n)}n≥0, . . .

are linearly independent over C. For example, the sequences {e2(10;n)}n≥0,
{e3(10;n)}n≥0, and {e4(10;n)}n≥0 which are defined by the number of 10’s
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appearing in the dyadic, 3-ary, and 4-ary expansions of n, respectively, are
linearly independent over C.

On the other hand, within one fixed number system, the generating
functions can be algebraically dependent over C(z).

Example 2 (Shiokawa and Tachiya [8]). In the usual dyadic expansion,
we consider the generating functions

f1(z) =
∑
n≥0

e2(01;n)zn, f2(z) =
∑
n≥0

e2(10;n)zn.

Then the sequence {e2(01;n) − e2(10;n)}n≥0 = {0, 1, 0, 1, . . . } is periodic,
and so

f1(z)− f2(z) =
z

1− z2
, |z| < 1.

Example 3. Let w ∈ Σ∗q . By the definition of eq(w;n), we have

eq(w;n) =
q−1∑
b=0

eq(bw;n).

Therefore the pattern sequences {eq(w;n)}n≥0, {eq(bw;n)}n≥0 (b = 0, 1, . . .
. . . , q − 1) are linearly dependent over C, and so are their generating func-
tions.

2. Lemmas. In this section, we prepare some lemmas for proving The-
orem 1. Fix an integer q ≥ 2. For any nonzero pattern w = bl−1bl−2 · · · b0
∈ Σ∗q with bi ∈ Σq, let |w| denote the length l and put ν(w) =

∑l−1
k=0 bkq

k.

Lemma 1. Let i ≥ 1 be an integer and w ∈ Σ∗
qi be a nonzero pattern.

Then for any integer d ≥ 0, we have

eqi(w; ν(w)qd) =
{

1, i | d,
0, otherwise.

Proof. We put

w = 0lak · · · a0, aj ∈ Σqi , ak 6= 0, k, l ≥ 0.

Then ν(w) =
∑k

j=0 aj(q
i)j and (ν(w))qi = ak · · · a0. Let h and r be integers

with

(3) d = ih+ r, 0 ≤ r < i.

First we consider the case that d is divisible by i. Since r = 0 in (3), the
qi-ary expansion of the integer ν(w)qd is represented as

(ν(w)qd)qi = (ν(w)qih)qi = ak · · · a00h.
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It is clear that eqi(w; ν(w)qd) ≥ 1. If eqi(w; ν(w)qd) > 1, we get w =
ak−m · · · a00l+m for some integer m with 1 ≤ m ≤ k. Then we have

ν(w) = ak−mq
i(k+l) + ak−m−1q

i(k+l−1) + · · ·+ a0q
i(k+l−(k−m))

= qi(l+m)(ak−mqi(k−m) + ak−m−1q
i(k−m−1) + · · ·+ a0)

= qi(l+m)(ν(w)− akqik − · · · − ak−m+1q
i(k−m+1)),

so that (qi(l+m) − 1)ν(w) ≡ 0 mod qi(k+l+1). Noting that the integers
qi(l+m) − 1 and qi(k+l+1) are coprime, we get ν(w) ≡ 0 mod qi(k+l+1), that
is, aj = 0 for all j = 0, 1, . . . , k. This is a contradiction and hence we obtain
eqi(w; ν(w)qd) = 1.

Next we consider the case that d is not divisible by i. For the integer
r ≥ 1 defined in (3), we put

(ν(w)qr)qi = bsbs−1 · · · b0 ∈ Σ∗qi , bj ∈ Σqi , bs 6= 0,

where s = k, k + 1, since

k + 1 = |(ν(w))qi | ≤ |(ν(w)qr)qi | ≤ |(ν(w)qi)qi | = |(ν(w))qi |+ 1 = k + 2.

Suppose on the contrary that eqi(w; ν(w)qd) 6= 0, that is, the pattern w

appears at least once in the qi-ary expansion of ν(w)qd:

(ν(w)qd)qi = (ν(w)qr+ih)qi = bsbs−1 · · · b00h.

Hence, as bs 6= 0, the qi-ary expansion of w must be of the form either

(4) w = 0lbsbs−1 · · · bs−k,
or

(5) w = bs−mbs−m−1 · · · bs−m−(k+l)

for some integer m with 1 ≤ m ≤ s, where we define bj = 0 for negative j.
If the equality (4) is satisfied, we have

ν(w) = bsq
ik + bs−1q

i(k−1) + · · ·+ bs−k =
{
ν(w)qr, s = k,
q−i(ν(w)qr − b0), s = k + 1.

Since 1 ≤ r < i, in any case we can deduce a contradiction. On the other
hand, if the case (5) holds, we get

ν(w) = bs−mq
i(k+l) + bs−m−1q

i(k+l−1) + · · ·+ bs−m−k−l

= qi(k+l−(s−m))(bs−mqi(s−m) + · · ·+ bs−m−k−lq
i(s−m−k−l))

= qi(k+l−(s−m))(ν(w)qr − bsqis − · · · − bs−m+1q
i(s−m+1)),

so that (qr+i(k+l−(s−m)) − 1)ν(w) ≡ 0 mod qi(k+l+1). Since r + i(k + l −
(s −m)) ≥ 1, we obtain ν(w) ≡ 0 mod qi(k+l+1), which implies aj = 0 for
all j = 0, 1, . . . , k. This is a contradiction and the lemma is proved.
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Let m ≥ 2 be an integer. We set

S := {(k1, . . . , km−1) ∈ Zm−1
≥0 | 0 ≤ kj ≤ j − 1, j = 1, . . . ,m− 1},(6)

Sn := {(k1, . . . , km−1) ∈ S | k1 + · · ·+ km−1 = n}.(7)

Lemma 2. For every integer m ≥ 2, there exist integers d1 and d2 with
0 ≤ d1 < d2 ≤ m− 1 such that∑

n≥0
n≡d1 modm

]Sn 6=
∑
n≥0

n≡d2 modm

]Sn,

where ]Sn is the number of elements of Sn.

Proof. We define

f(x) =
1

(1− x)m−1

m−1∏
k=1

(1− xk) ∈ Z[x].

Let ξ be a primitive mth root of unity. Then it is clear that f(ξ) 6= 0. Since
the polynomial f(x) is expressed as

f(x) = (1 + x)(1 + x+ x2) · · · (1 + x+ x2 + · · ·+ xm−2) =
∑
n≥0

(]Sn)xn,

we have

(8) f(ξ) = c0 + c1ξ + · · ·+ cm−1ξ
m−1,

where
ci =

∑
n≥0

n≡imodm

]Sn, i = 0, 1, . . . ,m− 1.

If ci = cj for all i, j, then by (8) we get

f(ξ) = c0(1 + ξ + · · ·+ ξm−1) = 0,

a contradiction.

Lemma 3 (Uchida [11]). Let d ≥ 2 and l ≥ 1 be integers. If c(z) ∈ C(z)
satisfies the functional equation

c(z) = c(zd) +
(1− z)a(z)

1− zdl , a(z) ∈ C[z],

then there exists b(z) ∈ C[z] such that

c(z) =
(1− z)b(z)
1− zdl−1 .

Lemma 4 (Nishioka [5]). Let K be an algebraic number field and
d1, . . . , dt ≥ 2 be integers with log di/log dj /∈ Q if i 6= j. Suppose that
fi,j(z) ∈ K[[z]] (1 ≤ i ≤ t, 1 ≤ j ≤ mi) satisfy the functional equations

fi,j(zdi) = ai,j(z)fi,j(z) + bi,j(z) (1 ≤ i ≤ t, 1 ≤ j ≤ mi),
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where ai,j(z), bi,j(z) ∈ K(z), ai,j(0) = 1, and fi,1(z), . . . , fi,mi(z) are alge-
braically independent over K(z) for each i = 1, . . . , t. If α is an algebraic
number with 0 < |α| < 1, ai,j(αd

k
i ) 6= 0 (k ≥ 0) and all fi,j(z) converge at

z = α, then the values

fi,j(α) (1 ≤ i ≤ t, 1 ≤ j ≤ mi)

are algebraically independent.

Lemma 5 (Kubota [2], Loxton and van der Poorten [4]; see Nishioka [6]).
Let d ≥ 2 be an integer. Suppose that g1(z), . . . , gn(z) ∈ C[[z]] are alge-
braically dependent over C(z) and satisfy the functional equations

gi(zd) = gi(z) + ai(z), ai(z) ∈ C(z), i = 1, . . . , n.

Then there exist constants c1, . . . , cn ∈ C not all zero such that

c1g1(z) + · · ·+ cngn(z) ∈ C(z).

3. Proofs of Theorems 1 and 2. Define

M = {q ∈ N | q 6= an for any a, n ∈ N, n ≥ 2}.
Then

N \ {1} =
⋃
q∈M
{q, q2, . . . } = {qj ∈ N | q ∈M, j ≥ 1}.

Let q1, . . . , qt ∈M be distinct integers, wi,j ∈ Σ∗
qj
i

(j = 1, . . . ,mi) be nonzero

patterns, and

fi,j(z) =
∑
n≥0

e
qj
i
(wi,j ;n)zn (1 ≤ i ≤ t, 1 ≤ j ≤ mi).

It is easily seen that log qi/log qj /∈ Q if i 6= j. Then by Theorem 1 in [11]
the functional equations

fi,j(z) =
1− zq

j
i

1− z
fi,j(zq

j
i ) +

zν(wi,j)

1− zq
j|wi,j |
i

(1 ≤ i ≤ t, 1 ≤ j ≤ mi)

are satisfied. Here, putting Fi,j(z) = (1− z)fi,j(z), we have

Fi,j(z) = Fi,j(zq
j
i ) + zν(wi,j)

1− z

1− zq
j|wi,j |
i

(1 ≤ i ≤ t, 1 ≤ j ≤ mi),

and so

Fi,j(z) = Fi,j(zq
Di
i )+

Di/j−1∑
k=0

zq
kjν(wi,j)

1− zq
kj
i

1−zq
j|wi,j |+kj

i

(1≤ i≤ t, 1≤ j ≤mi),

where Di = lcm(1, . . . ,mi). Hence, if the functions Fi,1(z), . . . , Fi,mi(z) are
algebraically independent over C(z) for each i = 1, . . . , t, then by Lemma 4
the values Fi,j(α) = (1− α)fi,j(α) (1 ≤ i ≤ t, 1 ≤ j ≤ mi) are algebraically
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independent for any algebraic number α with 0 < |α| < 1. Therefore, to
prove Theorem 1, it is enough to show the algebraic independence over C(z)
of the functions

(9) Fi(z) := (1− z)
∑
n≥0

eqi(wi;n)zn, i = 1, . . . ,m,

for any fixed integer q ≥ 2 and for nonzero patterns wi ∈ Σ∗qi .

Proof of Theorem 1. Let q ≥ 2 be a fixed integer and wi ∈ Σ∗
qi (i =

1, . . . ,m) be nonzero patterns. In what follows, we prove the algebraic inde-
pendence over C(z) of the functions F1(z), . . . , Fm(z) given in (9). We use
induction on m. By Theorem 1 in [11] the function F1(z) is transcendental
over C(z), and hence the claim is satisfied in the case of m = 1. Let m ≥ 2
and assume the claim is true for m − 1. Towards a contradiction, suppose
that the functions F1(z), . . . , Fm(z) are algebraically dependent over C(z).
Since they satisfy the functional equations

(10) Fi(z) = Fi(zq
D

) +
D/i−1∑
k=0

zq
kiν(wi)

1− zqki

1− zqi|wi|+ki
, i = 1, . . . ,m,

with D = lcm(1, . . . ,m), applying Lemma 5 we see that there exist constants
c1, . . . , cm ∈ C not all zero such that

R(z) := c1F1(z) + · · ·+ cmFm(z) ∈ C(z).

We may suppose cm 6= 0 from the assumption of induction. Substituting zq
D

for z in the above identity and using the functional equation (10), we have

(11) R(z) = R(zq
D

) +
1−z

1−zqDl

m∑
i=1

D/i−1∑
k=0

ciz
qkiν(wi)

1−zqki

1−z
1−zqDl

1−zqi|wi|+ki
,

where l := max1≤i≤m |wi| and

i|wi|+ ki ≤ i(l + k) ≤ i(l +D/i− 1) ≤ Dl.
Thus the functional equation (11) can be written as

(12) R(z) = R(zq
D

) +
(1− z)a(z)

1− zqDl

with

a(z) =
m∑
i=1

D/i−1∑
k=0

ciz
qkiν(wi)

1− zqki

1− z
1− zqDl

1− zqi|wi|+ki
∈ C[z].

Using Lemma 3, we see that there exists b(z) ∈ C[z] such that

(13) R(z) =
(1− z)b(z)
1− zqD(l−1)

.
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Substituting the expression (13) into (12) and multiplying both sides by
(1− zqDl

)/(1− z), we have

1− zqDl

1− zqD(l−1)
b(z) =

1− zqD

1− z
b(zq

D
) + a(z),

where deg a(z) ≤ qDl−1. If the degree of the first term of the right-hand side
is not greater than that of the left-hand side, we get deg b(z) ≤ qD(l−1) − 1.
Otherwise, the degree of the first term coincides with deg a(z); then we can
deduce deg b(z) ≤ qD(l−1) − 1. In any case, we have

(14) deg b(z) ≤ qD(l−1) − 1.

By the expression (13), we have

b(z) =
1− zqD(l−1)

1− z
R(z) = (1− zqD(l−1)

)
∑
n≥0

m∑
i=1

cieqi(wi;n)zn

=
qD(l−1)−1∑

n=0

anz
n +

∑
n≥0

(an+qD(l−1) − an)zn+qD(l−1)
,

where an =
∑m

i=1 cieqi(wi;n). Therefore by (14) we obtain an = an+qD(l−1)

(n ≥ 0), so that the sequence

(15)
{ m∑
i=1

cieqi(wi;n)
}
n≥0

is periodic with period qD(l−1).
Now we prove cm = 0 and deduce a contradiction. We choose integers

d1, d2 (0 ≤ d1 < d2 ≤ m − 1) as in Lemma 2. Define the positive inte-
gers

Nj = ν(wm)
0∑

k1=0

1∑
k2=0

· · ·
m−2∑

km−1=0

qk1+···+km−1+m−dj+DL(1+k1+mk2+···+mm−2km−1)

for j = 1, 2, where L > 0 is a sufficiently large integer. Noting that wm ∈ Σ∗qm

is a nonzero pattern and

k1 +mk2 + · · ·+mm−2km−1 6= k′1 +mk′2 + · · ·+mm−2k′m−1

if (k1, . . . , km−1) 6= (k′1, . . . , k
′
m−1), we have

eqi(wi;Nj) =
0∑

k1=0

· · ·
m−2∑

km−1=0

eqi(wi; ν(wm)qk1+···+km−1+m−dj+DL), j = 1, 2,
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for every i = 1, . . . ,m. For a fixed integer i ≥ 1, if s1 and s2 are nonnegative
integers with s1 ≡ s2 mod i, then the identity

eqi(wi; ν(wm)qs1+DL) = eqi(wi; ν(wm)qs2+DL)

holds. Hence for each i = 1, . . . ,m− 1 we get

i−1+m−d1∑
ki=m−d1

eqi(wi; ν(wm)qk1+···+km−1+DL)

=
i−1+m−d2∑
ki=m−d2

eqi(wi; ν(wm)qk1+···+km−1+DL),

so that

eqi(wi;N1) =
0∑

k1=0

· · ·
i−1+m−d1∑
ki=m−d1

· · ·
m−2∑

km−1=0

eqi(wi; ν(wm)qk1+···+km−1+DL)(16)

=
0∑

k1=0

· · ·
i−1+m−d2∑
ki=m−d2

· · ·
m−2∑

km−1=0

eqi(wi; ν(wm)qk1+···+km−1+DL)

= eqi(wi;N2), i = 1, . . . ,m− 1.

On the other hand, by Lemma 1 we have

eqm(wm;Nj) =
0∑

k1=0

· · ·
m−2∑

km−1=0

eqm(wm; ν(wm)qk1+···+km−1+m−dj+DL)

= ]{(k1, . . . , km−1) ∈ S | k1 + · · ·+ km−1 ≡ dj mod m}
=

∑
n≥0

n≡dj modm

]Sn, j = 1, 2,

where S and Sn are the sets defined by (6) and (7), respectively. Hence it
follows from Lemma 2 that

(17) eqm(wm;N1) 6= eqm(wm;N2).

Since the sequence (15) is periodic with period qD(l−1) and N1 ≡ N2 mod
qD(l−1) if L is large, we have

m∑
i=1

cieqi(wi;N1) =
m∑
i=1

cieqi(wi;N2).

Combining (16), (17), and the above identity, we obtain cm = 0. This is a
contradiction and the proof of Theorem 1 is complete.
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Proof of Theorem 2. Suppose that the functions fq(z) (q = 2, 3, . . . ) are
algebraically dependent over C(z), so that

(18)
∑

0≤i1,...,im≤N
ai1,...,im(z)fq1(z)i1 · · · fqm(z)im = 0

with ai1,...,im(z) ∈ C[z] not all zero. Let {β1, . . . , βs} be a maximal subset
of the set of all the coefficients of ai1,...,im(z) which is linearly independent
over Q. Then the polynomials ai1,...,im(z) can be written as

ai1,...,im(z) =
s∑
j=1

bi1,...,im,j(z)βj , bi1,...,im,j(z) ∈ Q[z],

and so by (18) we have
s∑
j=1

( ∑
0≤i1,...,im≤N

bi1,...,im,j(z)fq1(z)i1 · · · fqm(z)im
)
βj = 0.

Since β1, . . . , βs are linearly independent over Q, we get∑
0≤i1,...,im≤N

bi1,...,im,j(z)fq1(z)i1 · · · fqm(z)im = 0

for all j = 1, . . . , s. Noting that at least one of bi1,...,im,j(z) is not zero, we ob-
tain the algebraic dependence over Q(z) of the functions fq1(z), . . . , fqm(z).
Hence fq1(α), . . . , fqm(α) are algebraically dependent for some algebraic
number α with 0 < |α| < 1. This is a contradiction by Theorem 1.
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