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The binary Goldbach problem with
arithmetic weights attached to one of the variables

by

D. I. Tolev (Sofia)

1. Introduction and statement of the results. Suppose that N is
a sufficiently large integer and denote

J(n) =
∑

p1+p2=n

log p1 log p2.

(The letter p, with or without subscripts, is reserved for primes.) It is ex-
pected that if n is a large even integer then J(n) ∼ c0λ(n)n, where

(1) λ(k) =
∏
p|k
p>2

p− 1
p− 2

, c0 = 2
∏
p>2

(
1− 1

(p− 1)2

)
.

This conjecture has not been proved so far, but using the Hardy–Littlewood
circle method and Vinogradov’s method for estimating exponential sums
over primes (see, for example, Vaughan [11, Ch. 2]) one can find that

(2)
∑
n≤N
2|n

|J(n)− c0λ(n)n| � N2L−A,

where A > 0 is an arbitrarily large constant and L = logN .
Let r(k) be the number of solutions of the equation x2

1+x2
2 = k in integers

x1, x2. One of the classical problems in prime number theory is the Hardy–
Littlewood problem concerning the representation of large integers as a sum
of two squares and a prime. It was solved by Linnik (see [7]) and related
problems have been studied by Linnik, Hooley and other mathematicians.
For more information we refer the reader to Hooley’s book [5, Ch. 5]. In
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particular, one can show that

(3)
∑
p≤N

r(p− 1) = πNL−1
∏
p>2

(
1 +

χ(p)
p(p− 1)

)
+O(NL−1−θ0(logL)5),

where χ(k) is the non-principal character modulo 4 and

(4) θ0 =
1
2
− 1

4
e log 2 = 0.0029 . . . .

Let τ(k) be the number of positive divisors of k. Linnik [7] (see also
Halberstam and Richert [4, Ch. 3.5]) solved the Titchmarsh divisor problem
and proved that

(5)
∑
p≤N

τ(p− 1) = c1N +O(NL−1 logL), c1 =
∏
p

(
1 +

1
p(p− 1)

)
.

We note that sharper versions of (3) and (5) are known at present (see
Bredihin [2], Bombieri, Friedlander and Iwaniec [1] and Fouvry [3]).

In this paper we state two theorems which are, in some sense, combina-
tions of (2), (3) and respectively (2), (5). Denote

(6) R(n) =
∑

p1+p2=n

r(p1 − 1) log p1 log p2.

After certain formal calculations one may conjecture that for any sufficiently
large even n the quantity R(n) is asymptotically equal to

(7) MR(n)

= πc0n
∏
p|n−1

(
1− χ(p)

p

) ∏
p|n
p>2

(
1+

p+ χ(p)
p(p− 2)

) ∏
p-n(n−1)

(
1+

2χ(p)
p(p−2)

)
.

Our first result is the following:

Theorem 1. Suppose that θ0 is the constant defined by (4). Then

(8)
∑
n≤N
2|n

|R(n)−MR(n)| � N2L−θ0(logL)6.

It is clear that n(log log(10n))−2 � MR(n) � n(log log(10n))2. Also,
from (8) it follows that for any positive constant θ < θ0 the number of even
n ≤ N for which |R(n)−MR(n)| > NL−θ is O(NL−(θ0−θ)(logL)6). So, in
other words, R(n) is close to MR(n) for almost all even n.

Theorem 1 is related to a recent result of K. Matomäki [8] that the
number of integers n ≤ N satisfying n ≡ 0 or 4 (mod 6) and that cannot be
represented as a sum of two primes, one of which of the form k2 + l2 + 1, is
O(NL−A), where A is an arbitrarily large constant. So Matomäki’s estimate
for the cardinality of this exceptional set is stronger than ours, but her
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method does not provide so sharp information about the number of such
representations.

Our second result concerns the quantity

T (n) =
∑

p1+p2=n

τ(p1 − 1) log p1 log p2.

Again, after certain formal calculations, one may conclude that if 2 |n then
T (n) should be asymptotically equal to

MT (n) = c0n log n
∏
p|n−1

(
1−1

p

) ∏
p|n
p>2

(
1+

p+ 1
p(p− 2)

) ∏
p-n(n−1)

(
1+

2
p(p− 2)

)
.

We can establish:

Theorem 2. The following estimate holds:∑
n≤N
2|n

|T (n)−MT (n)| � N2(logL)3.

We note that

n log n (log log(10n))−2 �MT (n)� n log n (log log(10n))2,

so the quantity T (n) is close to MT (n) for almost all even n.
We prove only Theorem 1. The proof of Theorem 2 is similar and simpler.

2. Some lemmas. Suppose that n ≤ N and let k and l be integers with
(k, l) = 1 (as usual, (k, l) stands for the greatest common factor of k and l).
Let I be the set of all subintervals of the interval [1, N ] and let I ∈ I. We
denote

Jk,l(n; I) =
∑

p1+p2=n
p1≡l (mod k)

p1∈I

log p1 log p2, Jk,l(n) = Jk,l(n; [1, N ]);(9)

Sk,l(n) =
{
c0λ(nk) if (k, n− l) = 1 and 2 |n,
0 otherwise;

(10)

Φ(n; I) =
∑

m1+m2=n
m1∈I

1,(11)

and let ϕ(n) be the Euler function.
Our first lemma states that the expected formula for Jk,l(n; I) is true on

average with respect to k ≤
√
N L−B and n ≤ N and uniformly for l and I.

More precisely, we have
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Lemma 1. For any constant A > 0 there exists B = B(A) > 0 such
that ∑

k≤
√
NL−B

max
(l,k)=1

max
I∈I

∑
n≤N

∣∣∣∣Jk,l(n; I)−
Sk,l(n)
ϕ(k)

Φ(n; I)
∣∣∣∣� N2L−A.

This lemma is very similar to results of Mikawa [9] and Laporta [6].
These authors study the equation p1 − p2 = n and without the condition
p1 ∈ I. However, inspecting the arguments presented in [6], the reader will
readily see that the proof of Lemma 1 can be obtained in the same manner.

The next lemma is an immediate consequence of a classical sieve theory
result (see [4, Ch. 2, Th. 2.4]).

Lemma 2. Suppose that h is an integer such that 1 ≤ |h| ≤ N . Then
the number of solutions of the equation p1 − p2 = h in primes p1, p2 ≤ N is
O(NL−2 logL), where the constant in the Landau symbol is absolute.

The next two lemmas are due to C. Hooley and play an essential role in
the proof of (3), as well as in the solutions of other related problems.

Lemma 3. Suppose that ω > 0 is a constant and let Fω(N) be the num-
ber of primes p ≤ N such that p − 1 has a divisor lying between

√
N L−ω

and
√
N Lω. Then

Fω(N)� NL−1−2θ0(logL)3,

where θ0 is defined by (4) and where the constant in the Vinogradov symbol
depends only on ω.

Lemma 4. Suppose that ω > 0 is a constant. Then∑
p≤N

∣∣∣ ∑
d|p−1√

NL−ω<d<
√
NLω

χ(d)
∣∣∣2 � NL−1(logL)7,

where the constant in the Vinogradov symbol depends only on ω.

The proofs of very similar results (with ω = 48 and with the condition
d |N − p rather than d | p− 1) are available in [5, Ch. 5] and the reader will
easily see that the method used there also yields the validity of Lemmas 3
and 4.

3. Proof of Theorem 1

3.1. Beginning. Denote by E the sum on the left-hand side of (8) and
put

(12) D =
√
N L−1−B(1),
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where B(A) is specified in Lemma 1. Using (6) and the well-known identity
r(m) = 4

∑
d|m χ(d) we find

(13) R(n) = 4
∑

p1+p2=n

( ∑
d|p1−1

χ(d)
)

log p1 log p2 = 4(S1(n)+S2(n)+S3(n)),

where

S1(n) =
∑

p1+p2=n

( ∑
d|p1−1
d≤D

χ(d)
)

log p1 log p2,(14)

S2(n) =
∑

p1+p2=n

( ∑
d|p1−1

D<d<N/D

χ(d)
)

log p1 log p2,(15)

S3(n) =
∑

p1+p2=n

( ∑
d|p1−1
d≥N/D

χ(d)
)

log p1 log p2.(16)

Therefore from (8) and (13) it follows that

(17) E � E1 + E2 + E3,

where

(18) E1 =
∑
n≤N
2|n

|4S1(n)−MR(n)|, Ej =
∑
n≤N
2|n

|Sj(n)|, j = 2, 3.

3.2. Estimation of E1. Using (9), (11), (14) and bearing in mind Lem-
ma 1 we find

S1(n) =
∑
d≤D

χ(d)Jd,1(n) = (n− 1)S′1(n) + S∗1(n),

where

S′1(n) =
∑
d≤D

χ(d)
Sd,1(n)
ϕ(d)

,(19)

S∗1(n) =
∑
d≤D

χ(d)
(
Jd,1(n)− (n− 1)

Sd,1(n)
ϕ(d)

)
.(20)

Hence

(21) E1 � E ′1 + E∗1 ,

where

(22) E ′1 =
∑
n≤N
2|n

|4(n− 1)S′1(n)−MR(n)|, E∗1 =
∑
n≤N
2|n

|S∗1(n)|.
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By (12), (20), (22) and Lemma 1 it follows that

(23) E∗1 � N2L−1.

Consider E ′1. From (1), (10) and (19) we find

(24) S′1(n) = c0
∑
d≤D

(d,n−1)=1

χ(d)
ϕ(d)

λ(nd) = c0λ(n)
∑
d≤D

(d,n−1)=1

fn(d),

where

(25) fn(d) =
χ(d)
ϕ(d)

λ(d)
λ((n, d))

.

Obviously the function fn(d) is multiplicative with respect to d and

(26) fn(d)� d−1(log log(10d))2

uniformly with respect to n. To evaluate the sum on the right-hand side of
(24) we consider the function

Fn(s) =
∞∑
d=1

(d,n−1)=1

fn(d)d−s.

It is analytic in the half-plane Re(s) > 0 and we may represent it as an
Euler product:

Fn(s) =
∏
p-n−1

Tn(p, s), Tn(p, s) = 1 +
∞∑
l=1

fn(pl)p−ls.

From (1) and (25) we easily find

fn(pl) =
{
χ(p)lp1−l(p− 1)−1 if p |n,
χ(p)lp1−l(p− 2)−1 if p -n;

and respectively

Tn(p, s) =
(

1− χ(p)
ps+1

)−1

T ∗n(p, s),

where

T ∗n(p, s) =
{

1 + χ(p)p−s−1(p− 1)−1 if p |n,
1 + 2χ(p)p−s−1(p− 2)−1 if p -n.

Therefore

(27) Fn(s) = L(s+ 1, χ)Hn(s)

where L(s, χ) is the Dirichlet L-function corresponding to the character χ
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and

Hn(s) =
∏
p|n−1

(
1− χ(p)

ps+1

)∏
p|n

(
1 +

χ(p)
ps+1(p− 1)

)
(28)

×
∏

p-n(n−1)

(
1 +

2χ(p)
ps+1(p− 2)

)
.

From (27) and (28) we see that Fn(s) has an analytic continuation to the
half-plane Re(s) > −1. It is clear that Hn(s)� nε for |Re(s)| ≥ −1/2 (here
and later, ε is an arbitrarily small positive number). Also, it is well-known
that in the same region we have L(s+ 1, χ)� 1 + |Im(s)|1/6. Hence

(29) Fn(s)� N εT 1/6 if Re(s) ≥ −1/2, |Im(s)| ≤ T
for any T > 1. We apply Perron’s formula (see, for example [10, Ch. II.2])
to find

(30)
∑
d≤D

(d,n−1)=1

fn(d) =
1

2πi

κ+iT�

κ−iT
Fn(s)

Ds

s
ds+O

( ∞∑
d=1

Dκ |fn(d)|
dκ
(
1 + T

∣∣log D
d

∣∣)
)

with κ = 1/10 and T = N3/4. Using (12) and (26) one can easily verify that
the remainder term in (30) is O(N−1/20). To evaluate the integral in (30)
we apply Cauchy’s theorem. The residue of the integrand at s = 0 equals

(31)

Fn(0) =
π

4

∏
p|n−1

(
1− χ(p)

p

)∏
p|n

(
1 +

χ(p)
p(p− 1)

) ∏
p-n(n−1)

(
1 +

2χ(p)
p(p− 2)

)
.

Hence the main term on the right-hand side of (30) is equal to

(32) Fn(0) +
1

2πi

(−1/2−iT�

κ−iT
+
−1/2+iT�

−1/2−iT

+
κ+iT�

−1/2+iT

)
Fn(s)

Ds

s
ds.

Using (29) one can easily find that the contribution of the integrals in (32)
is O(N−1/20). Therefore

(33)
∑
d≤D

(d,n−1)=1

fn(d) = Fn(0) +O(N−1/20).

From (1), (7), (22), (24), (31) and (33) it follows that

E ′1 � N2L−1.

Hence, using (21) and (23) we get

(34) E1 � N2L−1.
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3.3. Estimation of E2. Clearly, from (18) and Cauchy’s inequality it
follows that

(35) E2 � N1/2
( ∑
n≤N
|S2(n)|2

)1/2
= N1/2(E ′2)1/2,

say. Using (15) we find

(36)

E ′2 =
∑
n≤N

∑
D<d,t<N/D

χ(d)χ(t)
∑

p1+p2=n
p1≡1 (mod d)

log p1 log p2

∑
p3+p4=n

p3≡1 (mod t)

log p3 log p4

=
∑

p1+p2=p3+p4≤N
log p1 log p2 log p3 log p4

∑
D<d,t<N/D
d|p1−1, t|p3−1

χ(d)χ(t)

� L4 E ′′2 +N2+ε,

where
E ′′2 =

∑
p1+p2=p3+p4
p1,p2,p3,p4≤N

p1 6=p3

∣∣∣ ∑
D<d<N/D
d|p1−1

χ(d)
∣∣∣ ∣∣∣ ∑

D<t<N/D
t|p3−1

χ(t)
∣∣∣.

Denote by F the set of primes p ≤ N such that p − 1 has a divisor lying
between D and N/D. Using the inequality uv ≤ u2 + v2 and taking into
account the symmetry with respect to d and t we get

E ′′2 �
∑

p1+p2=p3+p4
p1,p2,p4≤N
p1 6=p3, p3∈F

∣∣∣ ∑
D<d<N/D
d|p1−1

χ(d)
∣∣∣2(37)

=
∑
p1≤N

∣∣∣ ∑
D<d<N/D
d|p1−1

χ(d)
∣∣∣2 ∑

p3∈F
p3 6=p1

∑
p2,p4≤N

p4−p2=p1−p3

1.

Applying Lemmas 2 and 3 we find

(38)
∑
p3∈F
p3 6=p1

∑
p2,p4≤N

p4−p2=p1−p3

1� NL−2(logL)
∑
p∈F

1� N2L−3−2θ0(logL)4

and then using (37), (38) and Lemma 4 we get

(39) E ′′2�N2L−3−2θ0(logL)4
∑
p≤N

∣∣∣ ∑
D<d<N/D
d|p−1

χ(d)
∣∣∣2�N3L−4−2θ0(logL)11.

From (35), (36) and (39) we conclude that

(40) E2 � N2L−θ0(logL)6.
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3.4. Estimation of E3. From (16) it follows that

S3(n) =
∑

p1+p2=n

log p1 log p2

∑
m|p1−1

(p1−1)/m≥N/D

χ

(
p1 − 1
m

)

=
∑

p1+p2=n

log p1 log p2

∑
j=±1

χ(j)
∑

m≤(p1−1)D/N, 2|m
p1≡1+jm (mod 4m)

1.

We change the order of summation and use (9) to find

S3(n) =
∑
m≤D
2|m

∑
j=±1

χ(j)J4m,1+jm(n, Im),

where Im denotes the interval [1 +mN/D,N ]. Having in mind Lemma 1 we
write

(41) S3(n) = S′3(n) + S∗3(n),

where

S′3(n) =
∑
m≤D
2|m

∑
j=±1

χ(j)
S4m,1+jm(n)

ϕ(4m)
Φ(n, Im),

S∗3(n) =
∑
m≤D
2|m

∑
j=±1

χ(j)
(
J4m,1+jm(n, Im)− S4m,1+jm(n)

ϕ(4m)
Φ(n, Im)

)
.(42)

Since 2 |n it follows from (10) that

S4m,1+jm(n) =
{
c0λ(4mn) if (4m,n− 1− jm) = 1,
0 otherwise.

However, the condition (4m,n− 1− jm) = 1 is independent of j (from the
set {1,−1}) and therefore S4m,1+jm(n) is independent of j too. This means
that

S′3(n) = 0.

Hence, using (12), (18), (41), (42) and Lemma 1 we find

E3 �
∑
n≤N
|S∗3(n)|(43)

�
∑
m≤D
2|m

∑
j=±1

∑
n≤N

∣∣∣∣J4m,1+jm(n, Im)− S4m,1+jm(n)
ϕ(4m)

Φ(n, Im)
∣∣∣∣

�
∑
k≤4D

max
(l,k)=1

max
I∈I

∑
n≤N

∣∣∣∣Jk,l(n, I)−
Sk,l(n)
ϕ(k)

Φ(n, I)
∣∣∣∣� N2L−1.
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The estimate (8) follows from (17), (34), (40) and (43), so the theorem is
proved.
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