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DEPENDENT DEFAULTS AND CREDIT MIGRATIONS

Abstract. The paper deals with the modelling of mutually dependent
default times of several credit names through the intensity-based approach.
We extend to the case of multiple ratings some previous results due to
Schmidt (1998), Kusuoka (1999) and Jarrow and Yu (2001). The issue of
the arbitrage valuation of simple basket credit derivatives is also briefly ex-
amined. We argue that our approach leads, in some cases, to a significant
reduction of the dimensionality of the valuation problem at hand.

1. DEPENDENT INTENSITIES OF DEFAULT TIMES

In the case of mutually dependent defaults, it is natural to assume that
the default probability of a certain entity increases as soon as a related firm
defaults on its obligations. Within the so-called reduced-form approach to
the modelling of credit risk, this kind of dependence is reflected in the jump
of the default intensity of a given firm at the default time of another entity.
This specific method of modelling mutually dependent default times was ex-
amined by, among others, Schmidt (1998), Kusuoka (1999), Jeanblanc and
Rutkowski (2000, 2001), Kijima and Muromachi (2000), Schönbucher and
Schubert (2000), and Jarrow and Yu (2001). We present a few results which
generalize the valuation formulae for corporate bonds obtained in the recent
paper by Jarrow and Yu (2001). We focus on the modelling of mutually de-
pendent default times and credit migrations of several credit names through
the intensity-based approach. Although most of the results presented remain
valid for a finite number of reference entities, for the sake of expositional
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clarity, we shall first concentrate on the special case of two reference entities.
Subsequently, we shall present results concerning the general set-up, that is,
the case of several entities and multiple ratings.

We shall argue that for some contracts the calculations can be reduced
to the familiar results concerning the case of conditionally independent ran-
dom times through a judicious choice of an equivalent probability measure.
Finally, it should be stressed that in our approach the migration process can
also be seen as a standard Markov chain (or a conditional Markov chain).
However, for large pools of obligors the dimension of the state space of
the corresponding joint migration process is excessively large. Thus, direct
application of standard tools from the theory of Markov chains becomes
problematic, as it is computationally infeasible.

1.1. Jarrow and Yu (2001) approach. Kusuoka’s (1999) counter-
example, examined in some detail in Jeanblanc and Rutkowski (2000), shows
that the modelling dependencies in default-risk sensitive basket contracts
constitute a rather delicate issue. Jarrow and Yu (2001) argue that some
difficulties can be circumvented through a judicious choice of reference fil-
trations. To explain the ideas that underpin their approach, we start by
assuming that there are n firms in the economy; they are also informally
referred to as “counterparties” in what follows. Jarrow and Yu (2001) pro-
pose to make a distinction between the primary firms and secondary firms.
The former class encompasses those entities whose probabilities of default
are influenced by macroeconomic conditions, but not by the credit risk of
counterparties. The pricing of bonds issued by primary firms can be done
through the standard intensity-based methodology; in particular, it is nat-
ural to introduce in this context the state-variables process Y , representing
the macroeconomic factors. Thus, it suffices to focus on securities issued by
secondary firms, i.e., firms for which the intensity of default depends on the
status of other firms.

To circumvent the issue of the mutual dependence of martingale intensi-
ties, Jarrow and Yu (2001) postulate that the information structure is asym-
metric. Specifically, in their assessment of default probabilities investors take
into account the observed defaults of primary firms, but they deliberately
choose to disregard possible defaults of secondary firms. Such an assumption
is supported by real-life financial arguments of two kinds.

First, a secondary firm may be seen as a financial institution that has
a long or a short position in the debt of a primary firm (e.g., a large cor-
poration), so that the likelihood of its default depends on the status of this
corporation. It is natural to assume that the situation is not symmetric, and
the default probability of a primary firm depends only on macroeconomic
factors.
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In the second plausible financial interpretation, a primary firm may be
seen as a large corporation, and a secondary firm as one of many relatively
small dependent manufacturers. For instance, a large firm can be a major
supplier for several small manufacturers, or there may be a lot of small
suppliers for a large corporation.

The following set of assumptions underpins Jarrow and Yu (2001) ap-
proach.

Assumptions (JY). Let I = {1, . . . , n} represent the set of all firms,
and let F = (Ft)t≥0 be the reference filtration generated by the relevant
“macroeconomic factors”. It is postulated that:

• for any firm from the set {1, . . . , p} of primary firms, the “default
intensity” depends only on the reference filtration F,
• the “default intensity” of each firm from the set {p + 1, . . . , n} of

secondary firms may depend not only on the filtration F, but also on the
status (default or no-default) of the primary firms.

The construction of the collection of default times τ1, . . . , τn with the
desired properties runs as follows. In the first step, we assume that we are
given a family of F-predictable intensity processes λ1, . . . , λp, and we produce
a collection τ1, . . . , τp of F-conditionally independent random times by the
canonical method (see, e.g., Section 9.1.2 of Bielecki and Rutkowski (2002)).
Specifically, we set

τi = inf
{
t ∈ R+ :

t�
0

λiu du ≥ ηi
}
,(1.1)

where ηi, i = 1, . . . , p, are mutually independent, identically distributed
random variables with unit exponential law under the martingale probabil-
ity Q∗.

In the second step, we assume that the underlying probability space
(Ω,G,Q∗) is large enough to accommodate a family ηi, i = p + 1, . . . , n,
of mutually independent random variables, with unit exponential law un-
der Q∗, and such that these random variables are independent not only of
the filtration F, but also of the default times τ1, . . . , τp of primary firms,
already constructed in the previous step.

The default times τi, i = p+1, . . . , n, are also defined by means of equal-
ity (1.1). However, the “intensity processes” λi, i = p + 1, . . . , n, are now
given by the following generic expression:

λit = µit +
p∑

l=1

νi,lt � {τl≤t},(1.2)

where µi and νi,l are F-predictable stochastic processes. If the default of the
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jth primary firm does not affect the likelihood of default of the ith secondary
firm, we set νi,j ≡ 0 in (1.2).

We introduce the jump process H i
t = � {τi≤t} for t ∈ R+, and we write

Hi = (Hit)t≥0 to denote the natural filtration of the process H i. Let G =
F∨H1∨. . .∨Hn stand for the enlarged filtration, that is, the smallest filtration
encompassing the filtrationsH1, . . . ,Hn and F. This means thatG = (Gt)t≥0,
where Gt = σ(Ft,H1

t , . . . ,Hnt ). Similarly, let F̃ = F∨Hp+1 ∨ . . .∨Hn be the
filtration generated by the “macroeconomic factors” and the observations of
default times of secondary firms.

It is worthwhile to mention that:

• the default times τ1, . . . , τp of primary firms, as given by (1.1), are no
longer conditionally independent when we replace the reference filtration F
by the larger filtration F̃,
• for each primary firm, its default intensity with respect to the filtration

F̃ differs from the corresponding default intensity λi with respect to F, in
general.

The last observation indicates that the processes λ1, . . . , λp do not repre-
sent the conditional probabilities of survival, unless we disregard the infor-
mation flow generated by default processes of secondary firms. Put another
way, a one-way dependence in default intensities is not possible. If the in-
tensity of default of firm A jumps at the time of default of firm B, a similar
effect will show up in the default intensity of firm B at the time of default
of firm A. Of course, the concept of default intensity heavily depends on the
choice of filtration.

1.1.1. Case of two firms. To clarify the last statement, we shall examine
in detail a special case of the Jarrow and Yu model. We consider only two
firms, A and B say, and we postulate that the first one represents a primary
firm, while the second is a secondary firm. Let the F-predictable process λ1

represent the F-intensity of default for firm A. The default time τ1 is given
by the standard formula

τ1 = inf
{
t ∈ R+ :

t�
0

λ1
u du ≥ η1

}
,

where η1 is a random variable, independent of the filtration F, and exponen-
tially distributed under the martingale probability Q∗. For the second firm,
the “intensity” of default λ2 is assumed to satisfy

λ2
t = µ2

t + ν2,1
t � {τ1≤t},

where µ2 and ν2,1 are positive, F-predictable processes. We set
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τ2 = inf
{
t ∈ R+ :

t�
0

λ2
u du ≥ η2

}
,

where η2 is a random variable with the unit exponential law under Q∗, inde-
pendent of F, and such that η1 and η2 are mutually independent under Q∗.
From the construction above, it is apparent that the following properties
are valid:

• the process λ1 represents the intensity of τ1 with respect to the filtra-
tion F,
• the process λ2 represents the intensity of τ2 with respect to the filtration

F ∨H1,
• the process λ1 does not represent the intensity of τ1 with respect to

the filtration F ∨H2 (see, e.g., Kusuoka (1999)).

We shall now apply the present set-up to the valuation of corporate
bonds. To this end, we assume that we have already specified some arbitrage-
free model of the default-free term structure. In particular, we are given a
filtered probability space (Ω̃,F,P∗), where P∗ is the spot martingale measure
for the Treasury bonds market. As usual, we denote by B(t, T ) the price at
time t of a unit zero-coupon Treasury bond which matures at time T ≥ t.

To obtain closed-form representations for the values of corporate bonds,
in addition, we postulate that λ1

t = λ1 for some strictly positive constant
λ1, and λ2 equals λ2

t = λ2 + (α2 − λ2) � {τ1≤t} for some strictly positive
constants λ2 and α2. Notice that the size of the jump of the process λ2 at
the random time τ1 may be either positive or negative, depending on the
specific financial interpretation.

To construct the default times τ1 and τ2, we enlarge the probability
space in a standard way, so that we end up with the enlarged probability
space (Ω,G,Q∗), and with two mutually independent, exponentially dis-
tributed random variables η1, η2 that are also independent of the filtration
F under Q∗. As usual, we shall write Gt = Ft ∨H1

t ∨H2
t for every t ∈ R+.

For any date T > 0, we shall also introduce the forward martingale
measure QT associated with Q∗. To this end, recall that under the spot
martingale measure P∗ (and thus also under Q∗) the dynamics of the price
process B(t, T ) is

dB(t, T ) = B(t, T )(rt dt+ b(t, T ) dW ∗t ),

where the volatility b(·, T ) is an F-progressively measurable stochastic pro-
cess, and W ∗ is a standard Brownian motion with respect to F under P∗
(W ∗ is also a standard Brownian motion with respect to both F and G
under Q∗). The probability measure QT is given on (Ω,GT ) through the
Radon–Nikodým density
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dQT
dQ∗

∣∣∣∣
GT

= exp
( T�

0

b(u, T ) dW ∗u −
1
2

T�
0

b2(u, T ) du
)
, Q∗-a.s.

In view of the assumed independence, it is clear that the random variables
η1, η2 have identical probabilistic properties under the spot martingale mea-
sure Q∗ and under the associated forward martingale measure QT . For the
sake of concreteness, we shall assume that the bonds issued by the firms A
and B are subject to the fractional recovery of Treasury value scheme with
constant recovery rates δ1 and δ2, respectively. For other types of recovery
schemes, the foregoing results need to be modified in a suitable way.

Let us first report the results obtained by Jarrow and Yu (2001). They
show that at any date t ≤ T the bond issued by the primary firm has the
following value:

D1(t, T ) = B(t, T )(δ1 + (1− δ1)e−λ1(T−t) � {τ1>t}).(1.3)

This valuation formula is rather obvious when it is postulated that

D1(t, T ) = B(t, T )EQT ( � {τ1>T} + δ1 � {τ1≤T} | Ft ∨H1
t ),

that is, when the status of the secondary firm is not observed. It is notewor-
thy that the right-hand side of (1.3) also yields the correct value for D1(t, T )
if it is defined through the standard formula

D1(t, T ) = B(t, T )EQT ( � {τ1>T} + δ1 � {τ1≤T} | Gt).
which takes into account the full information about macroeconomic factors
and the status of both firms. The intuitive difference between the last two
expressions is clear: the former assumes a priori that the occurrence of de-
fault of the secondary firm is not relevant to the valuation of a bond issued
by the primary firm, while the latter relies on the complete information
available at time t.

The calculation of the value of the bond issued by the secondary firm is
more involved. We adopt here the usual formula based on full information—
that is, we set

D2(t, T ) = B(t, T )EQT ( � {τ2>T} + δ2 � {τ2≤T} | Gt).
Let us introduce some useful notation. For λ1 + λ2 − α2 6= 0, we write

cλ1,λ2,α2(u) =
1

λ1 + λ2 − α2
(λ1e

−α2u + (λ2 − α2)e−(λ1+λ2)u).

Otherwise, we set
cλ1,λ2,α2(u) = (1 + λ1u)e−(λ1+λ2)u.

The following proposition is borrowed from Jarrow and Yu (2001). Later,
we are going to establish a general result that covers the Jarrow and Yu
result as a special case.



Dependent defaults and credit migrations 127

Proposition 1.1. The value of a zero-coupon bond issued by the sec-
ondary firm equals, on the event {τ1 > t}, that is, prior to default of the
primary firm,

D2(t, T ) = B(t, T )(δ2 + (1− δ2)cλ1,λ2,α2(T − t) � {τ2>t}),
and on the set {τ1 ≤ t}, that is, after default of the primary firm,

D2(t, T ) = B(t, T )(δ2 + (1− δ2)e−α2(T−t) � {τ2>t}).
Assume for simplicity that δ2 = 0, i.e., the bond issued by the secondary

firm is subject to the zero recovery rule. Then for every t ≤ T Proposition 1.1
yields (we set hereafter λ = λ1 + λ2)

D2(t, T ) = � {τ1>t,τ2>t} 1
λ− α2

(λ1e
−α2(T−t) + (λ2 − α2)e−λ(T−t))

+ � {τ1≤t<τ2} e−α2(T−t).

1.2. Extension of Jarrow and Yu (2001) results. We shall now
argue that the assumption that some entities represent “primary firms”,
while others are “secondary firms”, is actually irrelevant, and thus it can
be relaxed. For the sake of expositional simplicity, we maintain here the
assumption that n = 2, i.e., we consider the case of two firms, and we place
ourselves in Kusuoka’s (1999) set-up with T ∗ =∞ (see also Schmidt (1998)).
For a detailed exposition of this framework, we refer to Section 7.3 of Bielecki
and Rutkowski (2002). Let us only mention here that the compensated jump
processes, for t ∈ [0, T ],

H1
t −

t∧τ1�
0

λ∗1u du = H1
t −

t∧τ1�
0

(λ1 � {τ2>u} + α1 � {τ2≤u}) du
and

H2
t −

t∧τ2�
0

λ∗2u du = H2
t −

t∧τ2�
0

(λ2 � {τ1>u} + α2 � {τ1≤u}) du
are martingales under Q∗ with respect to the joint filtration G = F∨H1∨H2.
For definiteness and simplicity, the parameters λ1, λ2, α1 and α2 are assumed
to be strictly positive constants, so that the reference filtration F plays no
important role in the foregoing calculations. We may thus assume that it is
trivial. Let us recall that the process λ∗1 (λ∗2, resp.) is referred to as the
martingale intensity of τ1 (τ2, resp.) with respect to the filtration F ∨ H2

(F ∨H1, resp.)
An alternative (more direct) construction of random times with required

properties is given in Shaked and Shanthikumar (1987), also in the case of
more than two random times. It is thus worth stressing that the considera-
tions below remain valid in the extended Jarrow and Yu (2001) framework
for any n ≥ 2.
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1.2.1. Case of zero recovery. To start with, we postulate that both
corporate bonds we are going to analyze are subject to the zero-recovery
scheme, and the interest rate r is constant, so that B(t, T ) = e−r(T−t) for
every t ≤ T . Due to the last assumption we have QT = Q∗ and we may
take the trivial filtration as the reference filtration F. Since the situation is
symmetric, it suffices to analyze one bond only, for instance, a bond issued
by the first firm. By definition, the price of this bond equals

D1(t, T ) = B(t, T )Q∗(τ1 > T | Gt) = B(t, T )Q∗(τ1 > T |H1
t ∨H2

t ).

For the sake of comparison, we shall also evaluate the random variable

D̃1(t, T ) := B(t, T )Q∗(τ1 > T |H2
t ),

which models the price of the bond given the observations of the default of
the second firm (but not of the first firm), and the random variable

D̂1(t, T ) := B(t, T )Q∗(τ1 > T |H1
t ),

which represents the value of the bond based on the observations of the
default of the first firm only. To make the formulae slightly shorter, we shall
assume in the next result that r = 0, so that B(t, T ) = 1 for every t ∈ [0, T ].
Recall that we have set λ = λ1 + λ2.

Proposition 1.2. The price D1(t, T ) equals

D1(t, T ) = � {τ1>t,τ2>t} 1
λ− α1

(λ2e
−α1(T−t) + (λ1 − α1)e−λ(T−t))

+ � {τ2≤t<τ1} e−α1(T−t).

The processes D̃1(t, T ) and D̂1(t, T ) satisfy

D̃1(t, T ) = � {τ2>t} λ− α2

λ− α1

(λ1 − α1)e−λ(T−t) + λ2e
−α1(T−t)

λ1e(λ−α2)t + λ2 − α2

+ � {τ2≤t} (λ− α2)λ2e
−α1(T−τ2)

λ1α2e(λ−α2)τ2 + λ(λ2 − α2)
,

D̂1(t, T ) = � {τ1>t} λ2e
−α1T + (λ1 − α1)e−λT

λ2e−α1t + (λ1 − α1)e−λt
.

Proof. For the detailed calculations of conditional expectations, we refer
to Section 7.3 of Bielecki and Rutkowski (2002).

1.2.2. Case of non-zero recovery rates. The valuation results in the case
of non-zero recovery are not much different from the special case of the zero
recovery scheme. Indeed, the payoff Di(T, T ) at maturity can be represented
as follows:

Di(T, T ) = � {τi>T} + δi � {τi≤T} = δi + (1− δi) � {τi>T}
and thus
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Di(t, T ) = B(t, T )(δi + (1− δi)Q∗{τi > T |H1
t ∨H2

t }).
Explicit formulae for Di(t, T ), as well as for D̃i(t, T ) and D̂i(t, T ), can thus
be obtained directly from Proposition 1.2. It is easy to see that the ex-
pressions for D1(t, T ) and D2(t, T ) will coincide, up to a suitable change of
notation, with the formula of Proposition 1.1. Moreover, when λ1 = α1, we
obtain (cf. formula (1.3))

D1(t, T ) = B(t, T )(δ1 + (1− δ1)e−λ1(T−t) � {τ1>t}),
while for λ2 = α2 we get

D2(t, T ) = B(t, T )(δ2 + (1− δ2)e−λ2(T−t) � {τ2>t}).
1.2.3. Interpretation of martingale intensities. We shall provide an in-

tuitive probabilistic interpretation for the martingale intensities

λ∗1t = λ1 � {τ2>t} + α1 � {τ2≤t}, λ∗2t = λ2 � {τ1>t} + α2 � {τ1≤t}.
Recall that the construction of default times given in Kusuoka (1999) relies
on an equivalent change of a probability measure. A different, but essen-
tially equivalent, construction of τ1 and τ2 runs as follows: we take two
independent, identically distributed random variables ηi, i = 1, 2, with unit
exponential law under Q∗, and we set (see Shaked and Shanthikumar (1987))

τ1 =
{
λ−1

1 η1 if λ−1
1 η1 ≤ λ−1

2 η2,
λ−1

2 η2 + α−1
1 (η1 − λ1λ

−1
2 η2) if λ−1

1 η1 > λ−1
2 η2,

τ2 =
{
λ−1

2 η2 if λ−1
2 η2 ≤ λ−1

1 η1,
λ−1

1 η1 + α−1
2 (η2 − λ2λ

−1
1 η1) if λ−1

2 η2 > λ−1
1 η1.

The following result shows that the jump of the martingale intensity has
the desired financial interpretation. For the proof of Proposition 1.3, the
interested reader may consult Shaked and Shanthikumar (1987).

Proposition 1.3. For i = 1, 2, j 6= i and every t ∈ R+ we have

λi = lim
h↓0

h−1Q∗(t < τi ≤ t+ h | τ1 > t, τ2 > t),

αi = lim
h↓0

h−1Q∗(t < τi ≤ t+ h | τi > t, τj ≤ t).

2. DEPENDENT INTENSITIES OF CREDIT MIGRATIONS

For notational simplicity, we continue considering two firms only. In this
section, we shall examine the situation where the current financial standing
of the ith firm (of course, i = 1, 2) is reflected through an appropriate
credit ranking, whose generic value, denoted by ki, belongs to a finite set
Ki = {1, . . . ,Ki} of credit grades, where Ki ≥ 2 for i = 1, 2.
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Remarks. In the previous section, we have examined a special case of
the present setting with K1 = K2 = 2. That is, we have assumed that the
financial standing of each of the two firms could be classified into one of the
two categories: pre-default (ki = 1) and default (ki = 2).

As observed in practice, the credit ranking of a corporation varies over
time. We refer to this possibility as the credit migrations. Our goal is to
model the credit migrations of the ith firm in terms of a certain stochastic
process, denoted by Ci, taking values in a finite state space Ki. The process
Ci is called the credit migration process (or simply the migration process).
We fix the initial credit ranking of each firm, that is, we set C i

0 = const or
i = 1, 2, and we assume that at each future date t > 0 the credit rankings
Cit , i = 1, 2, can be observed exactly. The issues related to the modelling of
credit migrations are examined in detail in Chapters 12 and 13 of Bielecki
and Rutkowski (2002).

2.1. Basic assumptions. For simplicity, we shall first assume that the
reference filtration F is trivial. Let Fi = FCi , i = 1, 2, denote the nat-
ural filtration of the process C i. We assume that each filtration Fi satis-
fies the so-called “usual conditions”, and we define G = F1 ∨ F2 so that
Gt = F1

t ∨ F2
t = σ(F1

t , F2
t ). We shall conduct our study under specific

Markovian assumptions under the real-world probability Q and the mar-
tingale measure Q∗ (1).

• Assumption (M). Standard G-Markov condition for the process C =
(C1, C2) under Q∗: for any t ≤ s and ki ∈ Ki,

Q∗(C1
s = k1, C

2
s = k2 | Gt) = Q∗(C1

s = k1, C
2
s = k2 |σ(C1

t , C
2
t )).(2.4)

• Assumption (CM). Fj-conditional G-Markov condition for the pro-
cess Ci, i = 1, 2, j 6= i, under Q∗: for any t ≤ s and ki ∈ Ki,

Q∗(Cis = ki | Gt) = Q∗(Cis = ki |σ(Cit) ∨ F jt ).

Remarks. (i) Observe that condition (2.4) obviously implies the follow-
ing equality:

Q∗(Cis = ki | Gt) = Q∗(Cis = ki |σ(C1
t , C

2
t )).

(ii) In the present context, the standard G-Markov property of the pro-
cess Ci would read:

Q∗(Cis = ki | Gt) = Q∗(Cis = ki |σ(Cit)).

The latter condition is manifestly not interesting for us, as it essentially says
that there is no dependence between the credit migrations of the two firms.

(1) We refer to Section 11.3 of Bielecki and Rutkowski (2002) for detailed defini-
tions and a discussion of the preservation of the conditional Markov assumption under an
equivalent change of a probability measure.
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In the general case of a non-trivial reference filtration F we define G =
F∨F1∨F2 and we assume that F̃ is some filtration such that F ⊆ F̃ ⊆ G. We
adopt the following generic definition of the conditional Markov property.

Definition 2.1. We say that a process C i is an F̃-conditional G-Markov
chain under Q∗ if for any t ≤ s and ki ∈ Ki we have

Q∗(Cis = ki | Gt) = Q∗(Cis = ki |σ(Cit) ∨ F̃t).
Set Gj = F∨Fj . Then for i = 1, 2 and j 6= i the Gj-conditionalG-Markov

property of Ci under Q∗ reads

Q∗(Cis = ki | Gt) = Q∗(Cis = ki |σ(Cit)∨Gjt ) = Q∗(Cis = ki |σ(Cit)∨Ft ∨F jt ).

2.2. Case of two firms and two rating grades. Our next goal is
to examine from the Markovian perspective Kusuoka’s set-up introduced in
Section 1.2. In other words, we relax the assumption that one of the two
firms is primary and the other secondary. We shall first deal with the case of
only two rating grades and assume that the reference filtration F is trivial.
Subsequently, in Section 2.3, we shall present results covering the general
case—that is, the case of several rating grades and a non-trivial reference
filtration.

Since the detailed construction of the model will be given in Section 2.3,
we shall concentrate in this section on the derivation of relevant formulae
under the equivalent probability measure Q∗. More specifically, we assume
from the outset that we are given two random times, τ1 and τ2, such that
the (Hj ,H1 ∨ H2)-martingale intensity of τi under the probability measure
Q∗ equals

λ∗it = λi(1−Hj
t ) + αiH

j
t = λi � {τj>t} + αi � {τj≤t}

for i, j = 1, 2, i 6= j. This means that for each i = 1, 2 the compensated
jump process

M∗it = H i
t −

t�
0

λ∗iu (1−H i
u) du

is a martingale under Q∗ with respect to the joint filtration G = H1 ∨H2.
We associate with the random times τ1 and τ2 two migration processes

C1 and C2 defined as Cit = 1 + H i
t . It is possible to check that for each

i, j = 1, 2, i 6= j, the process C i is an Fj-conditional Markov chain. Moreover,
its conditional infinitesimal generator matrix process equals

Λ∗it =
(
−λ∗it λ∗it

0 0

)
.

From now on, we shall focus on the process C1 (the calculations below are
also valid for C2, after obvious modifications of notation). We intend to
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evaluate the probability

Q∗(τ1 > s |σ(C1
t ) ∨ F2

t ) = Q∗(C1
s = 1 |σ(C1

t ) ∨ F2
t )

for 0 ≤ t ≤ s. Due to the F2-conditional Markov property of C1 under Q∗,
we have

Q∗(C1
s = 1 |σ(C1

t ) ∨ F2
t ) = Q∗(C1

s = 1 | F1
t ∨ F2

t ) = Q∗(τ1 > s |H1
t ∨H2

t ).

The above probability is manifestly equal to 0 on the event {C1
t = 2} =

{τ1 ≤ t}. We thus only need to compute it on the event {C1
t = 1} = {τ1 > t}.

Let us recall that H i
t = � {τi≤t} = � {Cit=2}. In order to carry out the

calculations, we shall introduce a new probability measureQ. First, we define
two auxiliary processes κ1 and κ2 by setting

κ1
t = H2

t−

(
α1

λ1
− 1
)
, κ2

t = H1
t−

(
α2

λ2
− 1
)
,

and we introduce processes ξi, i = 1, 2, by

ξit = − κit
1 + κit

.

Next, we define a strictly positive process η̃ that solves the following SDE:

η̃t = 1 +
2∑

i=1

�
]0,t]

η̃u−ξiu dM
∗i
u .

We fix T > 0, and we define on (Ω,G) a probability measure Q equivalent
to Q∗ by setting

dQ
dQ∗

= η̃T , Q∗-a.s.

Notice that
dQ∗

dQ
= ηT , Q-a.s.,

where the process η := η̃−1 satisfies

ηt = 1 +
2∑

i=1

�
]0,t]

ηu−κiu dM
i
u,

and where in turn for each i = 1, 2 the process M i is given by

M i
t = M∗it +

t�
0

λiκ
i
u � {Ciu=2} du = � {Cit=2} −

t�
0

λi � {Ciu=1} du.

Notice that M i is a martingale under Q with respect to the filtration Fi, as
well as with respect to the filtration G. For future reference, it is useful to



Dependent defaults and credit migrations 133

note that ηt = η1
t η

2
t , where the processes ηi, i = 1, 2, satisfy

ηit = 1 +
�

]0,t]

ηiu−κ
i
u dM

i
u,

or, more explicitly,

η1
t = � {τ1≤τ2} + � {τ2<t≤τ1}e−(α1−λ1)(t−τ2)

+ � {τ2<t<τ1} α1

λ1
e−(α1−λ1)(τ1−τ2) + � {t≤τ2<τ1},

η2
t = � {τ2≤τ1} + � {τ1<t≤τ2}e−(α2−λ2)(t−τ1)

+ � {τ1<t<τ2} α2

λ2
e−(α2−λ2)(τ2−τ1) + � {t≤τ1<τ2}.

Also, we have η̃ = η̃1η̃2, where η̃ i = (ηi)−1.
At this point, we observe that the probability measures Q∗ and Q corre-

spond to the probability measures P∗ and P studied in Section 7.3 of Bielecki
and Rutkowski (2002). In particular, from Proposition 7.3.1 of Bielecki and
Rutkowski (2002) it follows that

� {C1
t=1}Q

∗(C1
s = 1 |σ(C1

t ) ∨ F2
t ) 6= � {C1

t=1}EQ∗(e
− � st λ∗1u du | F2

t ).(2.5)

There is an important representation for the probability Q∗(C1
s = 1 |

σ(C1
t ) ∨ F2

t ), which we shall provide now. For this, we need to consider
another equivalent probability measure on (Ω,G). Thus, we define on (Ω,G)
a probability measure Q1 by

dQ1

dQ∗
= η̃2

T , Q∗-a.s.,

or, equivalently, by
dQ1

dQ
= η1

T , Q-a.s.

The probability measure Q1 corresponds to the probability measure P∗1 given
by formula (7.21) of Bielecki and Rutkowski (2002). Making use of Proposi-
tion 7.3.1 of Bielecki and Rutkowski (2002), we conclude that the following
result is valid.

Lemma 2.1. For any s ≥ t we have

Q∗(C1
s = 1 | Gt) = � {C1

t=1}EQ1(e− � st λ∗1u du | F2
t ),(2.6)

Q∗(C1
s = 2 | Gt) = � {C1

t=2} + � {C1
t=1}EQ1(1− e− � st λ∗1u du | F2

t ).(2.7)

We shall now provide an alternative method of deriving equality (2.6),
which will prove useful in what follows. First, we define two matrix-valued
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processes by means of the following (random) ODEs:

dP1(t) = P1(t)Λ∗1t dt, P1(0) = Id2,

dQ1(t) = −Λ∗1t Q1(t) dt, Q1(0) = Id2 .

Observe that P1(t)Q1(t) = Q1(t)P1(t) = Id2 for t ≥ 0. In fact, it is fairly
obvious that

P1(t) =
(
e− � t0 λ∗1u du 1− e− � t0 λ∗1u du

0 1

)
,

Q1(t) =
(
e � t0 λ∗1u du 1− e � t0 λ∗1u du

0 1

)
.

Next, we fix s ≤ T and we define another two matrix-valued processes, for
t ∈ [0, s], by

Y(t) = EQ1(P1(s) | F2
t ), U(t) = H(t)Q1(t),

where

H(t) =
(

(1−H1
t ) H1

t

(1−H1
t ) H1

t

)
=
( � {C1

t=1} � {C1
t=2}

� {C1
t=1} � {C1

t=2}

)
.

Lemma 2.2. The process U is a G-martingale under Q∗ and the process
U∗ = η2U is a G-martingale under Q1.

Proof. For the first statement, it is enough to check that U11(t), t ∈ [0, s],
is a G-martingale under Q∗, and this holds because

dU11(t) = −e � t0 λ∗1u du (dH1
t − λ∗1t d(t ∧ τ1)) = −Q1

11(t) dM∗1t ,

where Q1
11(t) is the indicated element of the matrix Q1(t). The second claim

follows from the fact that dQ∗ = η2
T dQ1.

We shall now check that the process Y is a G-martingale under Q1 as
well. First, we note that this process is an F2-martingale under Q1. Next,
we demonstrate the following result, which shows that the hypothesis (M.1)
of Bielecki and Rutkowski (2002) is satisfied under Q1 by the filtrations F2

and G.

Lemma 2.3. Any F2-martingale under Q1 is also a G-martingale un-
der Q1.

Proof. It is known (see, e.g., Section 6.1.1 of Bielecki and Rutkowski
(2002)) that in the present set-up the condition (M.1) is equivalent to the
following condition (M.2): For any t ≥ 0, any bounded F 2

∞-measurable ran-
dom variable ξ, and any bounded Gt-measurable random variable ψ we have

EQ1(ξψ | F2
t ) = EQ1(ξ | F2

t )EQ1(ψ | F2
t ).(2.8)

It is enough to establish (2.8) for ξ = � {τ2>s} and ψ = � {τ1≤u}, where
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0 ≤ u ≤ t ≤ s. We have

EQ1( � {τ2>s} � {τ1≤u} | F2
t ) = � {τ2>t} EQ1( � {τ2>s} � {τ1≤u})

Q1(τ2 > s)

= � {τ2>t} EQ(η1
s � {τ2>s} � {τ1≤u})
EQ(η1

s � {τ2>s})
= � {τ2>t} eλ2(t−s)(1− e−λ1u).

On the other hand,

Q1(τ2 > s | F2
t ) = � {τ2>t} Q

1(τ2 > s)
Q1(τ2 > t)

= � {τ2>t}eλ2(t−s),

and

� {τ2>t}Q1(τ1 ≤ u | F2
t ) = � {τ2>t} EQ1( � {τ2>t} � {τ1≤u})

Q1(τ2 > t)
= � {τ2>t}(1− e−λ1u).

This completes the proof of the lemma.

Corollary 2.1. The process Y is a G-martingale under Q1.

The following proposition generalizes Lemma 2.1.

Proposition 2.4. For any t ≤ s ≤ T , we have

EQ∗(H(s) | Gt) = H(t)EQ1(Q1(t)P1(s) | F2
t ).(2.9)

Moreover , for any Q1-integrable, F2
s -measurable random variable Y we have

EQ∗(H(s)Y | Gt) = H(t)EQ1(Q1(t)P1(s)Y | F2
t ).(2.10)

Proof. We know that the processes Y and U∗ are G-martingales un-
der Q1. Since the jump time of the process U∗ of finite variation does not
coincide with the jump time Y of the process, the Itô product rule shows
that the process U∗Y is also a G-martingale under Q1. Thus, for t ≤ s we
obtain

EQ1(U∗(s)Y(s) | Gt) = U∗(t)Y(t) = η2
tH(t)EQ1(Q1(t)P1(s) | F2

t )

since Q1(t) is F2
t -measurable. On the other hand,

EQ1(U∗(s)Y(s) | Gt) = EQ1(η2
sH(s)Q1(s)P1(s) | Gt) = EQ1(η2

sH(s) | Gt)
since Q1(s)P1(s) = 1. Combining the equalities above, we obtain (2.9).
Notice that equality (2.9) implies (2.6), in particular. To establish equal-
ity (2.10), it suffices to consider the process Y(t) = EQ1(P1(s)Y | F2

t ) so
that Y(s) = P1(s)Y .

To complete the example let us compute the probability under Q∗ that
the first default occurs after time t, that is, Q∗(Cit 6= 2, i = 1, 2). According
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to Proposition 7.2.2 (or Lemma 7.3.1) of Bielecki and Rutkowski (2002), we
have

Q∗(Cit 6= 2, i = 1, 2) = Q∗(τ̂ > t) = Q1(τ̂ > t) = Q(τ̂ > t) = e−t(λ1+λ2),

where τ̂ := inf{t ≥ 0 : C1
t = 2 or C2

t = 2}. This result is expected, as
the mutual dependence of default times appears only after the first default
occurs. In other words, τ1 and τ2 are not independent under Q∗, but may
be treated as independent if we are interested in the law of the minimum
τ1 ∧ τ2 under Q∗, and the probability measure Q∗ may be replaced by Q in
the calculation of this law. Later on we shall generalize this useful property.

Remarks. Let us emphasize that the results above can be easily ex-
tended to the case of n firms and two rating grades: non-default and default.
Since the formulae are special cases of more general results established in
Section 2.4 below, we do not go into details here. Let us only mention that
the case of first-to-default swap involving n reference entities can be treated
by techniques presented in this section.

2.3. Case of two firms and multiple rating grades. Our next goal
is to show that the complexity of the valuation problem grows considerably
when we deal with a model allowing for multiple rating grades (other than
default), even in the case of two firms. We postulate that K1,K2 ≥ 2 so that
Ci takes values in Ki = {1, . . . ,Ki}. We first consider two F-conditional
Markov chains Ci, i = 1, 2, defined on the underlying probability space
(Ω,G,Q), with the corresponding infinitesimal generators

Λit =




λi11(t) λi12(t) . λi1Ki(t)
λi21(t) λi22(t) . λi2Ki(t)
. . . .

λiKi−1,1(t) λiKi−1,2(t) . λiKi−1,Ki(t)
0 0 . 0



,

where λikm are strictly positive F-progressively measurable stochastic pro-
cesses for k = 1, . . . ,Ki − 1 and m = 1, . . . ,Ki, m 6= k, and λikk =
−∑Ki

m=1,m6=k λ
i
km for k = 1, . . . ,Ki − 1. In particular, the state k = Ki

is the (only) absorbing state for each chain. For simplicity, we postulate
that C1

0 = C2
0 = 1 (this assumption can be easily relaxed). By construction,

the processes C1 and C2 are also conditionally independent under Q with
respect to the reference filtration F. For more details on the conditionally
Markov process of credit migrations, we refer to Bielecki and Rutkowski
(1999, 2000).

In addition, we assume that we are given a family of stochastic matrices
for i = 1, 2 and l = 2, . . . ,Kj , j 6= i,
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Λ
i|l
t =




λ
i|l
11(t) λ

i|l
12(t) . λ

i|l
1Ki(t)

λ
i|l
21(t) λ

i|l
22(t) . λ

i|l
2Ki

(t)
· · · ·

λ
i|l
Ki−1,1(t) λ

i|l
Ki−1,2(t) . λ

i|l
Ki−1,Ki(t)

0 0 . 0



,

where λi|lkm are strictly positive F-progressively measurable stochastic pro-

cesses for k = 1, . . . ,Ki − 1 and m = 1, . . . ,Ki, m 6= k, and λ
i|l
kk =

−∑Ki
m=1,m6=k λ

i|l
km for k = 1, . . . ,Ki − 1. At the intuitive level, at any date

t > 0, the entry λ
i|l
km(t) > 0 represents the intensity of transition from k

to m over the time interval [t, t+ dt] by the process C i conditioned on the
event {Cjt = l}, where j 6= i and l ∈ Kj. Notice that under the present
convention concerning the initial condition, it is natural to set Λi|1 = Λi

for i = 1, 2. Of course, we need first to construct the process (C1, C2) with
the above described properties. To this end, we shall introduce a probability
measure Q∗ equivalent to Q on (Ω,G). For i = 1, 2 we define processes κikm,
k = 1, . . . ,Ki − 1, m = 1, . . . ,Ki, m 6= k, as follows:

κikm(t) =
Kj∑

l=2

Hj
l (t−)

(
λ
i|l
km(t)
λikm(t)

− 1
)
, j 6= i,

where we write H i
k(t) = � {Cit=k} for i = 1, 2 and k ∈ Ki. We also define,

for i = 1, 2 and any two states k 6= m, the transition counting process
H i
km(t) =

∑
0<u≤tH

i
k(u−)H i

m(u). Let us recall that for i = 1, 2 the process
M i
km given by

M i
km(t) = H i

km(t)−
t�
0

λikm(u)H i
k(u) du, m 6= k,

is known to be a Gi-martingale under Q, and thus also a G-martingale
under Q, where Gi = F ∨ Fi and G = F ∨ F1 ∨ F2.

We can now define a strictly positive martingale η by means of the
following SDE:

ηt = 1 +
2∑

i=1

�
]0,t]

Ki−1∑

k=1

Ki∑

m=1,m6=k
ηu−κikm(u) dM i

km(u).

For a fixed, but otherwise arbitrary, T > 0 the probability measure Q∗ is
given by

dQ∗

dQ
= ηT , Q-a.s.

Recall that we have set Gj = F ∨ Fj and λ
i|1
km(t) = λikm(t).
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Proposition 2.5. For any i, j = 1, 2, i 6= j, the process C i is a Gj-
conditional G-Markov chain under Q∗ and its transition Gj-intensities un-
der Q∗ are

λ∗ikm(t) = (1 + κikm(t))λikm(t) =
Kj∑

l=1
� {Cjt=l}λ

i|l
km(t), k 6= m.

Proof. The conditional Markov property follows from the combination
of (i) the fact that the density η only depends on the filtration F and the
process C = (C1, C2), (ii) the abstract Bayes formula, and (iii) the fact
that C is a Markov chain with a given F-intensity matrix under Q. The
processes λ∗ikm are the corresponding Gj-intensities, because the processes
M∗ikm defined by

M∗ikm(t) = H i
km(t)−

t�
0

λ∗ikm(u)H i
k(u) du, k 6= m,

are G-martingales under Q∗.

Similarly to the previous section, we shall now introduce some auxiliary
probability measures. For this, we define two densities ηi, i = 1, 2, by means
of the following SDE:

ηit = 1 +
�

]0,t]

Ki−1∑

k=1

Ki∑

m=1,m6=k
ηiu−κ

i
km(u) dM i

km(u).

As before, we note that η = η1η2. This easily follows from the integration by
parts formula for purely discontinuous martingales, combined with the fact
that the jumps of the processes C1 and C2 coincide with zero Q probability.
Next, we also set η̃ := η−1 and η̃i := (ηi)−1 for i = 1, 2, so that η̃ = η̃1η̃2.
We are now in a position to define a probability measure Q1 on (Ω,G) by
setting

dQ1

dQ∗
= η̃2

T , Q∗-a.s.,
dQ∗

dQ1 = η2
T , Q1-a.s.

Equivalently,

dQ1

dQ
= η1

T , Q-a.s.,
dQ
dQ1 = η̃1

T , Q1-a.s.

We shall now proceed as in Section 2.2; that is, we define two matrix-valued
processes by means of the following (random) ODEs:

dP1(t) = P1(t)Λ∗1t dt, P1(0) = IdK1 ,

dQ1(t) = −Λ∗1t Q1(t) dt, Q1(0) = IdK1 ,

where Λ∗1t = [λ∗1km(t)]k,m∈K1 . Observe that P1(t)Q1(t) = IdK1 for t ≥ 0.



Dependent defaults and credit migrations 139

Indeed, we have

d(P1(t)Q1(t)) = P1(t) dQ1(t) + Q1(t) dP1(t)

= −P1(t)Λ∗1t Q1(t) dt+ P1(t)Λ∗1t Q1(t) dt = 0

and obviously P1(0)Q1(0) = IdK1 .
Let us fix s ≤ T . We define two matrix-valued processes Y and U by

setting, for t ∈ [0, s],

Y(t) = EQ1(P1(s)Y | G2
t ), U(t) = H(t)Q1(t),

where Y is a Q1-integrable, G2
s -measurable random variable, and H(t) is the

K1 ×K1 matrix

H(t) =




H1
1 (t) H1

2 (t) . H1
K1

(t)
H1

1 (t) H1
2 (t) . H1

K1
(t)

· · · ·
H1

1 (t) H1
2 (t) . H1

K1
(t)


 .

Lemma 2.4. The process U is a G-martingale under Q∗ and the process
Ũ = η2U is a G-martingale under Q1.

Proof. We first observe that for t ≤ s,

dUkk′(t) =
K1∑

l=1

Q1
lk′(t) dH

1
l (t)−

K1−1∑

m=1

K1∑

l=1

H1
m(t)λ∗1ml(t)Q

1
lk′(t) dt

=
K1∑

l=1

Q1
lk′(t)

(
dH1

l (t)−
K1−1∑

m=1

H1
m(t)λ∗1ml(t) dt

)
.

Let us fix l = 1, and analyze the expression

dH1
1 (t)−

K1−1∑

m=1

H1
m(t)λ∗1m1(t) dt.

First, we observe that

dH1
1 (t) =

K1−1∑

m=2

dH1
m1(t)−

K1∑

m=2

dH1
1m(t).

Thus, noting that λ∗111(t) = −∑K1
m=2 λ

∗1
1m(t), we obtain

dH1
1 (t)−

K1−1∑

m=1

H1
m(t)λ∗1m1(t) dt =

K1−1∑

m=2

dM∗1m1(t)−
K1−1∑

m=2

dM∗11m(t).

The above argument carries over to l = 2, . . . ,K1 − 1, and thus

dH1
l (t)−

K1−1∑

m=1

H l
m(t)λ∗1ml(t) dt =

K1−1∑

m=1,m6=l
dM∗1ml(t)−

K1∑

m=1,m6=l
dM∗1lm(t).
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Finally, for l = K1 we have

dH1
K1

(t)−
K1−1∑

m=1

H1
m(t)λ∗1mK1

(t) dt = dM∗1K1
(t),

where

M∗1K1
(t) := H1

K1
(t)−

K1−1∑

m=1

H1
m(t)λ∗1mK1

(t)

is a G-martingale under Q∗. The above observations prove the first state-
ment. The second claim is now obvious, since dQ∗ = η2

T dQ1.

The next natural step would be to demonstrate that the process Y is
a G-martingale under Q1 (obviously Y is a G2-martingale under Q1). To
this end, it would be sufficient to prove the following: any G2-martingale
under Q1 is also a G-martingale under Q1. However, due to the somewhat
complicated mutual dependence of transition intensities this statement does
not seem plausible. For this reason, we take a slightly different (indeed,
less general) approach. We introduce the stopped migration process C̃1

t =
C1
t � {τ1>t} + C1

τ1 � {τ1≤t} where τ1 := inf{t ∈ R+ : C1
t 6= C1

0}. Let F̃1 be the

filtration generated by the process C̃1 and let G̃1 = F ∨ F̃1 ∨ F2 be the
reduced filtration. Then we have the following counterpart of Lemma 2.3.

Lemma 2.5. Any G2-martingale under Q1 is also a G̃1-martingale un-
der Q1.

Proof. Along similar lines to the proof of Lemma 2.3.

As usual, we consider t ≤ s ≤ T . The auxiliary process Ỹ is given by
(recall that C1

0 = 1)

Ỹt = EQ1(Y e− � t0 λ1∗
11(u) du | G2

t ),

where Y is a Q1-integrable, G2
s -measurable random variable. In view of

Lemma 2.5, it is clear that the following corollary is valid.

Corollary 2.2. The process Ỹ is a G̃1-martingale under Q1.

Furthermore, we set

Ũt = � {C̃1
t=1}e

� t0 λ1∗
11(u) du = � {τ̃>t}e � t0 λ1∗

11(u) du.

Lemma 2.6. The process Ũ is a G̃1-martingale under Q∗ and the product
U∗ = η2Ũ is a G̃1-martingale under Q1.

Proposition 2.6. For any t ≤ s ≤ T , and any Q1-integrable, G2
s -

measurable random variable Y we have

EQ∗( � {C̃1
s=1}Y | Gt) =EQ∗( � {C̃1

s=1}Y | G̃
1
t ) = � {C̃1

t=1}EQ1(Y e− � st λ∗111(u) du | G2
t ).
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Proof. We shall mimic the proof of Proposition 2.4. We know that the
processes Ỹ and U∗ are G̃-martingales under Q1. Since the jump time of
the process U∗ of finite variation does not coincide with the jump time of
the process Ỹ , the Itô product rule shows that the process U ∗Ỹ is also a
G̃-martingale under Q1. Thus, for t ≤ s we obtain

EQ1(U∗s Ỹs | G̃1
t ) = U∗t Ỹt = η2

t � {C̃1
t=1}EQ1(Y e− � st λ∗111(u) du | G̃2

t ).

On the other hand,

EQ1(U∗s Ỹs | G̃1
t ) = EQ1(η2

s � {C̃1
t=1}Y | G̃

1
t ).

This ends the proof.

Corollary 2.3. For any s ≥ t we have

Q∗(τ1 > s | Gt) =Q∗(τ1 > s | G̃1
t ) = � {τ1>t}EQ1(e− � st λ∗111(u) du | G2

t ),

Q∗(τ1≤ s | Gt) =Q∗(τ1≤ s | G̃1
t ) = � {τ1≤t}− � {τ1>t}EQ1(1−e− � st λ∗111(u) du | G2

t ).

2.4. Case of several firms and multiple rating grades. In the
case of n firms and several rating grades (Ki ≥ 2 for the ith firm) the
notation becomes rather heavy, and thus it is rather difficult to present a
general, and at the same time reasonably transparent, result. Therefore,
we shall concentrate on the specific issue of a risk-neutral valuation of a
first-to-default swap. Unfortunately, since we assume here that the number
n of reference entities satisfies n ≥ 3, this case is not directly covered by our
previous results.

In the case of n reference entities, we consider the credit migration pro-
cess C = (C1, . . . , Cn). The construction of this process is based on the
assumption that under the probability measure Q the following properties
hold:

• each process Ci is an F-conditional G-Markov chain with values in
Ki = {1, . . . ,Ki} and with the generator matrix Λi, where F is the reference
filtration and G = F ∨ F1 ∨ . . . ∨ Fn,
• the processes Ci are F-conditionally independent under Q.

In addition, we are given a family of stochastic matrices Λi|l1,...,li−1,li+1,...,ln

for i = 1, . . . , n and lj ∈ Kj for any j 6= i. As before, to simplify notation
we adopt the convention that (C1

0 , . . . , C
n
0 ) = (1, . . . , 1). Notice that under

this convention we have λi|1,...,1km (t) = λikm(t).
We shall use our standard notation for the indicator process H j

l (t) =

� {Cjt=l} and for the transition counting process

H i
km(t) =

∑

0<u≤t
H i
k(u−)H i

m(u).
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In the second step, we introduce a probability measure Q∗ equivalent to
Q on (Ω,G). To this end, we observe that for each i = 1, . . . , n the process

M i
km(t) = H i

km(t)−
t�
0

λikm(u)H i
k(u) du, m 6= k,

is a G-martingale under Q. We set
dQ∗

dQ
= ηT = η1

T . . . η
n
T , Q-a.s.,

where for each i the process ηi solves the SDE

ηit = 1 +
�

]0,t]

Ki−1∑

k=1

Ki∑

m=1,m6=k
ηiu−κ

i
km(u) dM i

km(u).

Furthermore,

κikm(t) =
K1∑

l1=2

. . .

Kn∑

ln=2

H1
l1(t−) . . .Hn

ln(t−)
(
λ
i|l1,...,li−1,li+1,...,ln
km (t)

λikm(t)
− 1
)
,

where the summation is over all state spaces except for Ki (i.e., the sum∑Ki
li=2 is not present). Let G(i) = F ∨ F1 ∨ . . . ∨ Fi−1 ∨ Fi+1 ∨ . . . ∨ Fn. The

following result is a straightforward generalization of Proposition 2.5 and
therefore its proof its omitted.

Proposition 2.7. For any i = 1, . . . , n the process C i is a G(i)-condi-
tional G-Markov chain under Q∗ and its transition G(i)-intensities under
Q∗ are

λ∗ikm(t) = (1 + κikm(t))λikm(t)

=
K1∑

l1=2

. . .

Kn∑

ln=2

H1
l1(t) . . .Hn

ln(t)λi|l1,...,li−1,li+1,...,ln
km (t).

From now on we fix p < n and introduce the probability measure Q̂ by
setting

dQ̂
dQ

= η̂T = η̂1
T . . . η̂

n
T , Q-a.s.,(2.11)

where

η̂ it = 1 +
�

]0,t]

Ki−1∑

k=1

Ki∑

m=1,m6=k
η̂ iu−κ̂

i
km(u) dM i

km(u)

and (as before, the sum
∑Ki

li=2 is not present)

κ̂ikm(t) =
K1∑

l1=2

. . .

Kp∑

lp=2

H1
l1(t−) . . .Hp

lp
(t−)

(
λ
i|l1,...,lp,1,...,1
km (t)
λikm(t)

− 1
)
.
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In words, under the auxiliary probability measure Q̂ the entities with indices
1, . . . , p can be seen as “primary firms” and those with indices p+ 1, . . . , n
as “secondary firms” in the sense of Jarrow and Yu (2001). The following
result is a corollary to Proposition 2.7.

Corollary 2.4. For any i = 1, . . . , n the process C i is a G(i)-condi-
tional G-Markov chain under Q̂ and its transition G(i)-intensities under Q̂
are

λ̂ikm(t) = (1 + κ̂ikm(t))λikm(t) =
K1∑

l1=2

. . .

Kp∑

lp=2

H1
l1(t) . . .Hp

lp
(t)λi|l1,...,lp,1,...,1km (t).

Let Ĝ = F ∨ F1 ∨ . . . ∨ Fp. Due to the specific choice of Q̂ we also
have the following result that will prove useful in the valuation of a first-
to-default swap. For each i = p+ 1, . . . , n we introduce the stopped process
C̃it = Cit � {τi>t} + Ciτ̃ � {τi≤t}, where τi = inf{t ∈ R+ : Cit 6= Ci0}.

Lemma 2.7. (i) The migration processes Cp+1, . . . , Cn are Ĝ-conditio-
nally independent , Ĝ-conditional G-Markov chains under Q̂.

(ii) The random times τp+1, . . . , τn are Ĝ-conditionally independent un-

der Q̂ with the Ĝ-hazard processes Γ̂ it =
∑Ki

j=2 � t0 λ̂i1j(u) du, i = p+ 1, . . . , n.
(iii) The joint (F-conditional) probability laws of the processes C1, . . . , Cp

and random times τp+1, . . . , τn under Q̂ and under Q∗ are identical.
(iv) The random times τp+1, . . . , τn are Ĝ-conditionally independent un-

der Q∗ with the Ĝ-hazard processes Γ̂ it .

Proof. The first two statements are direct consequences of the construc-
tion of the process (C1, . . . , Cn) and the definitions of the probability mea-
sures Q̂ and Q∗. Part (iii) follows from the fairly obvious fact that all prob-
abilistic properties of the process (C1, . . . , Cp, C̃p+1, . . . , C̃n) are the same
under Q̂ and Q∗. The last statement is a consequence of (ii) and (iii).

Let F̃i stand for the filtration generated by the migration process C̃i,
and let G̃ = F ∨ F1 ∨ . . .Fp ∨ F̃p+1 ∨ . . . ∨ F̃n.

Lemma 2.8. Any Ĝ-martingale under Q̂ is also a G̃-martingale un-
der Q̂.

Proof. Along similar lines to the proof of Lemma 2.3.

The next result is a counterpart of Proposition 2.6.

Proposition 2.8. Let τ̂ = τp+1 ∧ . . . ∧ τn. For any t ≤ s ≤ T and any
Q̂-integrable, Ĝs-measurable random variable Y we have

EQ∗( � {τ̂>s}Y | Gt) =EQ∗( � {τ̂>s}Y | G̃t) = � {τ̂>t}E Q̂(Ye−
∑n
i=p+1 � st λ̂i11(u) du | Ĝt).



144 T. R. Bielecki and M. Rutkowski

Proof. In view of Lemma 2.8, we can make use of similar arguments to
those in the proof of Proposition 2.6.

In particular, we have

Q∗(τ̂ > s | Gt) = Q∗(τ̂ > s | G̃t) = � {τ̂>t}E Q̂(e−
∑n
i=p+1 � st λ̂i11(u) du | Ĝt),

Q∗(τ̂ ≤ s | Gt) = Q∗(τ̂ ≤ s | G̃t)
= � {τ̂≤t} + � {τ̂>t}E Q̂(1− e−

∑n
i=p+1 � st λi11(u) du | Ĝt).

2.5. First-to-jump swap. In order to illustrate our method, we shall
now examine an example of a credit derivative. By analogy with the first-to-
default swap, we call this contract the first-to-jump swap. Since the premium
leg of the contract can be treated in a similar way, we shall focus on the
jump leg only.

Without loss of generality, we assume that the payoff occurs at the first
jump of the credit rating of any entity from the class {p + 1, . . . , n}. In
addition, if τ̂ = τj ≤ T then the payoff at time τ̂ equals Zjτ̂ , where Zj ,
j = p+ 1, . . . , n, are given Ĝ-predictable stochastic processes. Formally, the
swap corresponds to the contingent claim (recall that we consider here only
the jump leg of the contract)

Y =
n∑

j=p+1

Zjτ̂ � {τ̂=τj≤T}

which settles at time τ̂ . By definition, the ex-dividend price at time t ≤ T
of the contract described above equals

πt(Y ) = BtEQ∗(B−1
τ̂ � {τ̂>t}Y | Gt)

= BtEQ∗
(
B−1
τ̂ � {t<τ̂≤T}

n∑

j=p+1

Zjτ̂ � {τ̂=τj}
∣∣∣Gt
)
.

Let us recapitulate the basic steps in the proposed method of risk-neutral
valuation of this contract:

• Introduce a judiciously chosen probability measure Q̂ equivalent to the
martingale measure Q∗ on (Ω,GT ) (cf. formula (2.11)).
• Check that τp+1, . . . , τn are Ĝ-conditionally independent under Q̂ and

under Q∗ with the same Ĝ-hazard processes (cf. Lemma 2.7).
• Use the standard method of valueing the first-to-default swap through

conditional expectations under Q∗ (cf. Kijima and Muromachi (2000) or
Chapter 9 of Bielecki and Rutkowski (2002)).

2.6. Conclusions. To summarize, due to the complexity of the model of
mutually dependent credit migration processes, it is advisable to study par-
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ticular contracts on a case-by-case basis, rather than to attempt to establish
a general approach. For instance, in the case of the first-to-change contract,
the calculations can be reduced to the familiar results concerning the case
of conditionally independent random times through a judicious choice of
an equivalent probability measure. Finally, it should be acknowledged that
the migration process C can also be studied as a standard Markov chain
with respect to its natural filtration (in the case of a trivial reference filtra-
tion) or an F-conditional Markov chain (when the reference filtration F is
non-trivial), so that the machinery developed for these classes of processes
can be directly employed. However, due to the large dimension of the state
space for C (the number of states for C equals K1 . . .Kn) such a direct
approach does not seem to be practically efficient.
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P. Schönbucher and D. Schubert (2000), Copula-dependent default risk in intensity models,

working paper, Bonn Univ.
M. Shaked and J. G. Shanthikumar (1987), The multivariate hazard construction, Stochas-

tic Process. Appl. 24, 241–258.

Mathematics Department
The Northeastern Illinois University
Chicago, IL 60625-4699, U.S.A.
E-mail: t-bielecki@neiu.edu

Faculty of Mathematics and Information Science
Warsaw University of Technology

00-661 Warszawa, Poland
E-mail: markrut@mini.pw.edu.pl

Institute of Mathematics
Polish Academy of Sciences

00-956 Warszawa, Poland

Received on 24.10.2002;
revised version on 4.4.2003 (1661)


