
APPLICATIONES MATHEMATICAE
30,2 (2003), pp. 173–191

A. V. Nagaev (Toruń)
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ASYMPTOTICS OF RISKLESS PROFIT
UNDER SELLING OF DISCRETE TIME CALL OPTIONS

Abstract. A discrete time model of financial market is considered. In the
focus of attention is the guaranteed profit of the investor which arises when
the jumps of the stock price are bounded. The limit distribution of the profit
as the model becomes closer to the classic model of geometrical Brownian
motion is established. It is of interest that the approximating continuous
time model does not assume any such profit.

1. Introduction. Consider the simplest financial market in which se-
curities of two types are circulating. The price evolution of the securities of
the first type is given by the equations

bk = b0%
k, k = 0, 1, 2, . . . ,

where b0 > 0, % > 1. The prices are registered at the equidistant times
tk = a+ kh. With no loss of generality we put a = 0, h = 1, i.e. tk = k.

The price of the security of the second type at time k is represented as

sk = s0ξ1 . . . ξk, k = 0, 1, 2, . . . ,

where the relative jumps ξk are random.
The securities of the first type are riskless having the interest rate

(%−1) ·100%. Let us call them conventionally bonds. It is clear that possess-
ing securities of the second type is concerned with a risk of their devaluation.
We call them stocks.

Taken together in certain amounts β and γ, the securities of both types
constitute the so-called portfolio (writer’s investment portfolio) whose worth
at time k is βbk + γsk. Playing in the financial market considered consists
in successive changes of the portfolio at k = 1, . . . , n − 1. The successive
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pairs (β0, γ0), (β1, γ1), . . . , (βn−1, γn−1) constitute the so-called strategy of
the game. Obviously, the basis for choosing (βk, γk) is the evolution of the
stock price up to this moment, i.e. s0, s1, . . . , sk. In other words

βk = βk(s0, s1, . . . , sk), γk = γk(s0, s1, . . . , sk).

The player is called a writer (seller , investor).
A strategy is called self-financing if the changes of the portfolio content

do not affect its value, i.e.

βkbk + γksk = βk−1bk + γk−1sk, k = 1, . . . , n− 1.

The final goal of the game is to meet the condition

xn = βn−1bn + γn−1sn ≥ f(sn)(1.1)

where f(s) is the so-called pay-off function of the simplest option of the
European type having n as maturity date. For more about the mathematical
and substantial aspects of the option pricing theory see e.g. Shiryaev (1999).

Basic problems of the mathematical theory of options are the evaluation
of the so-called rational option price and the corresponding strategy leading
to (1.1). Recall that the rational option price is the minimal initial capital
x0 which allows the investor to meet contract terms under proper behavior.

Both the problems are easily solved in the so-called binary model , that
is, in the case where ξk takes only two values d and u, d < % < u. In this
case (see e.g. Ch. VI in Shiryaev (1999))

x0 = %−n
n∑

k=0

Cknp
k
∗(1− p∗)n−kf(s0u

kdn−k)(1.2)

where

p∗ =
%− d
u− d.

It is worth emphasizing that (1.2) does not place any restrictions on the
measure which governs the evolution of the stock price (ξ1, . . . , ξn). Further-
more, there exists a unique self-financing strategy

(β, γ) = {(β0, γ0), (β1, γ1), . . . , (βn−1, γn−1)}
leading to the equality

xn = βn−1bn + γn−1sn = f(sn).(1.3)

The strategy is defined by the formulae

βk =
ufk+1(skd)− dfk+1(sku)

%bk(u− d)
,(1.4)

γk =
fk+1(sku)− fk+1(skd)

sk(u− d)
,(1.5)
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where

fk(s) = %−(n−k)
n−k∑

j=0

Cjn−kp
j
∗(1− p∗)n−k−jf(sujdn−k−j).(1.6)

The successive values of the portfolio are

xk = fk(sk), k = 0, 1, . . . , n− 1.(1.7)

If ξk, k = 1, . . . , n, take more than two values then it is impossible to
guarantee the desired relation (1.3) with probability 1. However, sometimes
it is possible to guarantee (1.1). For example, if ξk ∈ [d, u] and f(s) is convex
then the minimal initial capital is evaluated by the same formula (1.2).

This fact was first proven in Tessitore and Zabczyk (1996) (see also
Zabczyk (1996) and Motoczyński and Stettner (1998)). The proof applies
control theory methods. Later on in Shiryaev (1999) the rational price is
derived as the solution of an extreme problem (see Theorem V.1c.1 ibidem).
It seems that Shiryaev knew nothing about the works of his predecessors.
At least in the rather rich list of references given in Shiryaev (1999) they
are not mentioned.

Define
xk = fk(sk), k = 0, . . . , n− 1,(1.8)

and let (βk, γk) be as defined in (1.4) and (1.5).
Possessing after the (k − 1)th step the capital xk−1 distributed in ac-

cordance with (1.4) and (1.5), at the next step k the investor gains the
capital

xk = βk−1bk + γk−1sk =
u− ξk
u− d fk(sk−1d) +

ξk − d
u− d fk(sk−1u)

(for more details see e.g. A. Nagaev and S. Nagaev (2000a,b)).
If ξk ∈ [d, u], k = 1, . . . , n, then

(1.9) δk=xk − xk=fk(sk−1d)
u− ξk
u− d + fk(sk−1u)

ξk − d
u− d − fk(sk−1ξk)≥0.

It is easily seen that δk = 0 if and only if ξk = d or ξk = u. Otherwise
δk > 0. Thus, if ξk takes at least one value lying in (d, u) then a profit arises.
If the extreme values d and u belong to the support of the distribution of
ξk then xk−1 is the minimal capital which allows such a profit. This implies
that the policy determined by (1.4) and (1.5) forms the so-called hedge or,
in the terminology adopted in [1], upper hedge, while (x0, x1, . . . , xn−1) is
the corresponding chain of hedging capitals.

The investor may take advantage of the profit so arising in various ways.
The simplest one is to withdraw from the game the superfluous quota δk
which till the maturity date acquires the value δk%n−k. So, the self-financing
condition is fulfilled only in the part which bans any capital inflows.
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Having withdrawn an unnecessary quota one should follow the “binary”
optimal strategy determined by (1.4) and (1.5). As a result, till the maturity
date the investor accumulates a riskless profit

∆n = δ1%
n−1 + δ2%

n−2 + . . .+ δn.

It is not easy to find the distribution of ∆n even in the case of inde-
pendent ξk. The question arises how to approximate it. To obtain such an
approximation is a basic goal of the paper.

It is worth emphasizing that we consider the simplest case where the
random variables ξk, k = 1, . . . , n, are i.i.d. In contrast to A. Nagaev and
S. Nagaev (2002b) where the pay-off function is assumed to be smooth,
here we focus on a typical example of a non-smooth pay-off function which
is provided by the call option. Our basic goal is to show how the chaotic
phenomena which arise here could be analyzed.

The paper is organized as follows. In Section 2 the basic results are
formulated. The “local” profit in the case where the model converges to
that of the geometrical Brownian motion is studied in Section 3. In Section 4
the limit of the expected value of the total riskless profit is established. The
limit distribution of the total riskless profit is given in Section 5. Concluding
remarks are gathered together in Section 6. Auxiliary facts are given in
Appendices I and II.

2. Basic results. From now on we deal with the simplest case of the
standard call option determined by the pay-off function

f(s) = (s−K)+.(2.10)

Put in (1.9),

(2.11)





u = un = exp(µn−1 + xn−1/2) = 1 + xn−1/2 +O(n−1),

d = dn = exp(µn−1 − xn−1/2) = 1− xn−1/2 +O(n−1),

% = %n = exp(αn−1) = 1 + αn−1 +O(n−2),

ξk = ξk,n = exp(µn−1+ηkn−1/2) = 1+ηkn−1/2+(µ+ 2θx2)n−1,

sk,n = s0ξ1,n . . . ξk,n,

where α > 0 and µ are constants, |θ| ≤ 1, while the random variables
ηk, k = 1, . . . , n, are i.i.d. in [−x, x], so that Eη1 = 0, Var η1 = σ2 > 0.
We also assume that the extreme points ±x belong to the support of the
distribution of η1.

Consider the stochastic process

xn(t) = ln(sk,n/s0)

=
η1 + . . .+ ηk√

n
+ µkn−1, (k − 1)n−1 ≤ t < kn−1, k = 1, . . . , n.
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It is well known that xn(t) weakly converges to x(t) = µt + σw(t) where
w(t) is the standard Wiener process (see e.g. Billingsley (1968), Ch. 3).

Define

ψ(t, v) = 2(1− t)−1/2ϕ

(
(1− t)−1/2

(
lnK
x
− v

x

)
(2.12)

+ (1− t)1/2
(
x

2
− α

x

))
,

I(t) = Eψ(t, x(t) + ln s0)(2.13)

=
2x√

tσ2+x2(1− t)
ϕ

(
ln(K/s0)−µt− (1− t)(α− x2/2)√

tσ2 + x2(1− t)

)
.

Here ϕ(v) is the density of the standard normal law. Further, let

aF =
1�

0

(
u

x�

2x(u−1/2)

(x−y) dF (y)+(1−u)
2x(u−1/2)�

−x
(y+x) dF (y)

)
du(2.14)

where F is the distribution function of η1.

The following two theorems contain the basic results of the present paper.

Theorem 2.1. Let the distribution of η1 be non-lattice, i.e.

|Eeıtη1| 6= 1 for all t 6= 0.

Then as n→∞,

E∆n = KaF

1�

0

I(t) dt+ o(1)

where K is the strike price from (2.10).

Theorem 2.2. Under the conditions of Theorem 2.1,

∆n
d→ l(x(t)) = KaF

1�

0

ψ(t, x(t) + ln s0) dt

where

x(t) = µt+ σw(t),

w(t) is the standard Wiener process and ψ(t, z) is as defined in (2.12).

3. “Local” profit of the investor. Let us convene to denote by c
any positive constant whose concrete value is of no importance. Under this
convention we have e.g. c+ c = c, c2 = c etc. By θ we denote any variables
taking values in [−1, 1].
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Define

pn =
%n − dn
un − dn

, λk,n =
ξk,n − dn
un − dn

,

aj,m = ujnd
m−j
n , bj,m = Cjmp

j
n(1− pn)m−j .

Then the discounted “local” profit of the investor takes the form

∆k,n = δk,n%
n−k
n(3.15)

=
n−k∑

j=0

bj,n−k(λk,nf(sk−1,nunaj,n−k)

+ (1− λk,n)f(sk−1,ndnaj,n−k)− f(sk−1,nξk,naj,n−k)).

For the time being we suppress the dependence of λ, d, u, ξk and sk on n.
Let j be such that sk−1daj,n−k > K. Then

λkf(sk−1uaj,n−k) + (1− λk)f(sk−1daj,n−k)− f(sk−1ξkaj,n−k)

= s(λku+ (1− λk)d− ξk)aj,n−k = 0.

If sk−1uaj,n−k < K then

0 = f(sk−1uaj,n−k) ≥ f(sk−1ξkaj,n−k) ≥ f(sk−1daj,n−k).

It is worth reminding that d ≤ ξk−1 ≤ u. Thus,

∆k,n = δk,n%
n−k
n =

∑

rn−k(u)<j≤rn−k(d)

bj,n−k(λk(sk−1uaj,n−k −K)+

+ (1− λk)(sk−1daj,n−k −K)+ − (sk−1ξkaj,n−k −K)+)

where

rm(z) = rm(z, sk−1) =
ln(K/(sk−1zd

m))
ln(u/d)

.

Further,

∆k,n =
∑

rn−k(ξk)<j≤rn−k(d)

bj,n−k(λk(sk−1uaj,n−k −K)(3.16)

− (sk−1ξkaj,n−k −K))

+ λk
∑

rn−k(u)<j≤rn−k(ξk)

bj,n−k(sk−1uaj,n−k −K)

= ∆′k,n +∆′′k,n.

It is easily verified that

∆′k,n = (1− λk)K
∑

rn−k(ξk)<j≤rn−k(d)

bj,n−k(1− (d/u)rn−k(d)−j),

∆′′k,n = λkK
∑

rn−k(u)<j≤rn−k(ξk)

bj,n−k((u/d)j+1−rn−k(d) − 1).
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In view of (7.42) and (7.44) we have uniformly in k, for δn ≤ k ≤ (1− δ)n,

1− (d/u)rn−k(d)−j = 2xn−1/2(rn−k(d)− j +O(n−1)),

(u/d)j+1−rn−k(d) − 1 = 2xn−1/2(j + 1− rn−k(d) +O(n−1)).

Taking into account (2.11) we conclude that

∆′k,n = K(x− ηk + (µ+ 2θX2)n−1/2)n−1/2

×
∑

rn−k(ξk)<j≤rn−k(d)

bj,n−k(rn−k(d)− j +O(n−1)),

∆′′k,n = K(ηk + x+ (µ+ 2θX2)n−1/2)n−1/2

×
∑

rn−k(u)<j≤rn−k(ξk)

bj,n−k(j + 1− rn−k(d) +O(n−1)).

Both the representations are valid uniformly in k for δn ≤ k ≤ (1− δ)n.
From (7.47) and the uniform version of the Moivre–Laplace local limit

theorem we obtain, for δn ≤ k ≤ (1− δ)n,

bj,n−k = n−1/2ψ(kn−1, ln sk−1) + o(n−1/2).(3.17)

It is worth emphasizing that (3.17) holds uniformly in sk−1. Thus,

∆′k,n = K(x− ηk)n−1ψ(kn−1, ln sk−1)

×
∑

rn−k(ξk)<j≤rn−k(d)

(rn−k(d)− j) +O(n−3/2),

∆′′k,n = K(ηk + x)n−1ψ(kn−1, ln sk−1)

×
∑

rn−k(u)<j≤rn−k(ξk)

(j + 1− rn−k(d)) +O(n−3/2).

Both the representations are valid uniformly in k for δn ≤ k ≤ (1− δ)n.
Let δ′ ≤ {rn−k(d)} ≤ 1−δ′ and suppose both n and n−k are sufficiently

large. Then by (7.46) the interval (rn−k(u), rn−k(d)] contains exactly one
integer j = [rn−k(d)]. So,

∑

rn−k(ξk)<j≤rn−k(d)

(rn−k(d)− j) =
{ {rn−k(d)} if rn−k(ξk) < [rn−k(d)],

0 otherwise.

Similarly,
∑

rn−k(u)<j≤rn−k(ξk)

(j+1−rn−k(d)) =
{

0 if rn−k(ξk)< [rn−k(d)],
1−{rn−k(d)} otherwise.

For δ′ ≤ {rn−k(d)} ≤ 1−δ′ we may combine (3.16) and the last estimates
in the following way:

∆k,n = Kn−1ψ(kn−1, ln sk−1)σk,n +O(n−3/2)
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where

σk,n =
{

(x− ηk){rn−k(d)} if rn−k(ξk) < [rn−k(d)],
(ηk + x)(1− {rn−k(d)}) otherwise.

Therefore,

∆k,n = Kn−1ψ(kn−1, ln sk−1)σk,n +K ′θn−11k,n + cθn−3/2

where

1k,n =
{

1 if inf l∈Z |rn−k(d)− l| ≤ δ′,
0 otherwise,

K ′ = 4xK sup
t∈[0,1−δ], z∈R1

ψ(t, z).

It is convenient to replace σk,n by

σ∗k,n =
{

(x− ηk){rn−k(d)} if ηk > 2x({rn−k(d)} − 1/2),
(ηk + x)(1− {rn−k(d)}) otherwise.

(3.18)

In order to justify the replacement note that in view of (7.43), rn−k(z) <
[rn−k(d)] with z = 1 + wn−1/2 implies

− w
2x

+O(n−1/2 lnn) < 1/2− {rn−k(d)}
or equivalently,

w > 2x({rn−k(d)} − 1/2) +O(n−1/2 lnn).

Obviously,
|σ∗k,n − σk,n| ≤ 2x1′k,n

where

1′k,n =
{

1 if |ηk − 2x({rn−k(d)} − 1/2)| ≤ cn−1/2 lnn,
0 otherwise.

So, we arrive at the following final representation of the “local” profit:

∆k,n = Kn−1ψ(kn−1, ln sk−1)σ∗k,n+K ′θn−1(1k,n+1′k,n)+ cθn−3/2.(3.19)

It remains to estimate the expectations of 1k,n and 1′k,n. By Lemma 7.1
for all sufficiently large n and k,

E1k,n ≤ 4δ′.(3.20)

Further,

E1′k,n =
x�

−x
dF (v)P(|v − 2x({rn−k(d)} − 1/2)| ≤ cn−1/2 lnn)

=
x�

−x
dF (v)P

(
1
2

+
v

2x
− cn−1/2 lnn ≤ {rn−k(d)} ≤ 1

2
+

v

2x
+ cn−1/2 lnn

)
.

By (7.43),

{rn−k(d)} =
{
η1 + . . .+ ηk−1

2x
+ ak,n

}
.
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Therefore, by Lemma 7.1, {rn−k(d)} is asymptotically uniformly distributed.
This implies that for any δ′ and all sufficiently large n and k,

E1′k,n ≤ 2δ′.(3.21)

4. Proof of Theorem 2.1. We represent the total profit ∆n as

∆n =
∑

1≤k<δn
∆k,n +

∑

δn≤k≤(1−δ)n
∆k,n +

∑

(1−δ)n≤k≤n
∆k,n(4.22)

= ∆′n +∆′′n +∆′′′n

and estimate the expectations E∆′n, E∆′′n and E∆′′′n one after another.
According to (3.19) we have

E∆′′n = Kn−1
∑

δn≤k≤(1−δ)n
Eψ(kn−1, ln sk−1,n)σ∗k,n

+K ′θn−1
∑

δn≤k≤(1−δ)n
E(1k,n + 1′k,n) + cθn−1/2.

In view of (3.20) and (3.21) for any δ′ > 0,

E∆′′n = Kn−1
∑

δn≤k≤(1−δ)n
Eψ
(
kn−1,

η1 + . . .+ ηk−1√
n

+ µ
k − 1
n

+ ln s0

)
σ∗k,n

+ cθδ′ + cθn−1/2.

Consider

(4.23) A(u, y) = (x− y)uχ(u, y) + (y + x)(1− u)(1− χ(u, y)),

(u, y) ∈ [0, 1]× [−x, x],

where

χ(u, y) =
{

1 if 2x(u− 1/2) < y ≤ x, 0 ≤ u ≤ 1,
0 if −x < y ≤ 2x(u− 1/2), 0 ≤ u ≤ 1.

It is evident that χ(u, y) admits a monotone ε-approximation by means of
χ+(u, y) and χ−(u, y) where

χ+(u, y) =





−2xu+ y + x

ε
+ 1 if 2x(u− 1/2)− ε ≤ y ≤ 2x(u− 1/2),

0 ≤ u ≤ 1,
0 if −x ≤ y ≤ 2x(u−1/2)− ε, 0 ≤ u ≤ 1,
1 if 2x(u− 1/2) ≤ y ≤ x, 0 ≤ u ≤ 1,

χ−(u, y) =





−2xu+ y + x

ε
if 2x(u− 1/2) ≤ y ≤ 2x(u− 1/2) + ε,

0 ≤ u ≤ 1,
0 if −x ≤ y ≤ 2x(u− 1/2), 0 ≤ u ≤ 1,
1 if 2x(u− 1/2) + ε ≤ y ≤ x, 0 ≤ u ≤ 1.
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Obviously, χ±(u, y) are continuous in [0, 1]× [−x, x] and

χ−(u, y) ≤ χ(u, y) ≤ χ+(u, y).

Furthermore,

0 ≤
�

[0,1]×[−x,x]

(χ+(u, y)− χ−(u, y)) du dF (y) ≤
�

Uε

du dF (y) ≤ ε/x(4.24)

where

Uε = {(u, y) : u ∈ (0, 1), |y| < x, |y − 2x(u− 1/2)| ≤ ε}.
Therefore

Eψ
(
kn−1,

η1 + . . .+ ηk−1√
n

+ µ
k − 1
n

+ ln s0

)
A−({rn−k(d)}, ηk)

≤ Eψ
(
kn−1,

η1 + . . .+ ηk−1√
n

+ µ
k − 1
n

+ ln s0

)
σ∗k,n

= Eψ
(
kn−1,

η1 + . . .+ ηk−1√
n

+ µ
k − 1
n

+ ln s0

)
A({rn−k(d)}, ηk)

≤ Eψ
(
kn−1,

η1 + . . .+ ηk−1√
n

+ µ
k − 1
n

+ ln s0

)
A+({rn−k(d)}, ηk)

where

A±(u, y) = (x− y)uχ±(u, y) + (y + x)(1− u)(1− χ±(u, y)).

Obviously, the family ψ(t, z), δ ≤ t ≤ 1 − δ, is contained in the class G
defined in Appendix II. So, we may apply Corollary 7.2 to obtain

Eψ
(
kn−1,

η1 + . . .+ ηk−1√
n

+ µ
k − 1
n

+ ln s0

)
A±({rn−k(d)}, ηk)

= Eψ(kn−1, σν
√
kn−1 + µkn−1 + ln s0)

�

[0,1]×[−x,x]

A±(u, y) du dF (y) + o(1)

uniformly in k for δ ≤ kn−1 ≤ 1− δ. Here ν has the standard (0, 1)-normal
distribution. In view of (4.24),

�

[0,1]×[−x,x]

A±(u, y) du dF (y) = aF + θε

where aF is as defined in (2.14). Since ε is arbitrary we obtain

Eψ(kn−1, σν
√
kn−1 + µkn−1 + ln s0)σ∗k,n

= aFEψ(kn−1, σν
√
kn−1 + µkn−1 + ln s0) + o(1)
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uniformly in k for δ ≤ kn−1 ≤ 1− δ. Thus,

E∆′′n = Kn−1aF
∑

δn≤k≤(1−δ)n
Eψ(kn−1, σν

√
kn−1 + µkn−1 + ln s0)

+ cθδ′ + o(1).

Obviously,

I(t) = Eψ(t, σν
√
t+ µt+ ln s0) =

�
ψ(t, σv

√
t+ µt+ ln s0)ϕ(v) dv,

or after straightforward calculations,

I(t) =
2x√

tσ2 + x2(1− t)
ϕ

(
ln(K/s0)− µt− (1− t)(α− x2/2)√

tσ2 + x2(1− t)

)
,

whence we deduce

E∆′′n = KaF

1−δ�

δ

I(t) dt+ cθδ′ + o(1).(4.25)

Now we are going to estimate E∆′′′n . For the extreme “local” profit ∆n,n

we obtain

∆n,n = δn,n = (sn−1,ndn −K)+
un − ξn
un − dn

+ (sn−1,nun −K)+
ξn − dn
un − dn

− (sn−1,nξn.n −K)+,

whence

∆n,n =
{

0 if sn−1,nun ≤ K or sn−1,ndn > K,
θ(sn−1,nun −K) if K/un < sn−1,n ≤ K/dn.

Therefore,

E∆n,n ≤ K(un/dn − 1) ≤ cn−1/2.(4.26)

For m = n− k ≥ 1, in view of (3.16) and (7.45),

∆n−m,n ≤ cmax
j
bj,m((un/dn)2 − 1),

or taking into account (7.48),

∆n−m,n ≤ cm−1/2n−1/2.

Thus, for all sufficiently large n,

E∆′′′n ≤ cδ1/2.(4.27)

Similarly,

E∆′n ≤ cδ.(4.28)

Since δ and δ′ are arbitrary, in view of (4.22), (4.25), (4.27) and (4.28) the
theorem follows.
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5. The limit distribution of the riskless profit. Consider the rep-
resentation (4.22). Put

∆∗n = n−1
∑

δn≤k≤(1−δ)n
ψ(kn−1, ln sk−1,n)σ∗k,n.(5.29)

Represent ∆∗n as

∆∗n = aFn
−1

∑

δn≤k≤(1−δ)n
ψ(kn−1, ln sk−1,n)(σ∗k,n−aF ) = aF l1,n+l2,n.(5.30)

By (2.12) we have
sup
z
ψ(t, z) ≤ (2π(1− t))−1/2.(5.31)

In view of (4.27) and (4.28),

l1,n = n−1
∑

1≤k≤n
ψ(kn−1, ln sk−1,n) + θcδ1/2 = l∗n + θcδ1/2.(5.32)

We are going to prove that
El22,n ≤ cδ.(5.33)

In view of (3.20), (3.21), (4.27), (4.28) and (5.33),

∆n = KaF l
∗
n + ω(n, δ, δ′)(5.34)

where
E|ω(n, δ, δ′)| ≤ c(δ1/2 + δ′).

Therefore, for any ε > 0 and δ′′ > 0,

P(|∆n −KaF l∗n| ≥ ε) ≤
c(δ1/2 + δ′)

ε
≤ δ′′

provided δ and δ′ are sufficiently small. This implies that the limit distribu-
tions of ∆n and KaF l

∗
n coincide.

First, we tackle l∗n. Consider the stochastic process

xn(t) = ln(sk,n/s0)

=
η1 + . . .+ ηk√

n
+ µkn−1, (k − 1)n−1 ≤ t < kn−1, k = 1, . . . , n.

Obviously,

l∗n =
1�

0

ψ(t, xn(t) + ln s0) dt.

From (5.31) it follows that l∗n is a continuous functional on D[0, 1]. Since
xn(t) weakly converges to x(t) = µt+ σw(t) we conclude that

l∗n
d→

1�

0

ψ(t, x(t) + ln s0) dt.(5.35)
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It remains to establish (5.33). It is easily seen that

(5.36) El22,n = n−2
∑

δ≤kn−1≤1−δ
Eψ2(kn−1, ln sk−1,n)(σ∗k,n − aF )2

+2n−2
∑

δn≤l<k≤n(1−δ)
Eψ(ln−1, ln sl−1,n)(σ∗l,n−aF )ψ(kn−1, ln sk−1,n)(σ∗k,n−aF )

= Σ1 + 2Σ2.

Obviously,
Σ1 = O(n−1).(5.37)

Split Σ2 in the following way:

Σ2 = n−2
∑

δn≤l<k≤n(1−δ), k−l<δn
+n−2

∑

δn≤l<k≤n(1−δ), k−l≥δn
= Σ21+Σ22.(5.38)

Obviously,

Σ21 ≤ cδ.(5.39)

So, it remains to estimate Σ22. Utilizing (3.18) and (4.23) we get

Ml,k,n = Eψ(ln−1, ln sl−1,n)(σ∗l,n − aF )ψ(kn−1, ln sk−1,n)(σ∗k,n − aF )

= Eψ(ln−1, ln sl−1,n)(A({rn−l}, ηl)− aF )

× ψ(kn−1, ln sk−1,n)(A({rn−k(d)}, ηk)− aF ).

Define
Fm,n(z) = P(n−1/2(η1 + . . .+ ηm) + ln s0 < z).

Then we may represent Ml,k,n as

Ml,k,n =
�

R1×[−x,x]

ψ(ln−1, z′ + (l − 1)n−1µ)

× (A({rn−l(d)}, y′)− aF ) dFl−1,n(z′) dF (y′)

×
�

R1×[−x,x]

ψ(kn−1, z′ + z + n−1/2y + (k − 1)n−1µ)

× (A({rn−k(d)}, y)− aF ) dFk−l−1,n(z) dF (y).

Note that given n−1/2(η1 + . . .+ ηl−1) = z′, ηl = y′ we have

rn−k(d) = ak,n −
η1 + . . .+ ηk−1

2x
= a′k,n −

ηl+1 + . . .+ ηk−1

2x
d= a′k,n −

η1 + . . .+ ηk−l−1

2x
.

Further, note that for δ ≤ kn−1 ≤ 1−δ the functions ψ(kn−1, z′+z), |z′| < Z,
belong to the class G for any Z > 0. Since k − l ≥ δn and A(u, y) admits a
monotone ε-approximation we may apply Corollary 7.2. Thus
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lim
n→∞

sup
δn≤l<k≤n(1−δ), k−l≥δn

sup
|z′|<Z

∣∣∣
�

R1×[−x,x]

ψ(kn−1, z′+z+n−1/2y+(k−1)n−1µ)

× (A({rn−k(d)}, y)− aF ) dFk−l−1,n(z) dF (y)
∣∣∣ = 0.

This implies that

Σ22 ≤ sup
δn≤l<k≤n(1−δ), k−l≥δn

|Ml,k,n| = o(1).(5.40)

Combining (5.36)–(5.40) yields (5.33), which completes the proof of Theo-
rem 2.

6. Concluding remarks. • It is worth explaining why the total riskless
profit does not vanish asymptotically. Since the pay-off function is piecewise
linear the “local” profit ∆k,n is determined by the summands in (3.15) whose
labels lie between rn−k(d) and rn−k(u). By (7.44), typically, there is only
one such label. The main point in our argument is the representation (3.19).
Here the chaotic multiplier σ∗k,n highlights the role played by the support of
the distribution of η1. If the support contains only two points ±x then in
view of (3.18) this term vanishes. But if the distribution of η1 is supported by
at least one more point then P(σ∗k,n > 0) > 0, and therefore, the order of the
“local” profit is Op(1/n). This explains why there exists a non-degenerate
limit distribution for the total profit.
• It should be emphasized that the methods used in the paper can be

applied to much more general schemes. In particular, the assumption that
the stock price jumps are identically distributed is not necessary at all.
Moreover, the independence can be replaced by a mixing condition. The
authors intend to discuss this point elsewhere.
• Note also that the asymptotic analysis of the hedge and of the cor-

responding capitals is implemented by the same scheme. Substituting into
(1.4) and (1.5) the values of the parameters from (2.11) we obtain the com-
ponents of the optimal strategy in the form

βk,n =
un
∑n−k

j=0 bj,n−k(skdnaj,n−k−K)+−dn
∑n−k

j=0 bj,n−k(skunaj,n−k−K)+

%nbk,n(un − dn)
,

γk,n =

∑n−k
j=0 bj,n−k((skunaj,n−k −K)+ − (skdnaj,n−k −K)+)

sk(un − dn)
.

Similarly, from (1.7) and (2.11) the hedging capitals are

xk,n = %−(n−k)
n−k∑

j=0

bj,n−k(sk,naj,n−k −K)+, k = 0, . . . , n− 1.
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It makes no problem to verify that the vector-process

(βn(t), γn(t)) = (βk−1,n, γk−1,n), (k − 1)n−1 ≤ t < kn−1, k = 1, . . . , n,

weakly converges to (β(t), γ(t)), 0 ≤ t ≤ 1, where

β(t) = Φ(y+), γ(t) = −Ke−αΦ(y−)(6.41)

with

y+ =
ln(s(t)/K) + (1− t)(α+ x2/2)

x
√

1− t ,

y− =
ln(s(t)/K) + (1− t)(α− x2/2)

x
√

1− t .

It is worth emphasizing that this convergence takes place under the only
condition that sn(t) w⇒ s(t). It is of interest to compare the limit strategy
with the classical formulae established for the geometrical Brownian motion

s(t) = s0 exp((r − σ2)t+ σw(t)), 0 ≤ t ≤ 1

(see e.g. Shiryaev (1999, (8.1b.21), (8.1b.23) and (8.1b.24))). Those formulae
could arise here provided in (6.41) x = σ. Since σ2 = Var η1 ≤ x this implies
that the discrete time model must be binary. However in that case no riskless
profit exists.

Assume that η1 takes at least three values. Putting µ = α−σ2/2 results
in the limit process being the geometrical Brownian motion. Obviously, the
hedge-process xn(t) weakly converges to

x(t) = β(t)e−αt + γ(t)s(t) = s(t)Φ(y+)−Ke−α(1−t)Φ(y−).

In order to stress the dependence of x(t) on x write

x(t) = Rt(x) = s(t)Φ(bx−1 + ax)−Ke−α(1−t)Φ(bx−1 − ax)

with

a = (1/2)
√

1− t, b =
ln(s(t)/K) + (1− t)α√

1− t .

After a simple algebra we obtain

R′t(x) = 2as(t)φ(bx−1 + ax) > 0.

Thus x(t) increases in x for each t ∈ [0, 1] and s(t). Since x > σ this implies
that (see Shiryaev (1999, (8.1b.21)))

x(t) > s(t)Φ(y′+)−Ke−α(1−t)Φ(y′−)

where

y+ =
ln(s(t)/K) + (1− t)(α+ σ2/2)

σ
√

1− t ,

while



188 A. V. Nagaev and S. A. Nagaev

y− =
ln(s(t)/K) + (1− t)(α− σ2/2)

σ
√

1− t .

In other words, the basic characteristics of the game do not converge to their
counterparts for the continuous time model. Loosely speaking the optimal
behaviour within the framework of the dicrete time model “converges” to a
strategy which is far from being optimal for the limit model.
• Let us put in (2.11)

ξk = ξk,n = exp{g((k + 1)n−1)− g(kn−1) + ηkn
−1/2}

where g(u) is continuous on [0, 1]. Then the process

sn(t) = sk−1,n, (k − 1)n−1 ≤ t < kn−1, k = 1, . . . , n,

weakly converges to

sg(t) = s0 exp
( t�

0

g(u) du+ σw(t)
)
, t ∈ [0, 1].

It is easily seen that such a replacement requires no alteration in the proof.
As to the statements of Theorems 2.1 and 2.2 one should replace in (2.13)
µt by g(t).
• It is evident that instead of the call option we could deal with the put

option.

7. Appendices

Appendix I. Properties of rm(z). Assume that

d = 1− n−1/2x, u = 1 + n−1/2x, 0 < x′ ≤ x ≤ x′′ <∞.
Set

z = 1 + n−1/2w, −x ≤ w ≤ x.
Consider

rm(z) = rm(z, sk−1,n) =
ln(K/(sk−1,nzd

m))
ln(u/d)

.

It is easily seen that

ln(u/d) = 2xn−1/2
(

1 +
x2

3n
+O(n−3/2)

)
.(7.42)

Therefore,
ln z

ln(u/d)
=

w

2x
+O(n−1/2),

ln d
ln(u/d)

= −1
2

+O(n−1/2),

while for |ln s| = O(lnn),

ln(K/s)
ln(u/d)

= ln(K/s)
n1/2

2x
+O(n−1/2 lnn).



Asymptotics of riskless profit 189

From the above relations it follows that for m ≤ n,

rm(z) =
m

2
+ n1/2

(
lnK
2x
− ln s

2x
+
m

n
· x

4

)
− w

2x
+O(n−1/2 lnn).(7.43)

In particular,

rm(d)− rm(u) = 1 +O(n−1/2 lnn).(7.44)

Moreover, for all sufficiently large n,

#{j : j ≥ 0, rm(u) < j ≤ rm(d)} ≤ 2.(7.45)

But if m ≥ δn, δ′ ≤ {rm(d)} ≤ 1 − δ′, δ, δ′ > 0, and n is sufficiently large
then

#{j : j ≥ 0, rm(u) < j ≤ rm(d)} = 1.(7.46)

Since

p∗ =
%− d
u− d =

1
2

+
α

2x
n−1/2 +O(n−1)

we have

rm(d)−mp∗ = n1/2
(

lnK
2x
− ln s

2x
+
m

n

(
x

4
− α

2x

))
+O(1),

and therefore,

(7.47)
rm(d)−mp∗√
mp∗(1− p∗)

= (m/n)−1/2
(

lnK
x
− ln s

x

)
+ (m/n)1/2

(
x

2
− α

x

)
+O(m−1/2).

Appendix II. Local limit theorems. Let η, η1, η2, . . . be i.i.d. random
variables such that

Eη = 0, Var η = σ2 <∞.
Consider

ζn = η1 + . . .+ ηn.

If the distribution of η is non-lattice then for any fixed y′, y′′ with 0 < y′ <
y′′ <∞,

sup
x, y′≤y≤y′′

∣∣∣∣P(x ≤ ζn < x+ y)− y

σ
√
n
ϕ

(
x

σ
√
n

)∣∣∣∣ = o(n−1/2).(7.48)

This is a slightly generalized version of the Shepp local limit theorem (see
e.g. A. Nagaev (1973)).

Consider the sequence of measures

Qn(A) = σ
√

2πnP(ζn ∈ A).
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The statement (7.48) implies that Qn weakly converges to the Lebesgue
measure, that is, for any continuous compactly supported function g(u),

�
g(u)Qn(du)→

�
g(u)Q(du).(7.49)

Let G be the class of equicontinuous functions defined on (−∞,∞) such that

lim
t→∞

sup
g∈G

�

|u|>t
|g(u)| du = 0.

It is easily seen that (7.49) holds uniformly in G ∈ G. More precisely,

lim
n→∞

sup
g∈G

∣∣∣
�
g(u)Qn( du)−

�
g(u)Q(du)

∣∣∣ = 0.(7.50)

Consider the family of the random variables τn(a) = {λζn + a}, a ∈ R1,
where λ 6= 1 is constant. It is worth comparing the following statement with
the basic result in S. V. Nagaev and Mukhin (1966).

Lemma 7.1. If the distribution of η is non-lattice then for any fixed u′, u′′

with 0 < u′ < u′′ < 1 and z′, z′′ with −∞ < z′ < z′′ <∞,

sup
a
|P(u′ ≤ τn(a) < u′′, z′ ≤ n−1/2ζn < z′′)− (u′′ − u′)(Φ(z′′/σ)−Φ(z′/σ))|

= o(1) as n→∞.

Proof. Let k = k(a) = [a], θ = θ(a) = {a} and λ>0. It is easily seen that

Pn = P(u′ ≤ τn(a) < u′′, z′ ≤ n−1/2ζn < z′′)

=
∑

k

P(k + u′ ≤ λζn + a < k + u′′, z′n1/2 ≤ ζn < z′′n1/2)

=
∑

k′≤k≤k′′
P
(
k + u′ − θ

λ
≤ ζn <

k + u′′ − θ
λ

)

+ P
(
k′′ + u′′ − θ

λ
≤ ζn < z′′n1/2

)
+ P

(
z′n1/2 ≤ ζn <

k′ + u′ − θ
λ

)

where

k′ = min
{
k :

k + u′−θ
λ

≥ z′n1/2
}
, k′′ = max

{
k :

k + u′′−θ
λ

≤ z′′n1/2
}
.

According to (7.48),

Pn =
u′′ − u′
λσ
√
n

∑

k′≤k≤k′′
ϕ

(
k

λσ
√
n

)
+O(n−1/2).

It remains to recall that

k′ = z′λ
√
n(1 + o(1)), k′′ = z′′λ

√
n(1 + o(1)).

The lemma is proved.
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Lemma 7.1 has the following evident corollary (cf. (7.50)).

Corollary 7.2. Let χ(u, y) be a bounded continuous function defined
on [0, 1]× R1. Under the conditions of Lemma 7.1,

lim
n→∞

sup
g∈G

sup
a

∣∣∣Eg(n−1/2ζn)χ({λζn + a}, ηn)

−
�
g(σz)ϕ(z) dz

�

[0,1]×R1

χ(u, y) du dF (y)
∣∣∣ = 0

where F is the distribution function of η.
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