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QUANTILE HEDGING ON MARKETS WITH
PROPORTIONAL TRANSACTION COSTS

Abstract. The problem of risk measures in a discrete-time market model
with transaction costs is studied. Strategy effectiveness and shortfall risk
are introduced. This gives a generalization of quantile hedging presented
in [4].

1. Introduction. It is well known that on a classical market with-
out transaction costs the price x0 of a contingent claim C is given as
x0 = supQ∈QEQ[C], whereQ is the set of all martingale measures equivalent
to the objective measure P . This means that if we have an initial endowment
x ≥ x0 then we can hedge C. Thus for x there exists a self-financing strat-
egy B for which the terminal valueXx,B

T is not smaller than C. If x < x0 then
we no longer can hedge C: for each strategy B we have P (Xx,B

T < C) > 0.
The investor who wants to hedge C in some way must consider some risk con-
nected with the fact that he is not able to hedge C entirely. Many risk mea-
sures have been introduced, for instance by Cvitanić and Karatzas [1], Pham
[8], and Föllmer and Leukert [4], [5]. Cvitanić and Karatzas [1] study the
risk measure infB∈B E[(C −Xx,B

T )+], where B is the set of all self-financing
strategies. Pham [8] introduces Lp hedging and his risk measure is defined
as infB∈B E[lp((C − Xx,B

T )+)], where lp(x) = xp/p. Other examples of risk
measures are provided by Föllmer and Leukert [4]. They consider the so
called quantile hedging problem and define a random variable connected
with the strategy (x,B) by

ϕx,B = 1{Xx,B
T ≥C} +

Xx,B
T

C
1{Xx,B

T <C}.
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It is called the “success function” and its expectation is an effectiveness mea-
sure connected with the strategy (x,B). The success function takes its values
in the interval [0, 1]. If (x,B) is a hedging strategy, then ϕx,B = 1, otherwise
P (ϕx,B < 1) > 0, which implies E[ϕx,B ] < 1. Föllmer and Leukert’s aim is to
find a strategy B maximizing E[ϕx,B ] for a given x. In [5] they also examine
another risk measure, infB∈B E[l((C −Xx,B

T )+)], where l is a loss function.
In this paper we study the problem of risk measures on markets with pro-

portional transaction costs. The main idea is based on the papers of Föllmer
and Leukert on quantile hedging [4] and minimizing shortfall risk [5]. On
markets with transaction costs we are given a multi-dimensional contingent
claim H, a multi-dimensional wealth process V v,B

t , and some cone KT which
is constructed on the basis of transaction costs. The cone KT determines a
partial ordering “�

T
” in Rd such that x �

T
y ⇔ x − y ∈ KT . We say that

a strategy (v,B) hedges H if V v,B
T �

T
H. Papers [2], [6] and [7] provide a

characterization of the set Γ (H) ⊆ Rd of initial endowments v for which
there exists a hedging strategy B such that V v,B

T �
T
H. The problem arises

what is an optimal strategy for an initial endowment v 6∈ Γ (H). For the ter-
minal wealth V v,B

T we introduce a set L(V v,B
T ,H) of proportional transfers.

Simply speaking, for L ∈ L(V v,B
T ,H) we have

(V v,B
T |L)i

H i
=

(V v,B
T |L)j

Hj

for all i, j where V v,B
T |L is the terminal wealth after the proportional trans-

fer L. For this ratio we write

V v,B
T |L
H

:=
(V v,B
T |L)i

H i
.

In Section 3 we introduce the “success function” whose expectation is an
effectiveness measure of the strategy (v,B), by setting

ϕv,B = 1{V v,BT �
T
H} + ess sup

L∈L(V v,BT ,H)

V v,B
T |L
H

1{V v,BT �
T
H}c .

We establish some useful properties of the success function. It appears
that ϕv,B ∈ [0, 1] and if v ∈ Γ (H) then ϕv,B = 1 for the hedging strategy B,
whereas for v 6∈ Γ (H) we have P (V v,B

T < 1) > 0 for each strategy B,
which implies E[ϕv,B] < 1. Our aim is to find, for the initial endowment
v, a strategy B maximizing E[ϕv,B]. We also consider another problem.
For 1 ≥ ε ≥ 0 we characterize the set Γε(H) ⊆ Rd of initial endowments
for which there exists a strategy B such that E[ϕv,B] ≥ 1 − ε. These two
aspects of quantile hedging are analogous to the problems considered by
Föllmer and Leukert.
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In Section 6, we introduce a shortfall risk in quantile hedging. The short-
fall is defined as

s(V v,B
T ) =





0 on {V v,B
T �

T
H},

1− ess sup
L∈L(V v,BT ,H)

V v,B
T |L
H

on {V v,B
T �T H}c.

It is a [0, 1]-valued random variable which is equal to 0 if V v,B
T �

T
H and is

strictly positive otherwise. It describes the part of the contingent claim which
is not hedged by the strategy (v,B). We study the problem of minimizing
the shortfall risk given as E[u(s(V v,B

T ))], where u : [0, 1] → R is a loss
function. We make the assumption that the investor considers as a loss only
the percentage of the contingent claim which is not hedged, and not the
value of this part. As before, we study two problems. First, in Section 6,
we characterize the strategy B which minimizes the shortfall risk. Next, in
Section 7, we characterize the set Γ uα (H) of initial endowments for which
there exists a strategy B such that E[u(s(V v,B

T ))] ≤ α for a given α ≥ 0.
In Section 8 we show how Föllmer and Leukert’s theory can be obtained

under zero transaction costs. Since the condition EF imposed in [6] is not
satisfied, we use the results of [2].

2. Market with proportional transaction costs. In this section
we present some results obtained by Kabanov, Rásonyi, and Stricker in
[6] and [7], which deal with conditions for the absence of arbitrage under
friction. In particular, we need a hedging theorem providing a description
of the set of initial endowments which allow hedging the contingent claim.

Let (Ω,F , (Ft)t=0,1,...,T , P ) be a probability space equipped with a com-
plete, discrete-time filtration. We assume that F0 is the trivial σ-field and
that FT = F . On Ω we are given a strictly positive Rd-valued adapted
process St which describes the prices of d traded securities. We can assume
that, for instance, the first component is the price of a bond, but this is
not necessary for further considerations. Proportional transaction costs are
given as the process Λt = (λi,jt )i,j=1,...,d with values in the set Md

+ of matrices
with non-negative, adapted entries and zero diagonal. If we want to increase
the jth stock account by an amount Lij ≥ 0 at time t, then we have to
transfer the amount (1 + λijt )Lij from the ith account. The quantity λijt L

ij

is lost because of the transaction costs involved. Given an initial endowment
v ∈ Rd we invest in stocks at each time t = 0, 1, . . . , T . The agent’s position
at time t can be described either by a vector V̂t of stock units or by a vec-
tor Vt of values invested in each stock. The relation between these quantities
is: V i

t = V̂ i
t S

i
t . The operator “̂” will also be used for any random vector Z:

then Ẑ stands for (Z1/S1, . . . , Zd/Sd). A self-financing portfolio is defined
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by its increments as follows:

∆V i
t = V̂ i

t−1 ·∆Sit +∆Bi
t, i = 1, . . . , d, t = 0, 1, . . . , T,

with initial values V i
−1 = vi, S−1 = S0, L

ij
−1 = 0 for i, j = 1, . . . , d, and

where

∆Bi
t :=

d∑

j=1

∆Ljit −
d∑

j=1

(1 + λijt )∆Lijt .

Here ∆Yt = Yt−Yt−1 for each process Y . The adapted, increasing and non-
negative process Lij represents the net cumulative transfers from position i
to position j under transaction costs. The increment ∆V i

t of the value on the
ith stock account consists of two parts: the increment V̂ i

t∆S
i
t due to price

movements and the increment ∆Bi
t caused by the agent’s action at time t.

Since the pair (v,B) determines the wealth process V v,B
t , we will treat it as

a trading strategy.
For A ⊆ Rd, we denote by L0(A,Ft) the set of Ft-measurable random

variables with values in A; L0(Md
+,Ft) stands for the matrices whose entries

are non-negative, Ft-measurable random variables. Let

Mt(ω) :=
{
x ∈ Rd : there exists L ∈ L0(Md

+,Ft) such that

xi =
d∑

j=1

(1 + λijt (ω))Lij(ω)−
d∑

j=1

Lji(ω)
}

be the set of positions which can be converted into zero by a non-negative
transfer. This set is a polyhedral cone. Let Kt := Rd+ + Mt and Ft :=
Kt ∩ (−Kt). The set Kt, which is called the solvency region, is a polyhedral
cone. It is formed by the vectors which can be transformed into a vector with
only non-negative components by a positive transfer, that is, by adding a
vector from −Mt. The set Ft represents the positions which can be converted
into zero and vice versa; it is a linear space.

We shall say that a strategy (0, B) is a weak arbitrage opportunity at
time t if V 0,B

t ∈ Kt and P (V 0,B
t ∈ Kt \ Ft) > 0. Absence of weak arbitrage

opportunities means that there is no arbitrage opportunity at any time. The
absence of weak arbitrage opportunities (strict no-arbitrage property) can be
expressed in geometric terms:

NAs : Rt ∩ L0(Kt,Ft) ⊆ L0(Ft,Ft) for t = 0, 1, . . . , T,

where
Rt := {V 0,B

t : B ∈ B}
and B is the set of all strategies. The set Rt describes the wealth at time t
which can be obtained by starting with the zero initial endowment.
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Let us define an efficient friction condition:

EF : The cones Kt(ω) are proper, i.e. Ft(ω) = {0} for each (ω, t).

Under EF the condition NAs can be rewritten as Rt ∩L0(Kt,Ft) = {0} for
t = 0, 1, . . . , T . Under EF there are some conditions equivalent to NAs. For
more details see [6].

The most important tool for this paper is a description of the set of
initial endowments which allow one to hedge the contingent claim. Let us
start with the fact that the cone Kt generates a partial ordering “�t” on Rd
such that x �t y ⇔ x − y ∈ Kt. A contingent claim H is an Rd-valued
random variable, and

Γ (H) := {v ∈ Rd : there exists a strategy B such that V v,B
T �

T
H}

stands for all hedging initial endowments. For simplicity we assume that
H �

T
c1 for some c ∈ R. The next theorem, given in [7], provides a descrip-

tion of the set Γ (H).

Theorem 2.1. Assume that EF and NAs are satisfied. Then

Γ (H) = {v ∈ Rd : Ẑ0v ≥ EẐTH ∀Z ∈ Z},
where Z is the set of bounded martingales such that Ẑt ∈ L0(K∗t ,Ft) for
t = 0, 1, . . . , T and K∗t denotes the dual cone to Kt.

From now on we assume that the conditions EF and NAs are satisfied.

3. Strategy effectiveness. In this section we introduce a success func-
tion ϕv,B for the strategy (v,B) and establish its properties. Its expectation
under P is in fact some kind of risk measure, but a more adequate risk
measure will be defined in Section 6. The expectation appearing here will
rather be taken as an effectiveness measure.

We will consider only admissible strategies and from now on we assume
that H �

T
0 almost everywhere.

Definition 3.1. A strategy (v,B) is admissible if V v,B
T �

T
0.

Let (v,B) be an admissible strategy. Our aim is to describe its ef-
fectiveness regarding the contingent claim H. Divide Ω into two parts:
{V v,B

T �T H} and {V v,B
T �T H}c. On {V v,B

T �T H} we put ϕv,B = 1.
The next part of this section is denoted to defining ϕv,B on {V v,B

T �T H}c
and examining its basic properties.

For the terminal wealth V v,B
T and transfer L ∈ L0(Md

+,FT ) we will
consider V v,B

T after transfer L under transaction costs at time T , given by

(V v,B
T |L)i = (V v,B

T )i +
d∑

j=1

Lji −
d∑

j=1

(1 + λijT )Lij .
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In the set L0(Md
+,FT ) of all transfers we distinguish a subclass of pro-

portional transfers.

Definition 3.2. Assume that V v,B
T �T H for some admissible strat-

egy (v,B). A transfer L ∈ L0(Md
+,FT ) is proportional if there exists cL ∈

L0(R,FT ) such that
V v,B
T |L = cL ·H.

L(V v,B
T ,H) stands for the class of all proportional transfers, and for L ∈

L(V v,B
T ,H) we write V v,B

T |L/H =: cL.

Remark 3.3. L(V v,B
T ,H) is not empty since (v,B) is admissible. This

means that there exists L0 ∈ L0(Md
+,FT ) for which V v,B

T |L0
= 0, and thus

cL0 = V v,B
T |L0

/H = 0.

The meaning of the class of proportional transfers is to achieve the same
“rate of hedging” on each stock account. We want to make this rate as high
as possible. Therefore on the set {V v,B

T �
T
H}c we define ϕv,B as

ess sup
L∈L(V v,BT ,H)

V v,B
T |L
H

.

This leads to the following definition of the success function:

ϕv,B = 1{V v,BT �
T
H} + ess sup

L∈L(V v,BT ,H)

V v,B
T |L
H

1{V v,BT �
T
H}c .

Lemma 3.4. Assume that V v,B
T �T H. Then there exists an optimal

transfer L̂ ∈ L(V v,B
T ,H) such that

ess sup
L∈L(V v,BT ,H)

V v,B
T |L
H

=
V v,B
T |L̂
H

.

Proof. Consider two geometric objects which depend on ω: the trans-
lated polyhedral cone V v,B

T + (−MT ) with boundary ∂(V v,B
T + (−MT )), and

the line spanned by the vector H. Then V v,B
T + (−MT ) is generated by m

measurable vectors ξ1, . . . , ξm, where d ≤ m ≤ d(d − 1), and can be repre-
sented as the intersection of l half-spaces for some l. The ith half-space is
spanned by d − 1 generators ξi1 , . . . , ξid−1 from the set ξ1, . . . , ξm. Putting
gi = ξi1 × . . .× ξid−1 , where × denotes the cross product, we obtain a mea-
surable vector which is orthogonal to each of ξi1 , . . . , ξid−1 . Thus the ith
half-space has the following representation:

{x ∈ Rd : (x− V v,B
T ) · gi ≥ 0},
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and the boundary of the cone can be represented as follows:

x ∈ ∂(V v,B
T + (−MT ))⇔

{
(x− V v,B

T ) · gi ≥ 0 ∀i = 1, . . . , l,
(x− V v,B

T ) · gi = 0 for some i = 1, . . . , l.

On the other hand the line spanned by the vector H can be represented as

x ∈ span{H} ⇔ x · hi = 0 ∀i = 1, . . . , d− 1,

where {H,h1, . . . , hd−1} is a basis in Rd, each vector hi is measurable and
H ⊥ hi for all i = 1, . . . , d− 1. Such a basis can be obtained by taking the
set {H,H + e1, . . . ,H + ed}, where {e1, . . . , ed} is a standard basis in Rd,
choosing a subset of d linearly independent vectors containing H and then
orthogonalizing it starting from the vector H.

There exists exactly one positive point V̂ in the intersection of ∂(V v,B
T +

(−MT )) with span{H}. Since it is a solution of a linear system with mea-
surable coefficients,





(x− V v,B
T ) · gi ≥ 0 ∀i = 1, . . . , l,

(x− V v,B
T ) · gi = 0 for some i = 1, . . . , l,

x · hi = 0 ∀i = 1, . . . , d− 1,

it is a measurable random vector. Hence ĉ is also measurable, where V̂ = ĉH.
Each transfer is represented by adding to V v,B

T some vector from the cone
−MT . For L̂ we take the transfer represented by V̂ − V v,B

T . From the con-
struction of V̂ we conclude that for any other proportional transfer such
that V v,B

T |L = cH we have c ≤ ĉ. As a consequence,

ĉ = ess sup
L∈L(V v,BT ,H)

V v,B
T |L
H

=
V v,B
T |L̂
H

.

Remark 3.5. The success function fulfils

0 ≤ ϕv,B1{V v,BT �
T
H}c < 1

Proof. We have ϕv,B1{V v,BT �
T
H}c ≥ 0 since (v,B) is admissible. If

ϕv,B1{V v,BT �
T
H}c ≥ 1 then 1{V v,BT �

T
H}c(V

v,B
T |L̂/H) ≥ 1. This implies V v,B

T |L̂
≥ H on {V v,B

T �
T
H}c; but this means that V v,B

T �
T
H, which is a contra-

diction.

To summarize, the success function ϕv,B is equal to 1 if V v,B
T �T H, and

is strictly smaller than 1 if V v,B
T �

T
H.

In the next part of the paper we will work with the set

R := {ϕ : 0 ≤ ϕ ≤ 1; ϕ is FT -measurable}
of FT -measurable functions with values in [0, 1].
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We start with two useful properties of the success function.

Lemma 3.6. Assume that (v,B) is an admissible strategy. Then v ∈
Γ (Hϕv,B).

Proof. In view of Lemma 3.4 we have

Hϕv,B = H1{V v,BT �
T
H} +H ess sup

L∈L(V v,BT ,H)

V v,B
T |L
H

1{V v,BT �
T
H}c

= H1{V v,BT �
T
H} + V v,B

T |L̂1{V v,BT �
T
H}c T� V

v,B
T

where L̂ is an optimal proportional transfer. Thus v ∈ Γ (Hϕv,B).

Lemma 3.7. Assume that (v,B) is a hedging strategy for a modified con-
tingent claim Hϕ for some function ϕ ∈ R. Then ϕv,B ≥ ϕ.

Proof. Since V v,B
T �T Hϕ, there exists a transfer M ∈ L0(Md

+,FT ) such
that V v,B

T |M −Hϕ ≥ 0. Let N ∈ L(V v,B
T |M −Hϕ,H) be any proportional

transfer on the set {V v,B
T �T H}c such that (V v,B

T |M −Hϕ)
|N
/H = γ for

some γ ≥ 0. Consider the terminal wealth V v,B
T on the set {V v,B

T �
T
H}c

after transfer K described as follows: first change V v,B
T by transfer M and

then change V v,B
T |M − Hϕ by transfer N . The terminal wealth V v,B

T after
transfer K is

V v,B
T |K = Hϕ+ (V v,B

T |M −Hϕ)|N .

It is clear that K ∈ L(V v,B
T ,H) since

V v,B
T |K = Hϕ+Hγ = (ϕ+ γ)H.

This leads to the following inequalities:

ϕv,B = 1{V v,BT �
T
H} + ess sup

L∈L(V v,BT ,H)

V v,B
T |L
H

1{V v,BT �
T
H}c

≥ 1{V v,BT �
T
H} +

V v,B
T |K
H

1{V v,BT �
T
H}c

= 1{V v,BT �
T
H} + (ϕ+ γ)1{V v,BT �

T
H}c ≥ ϕ.

4. Quantile hedging—effectiveness maximization. The set Γ (H)
is the set of all initial endowments which allow one to hedge the con-
tingent claim H. If v ∈ Γ (H) then there exists a strategy B ∈ B such
that V v,B

T �
T
H. Suppose that we are given an initial capital v0 such that

v0 6∈ Γ (H). A natural question arises: what is an optimal strategy for v0? As
optimality criterion we take the expectation of the success function under
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measure P . If E[ϕv,B] ≥ E[ϕv,B ] for two admissible strategies (v,B) and
(v,B) then the strategy (v,B) is at least as effective as (v,B). If (v,B) is at
least as effective as any other admissible strategy, then it is called optimal.
The problem of finding an optimal strategy for v0 is the first aspect of the
quantile hedging problem and we formally formulate it as follows:

For a fixed initial endowment v0 ∈ Γ (0) such that v0 6∈ Γ (H) find an
admissible strategy (v,B), where v0 �0 v, such that E[ϕv,B]→ max.

To describe an optimal strategy, we start with the following theorem.

Theorem 4.1. There exists a function ϕ̃ ∈ R which is a solution of the
problem

E[ϕ]→ max, v0 ∈ Γ (Hϕ).

Proof. Set R0 := {ϕ ∈ R : v0 ∈ Γ (Hϕ)}. Then R0 6= ∅ since 0 ∈ R0.
Let ϕn ∈ R0 be a sequence such that E[ϕn] → supϕ∈R0

E[ϕ]. Since {ϕn} is
a sequence of elements from a hull in L∞(Ω), there exists a subsequence ϕnk
which converges to some ϕ̃ in the weak ∗ topology. One can prove that ϕ̃
belongs to R. We will show that v0 ∈ Γ (Hϕ̃). Each ϕn satisfies Ẑ0v0 ≥
E[ẐTHϕn] for all Z ∈ Z, and ϕ̃ as a weak limit satisfies

∀Z ∈ Z Ẑ0v0 ≥ E[ẐTHϕnk ]→
k

E[ẐTHϕ̃].

Thus v0 ∈ Γ (Hϕ̃).

The next theorem provides the solution of our problem.

Theorem 4.2. Let ϕ̃ be the function from Theorem 4.1, and let (v0, B)
be a hedging strategy for the modified contingent claim Hϕ̃. Then (v0, B) is
an optimal strategy. Furthermore, ϕ̃ = ϕv0,B.

Proof. The strategy (v0, B) is admissible since V v0,B
T �

T
Hϕ̃ �

T
0. Let

(v,B) be any admissible strategy such that v0 �0 v. Then v ∈ Γ (Hϕv,B)
by Lemma 3.6, and this implies that v0 ∈ Γ (Hϕv,B). From Theorem 4.1 we
have

E[ϕv,B ] ≤ E[ϕ̃].(4.2.1)

Now, consider the strategy (v0, B). Since V v0,B
T �

T
Hϕ̃, by Lemma 3.7

we have

ϕv0,B ≥ ϕ̃.(4.2.2)

By (4.2.1) and (4.2.2) we have ϕv0,B = ϕ̃. Hence (v0, B) is optimal.

5. Quantile hedging—sets with a fixed level of effectiveness.
Given ε ∈ [0, 1], we want to characterize the strategies with effectiveness
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not smaller than 1 − ε. This is the second aspect of quantile hedging, and
in fact our task is to characterize the set

Γε(H) = {v ∈ Rd : there exists an admissible strategy B

such that E[ϕv,B] ≥ 1− ε}.
It is clear that Γε1(H) ⊆ Γε2(H) if ε1 ≤ ε2. Hence Γε(H) contains Γ (H) =
Γ0(H) for any ε ∈ [0, 1], but it can contain other elements which are initial
capitals allowing one to hedge H with some loss of effectiveness.

Set
M := {ϕ ∈ R : E[ϕ] ≥ 1− ε}.

The next theorem provides a description of the set Γε(H).

Theorem 5.1. The set Γε(H) admits the following representation:

Γε(H) =
⋃

ϕ∈M
Γ (Hϕ).

Proof. ⊆: Let v ∈ Γε(H). Then there exists B ∈ B such that V v,B
T �T 0

and E[ϕv,B] ≥ 1− ε. Thus ϕv,B ∈ M and

Γ (Hϕv,B) ⊆
⋃

ϕ∈M
Γ (Hϕ).

But v ∈ Γ (Hϕv,B) by Lemma 3.6, and thus v ∈ ⋃ϕ∈M Γ (Hϕ).
⊇: Let v ∈ ⋃ϕ∈M Γ (Hϕ). Then there exists ϕ ∈ M such that v ∈

Γ (Hϕ). Consider a strategy (v,B) which hedges the modified contingent
claim Hϕ. Then by Lemma 3.7 we have

V v,B
T �

T
Hϕ ⇒ ϕv,B ≥ ϕ,

and so E[ϕv,B] ≥ E[ϕ] ≥ 1− ε, that is, v ∈ Γε(H).

6. Risk measure in quantile hedging—minimizing shortfall risk.
On markets without transaction costs the shortfall is defined as (C−Xx,B

T )+,
where a+ = max{a, 0}. In this section we introduce a shortfall connected
with the strategy (v,B) under transaction costs. To this end we use the set
of proportional transfers. The shortfall risk is introduced as the expectation
of a loss function of shortfall. Our aim is to minimize the shortfall risk for a
fixed initial capital over all admissible strategies.

In Section 3 we introduced the random variable

ess sup
L∈L(V v,BT ,H)

V v,B
T |L/H

defined on the set {V v,B
T �

T
H}c. It describes the part of the contingent

claim which is successfully hedged. For shortfall, we take the remaining part:
1− ess sup

L∈L(V v,BT ,H) V
v,B
T |L/H. Let us start with the formal definition.
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Definition 6.1. The shortfall of an admissible strategy (v,B) is the
random variable defined by

s(V v,B
T ) =





0 on {V v,B
T �T H},

1− ess sup
L∈L(V v,BT ,H)

V v,B
T |L
H

on {V v,B
T �

T
H}c.

Remark 6.2. The shortfall can be expressed in terms of the success
function:

1− ϕv,B = 0 · 1{V v,BT �
T
H} +

(
1− ess sup

L∈L(V v,BT ,H)

V v,B
T |L
H

)
1{V v,BT �

T
H}c

= s(V v,B
T ).

The shortfall is a random variable with values in [0, 1]. It is equal to 0 if
V v,B
T �

T
H and it is strictly positive if V v,B

T �
T
H.

Let u : [0, 1] → R be a continuous, non-decreasing function such that
u(0) = 0 and u(1) <∞. We regard such a function as a loss function. Basing
on a loss function we define the shortfall risk of an admissible strategy as
E[u(s(V v,B

T ))]. It is clear that if v ∈ Γ (H) then the shortfall risk for a
hedging strategy is equal to 0, otherwise it is positive. If E[u(s(V v,B

T ))] ≤
E[u(s(V v,B

T ))] for two admissible strategies (v,B) and (v,B) then we regard
the strategy (v,B) as not as risky as (v,B). If the shortfall risk of the
strategy (v,B) is not greater than any other, then (v,B) is called optimal
or risk-minimizing .

Similarly to the previous sections we formulate the first aspect of the
risk measure problem as:

For a fixed initial endowment v0 ∈ Γ (0) such that v0 6∈ Γ (H) find an
admissible strategy (v,B), where v0 �0 v, such that

E[u(s(V v,B
T ))]→ min.

We start with an auxiliary lemma proved in [3].

Lemma 6.3. Let X1,X2, . . . be a sequence of [0,∞)-valued random vari-
ables. There exists a sequence X̃n ∈ conv{Xn,Xn+1, . . .} such that X̃n con-
verges almost surely to a [0,∞]-valued random variable X̃.

To describe an optimal strategy we start with the following theorem.

Theorem 6.4. There exists a function ϕ̃ ∈ R which is a solution of the
problem

E[u(1− ϕ)]→ min, v0 ∈ Γ (Hϕ).
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Proof. SetR0 := {ϕ ∈ R : v0 ∈ Γ (Hϕ)}. Then R0 6= ∅ since 0 ∈ R0. Let
ϕn ∈ R0 be a sequence such that E[u(1 − ϕn)] → infϕ∈R0 E[u(1−ϕ)]. In
view of Lemma 6.3 there exists a sequence ϕ̃n ∈ conv{ϕn, ϕn+1, . . .} which
converges almost surely to ϕ̃ ∈ R. Since u(1 − ϕ̃n) ≤ u(1) < ∞, by the
dominated convergence theorem we obtain

E[u(1− ϕ̃)] = lim
n→∞

E[u(1− ϕ̃n)] = inf
ϕ∈R0

E[u(1− ϕ)].

From Fatou’s lemma we have

E[ẐTHϕ̃] = E[lim
n
ẐTHϕ̃n] ≤ lim inf

n
E[ẐTHϕ̃n] ≤ Ẑ0v0 ∀Z ∈ Z.

Hence v0 ∈ Γ (Hϕ̃).

The next theorem provides a description of a risk-minimizing strategy
for v0.

Theorem 6.5. Let ϕ̃ be the function from Theorem 6.4, and let (v0, B)
be a hedging strategy for the modified contingent claim Hϕ̃. Then (v0, B) is
an optimal strategy. Furthermore, ϕ̃ = ϕv0,B.

Proof. The strategy (v0, B) is admissible since V v0,B
T �T Hϕ̃ �T 0. Let

(v,B) be any admissible strategy such that v0 �0 v. Then v ∈ Γ (Hϕv,B) by
Lemma 3.6, which implies v0 ∈ Γ (Hϕv,B). From Remark 6.2 and Theorem
6.4 we obtain

E[u(s(V v,B
T ))] = E[u(1− ϕv,B)] ≥ E[u(1− ϕ̃)].(6.5.3)

Now consider the strategy (v0, B). Since V v0,B
T �

T
Hϕ̃, by Lemma 3.7

we have

ϕv0,B ≥ ϕ̃.(6.5.4)

Taking (6.5.3) and (6.5.4) into account we have ϕv0,B = ϕ̃, so E[u(s(V v0,B
T ))]

= E[u(H −Hϕ̃)], and this proves that (v0, B) is optimal.

7. Risk measure in quantile hedging—sets with a fixed level
of shortfall risk. Given α ≥ 0, we want to characterize the strategies
with shortfall risk not greater than α. This is the second aspect of the risk
measure problem in quantile hedging. Our task is to provide a description
of the set

Γ uα (H) := {v ∈ Rd : there exists an admissible strategy B

such that E[u(s(V v,B
T ))] ≤ α}.

It is clear that Γ uα1
(H) ⊆ Γ uα2

(H) if α1 ≤ α2. Since E[u(s(V v,B
T ))] = 0 for the

hedging strategy (v,B), we conclude that Γ uα (H) contains Γ (H) = Γ u0 (H)
for any α ≥ 0.
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Set
N := {ϕ ∈ R : E[u(1− ϕ)] ≤ α}.

The next theorem provides a description of the set Γ uα (H).

Theorem 7.1. The set Γ uα (H) admits the following representation:

Γ uα (H) =
⋃

ϕ∈N
Γ (Hϕ).

Proof. The proof is similar to the proof of Theorem 5.1.
⊆: Let v ∈ Γ uα (H). Then there exists B ∈ B such that V v,B

T �
T

0 and
E[u(s(V v,B

T ))] = E[u(1− ϕv,B)] ≤ α. Thus ϕv,B ∈ N and by Lemma 3.6 we
have

v ∈ Γ (Hϕv,B) ⊆
⋃

ϕ∈N
Γ (Hϕ).

⊇: Let v ∈ ⋃ϕ∈N Γ (Hϕ). Then there exists ϕ ∈ N such that v ∈
Γ (Hϕ). Consider a strategy (v,B) which hedges the modified contingent
claim Hϕ. Then by Lemma 3.7 we have

V v,B
T �

T
Hϕ ⇒ ϕv,B ≥ ϕ

and this implies

E[u(s(V v,B
T ))] = E[u(1− ϕv,B)] ≤ E[u(1− ϕ)] ≤ α,

so that v ∈ Γ uα (H).

8. Quantile hedging under zero transaction costs. In this section
we show how the theory of Föllmer and Leukert can be obtained. All previous
sections required the EF condition, which of course is not satisfied under
zero transaction costs. We will base on the results obtained by Delbaen,
Kabanov and Valkeila [2], which are less general than the results used so
far, but the condition EF is not required. First, we give a short description
of these results, then recall the two aspects of quantile hedging studied by
Föllmer and Leukert, and finally show how their theory can be obtained
under zero transaction costs.

In [2] it is assumed that the transaction costs are constant in time, given
by a matrix Λ. The contingent claim is bounded from below in the sense of
the partial ordering determined by the cone K := M +Rd+, that is, H � c1
for some c ∈ R; K is independent of t and ω. We denote by Q the set of
probability measures Q ∼ P such that St follows a local martingale with
respect to Q. We shall need the condition

EMM : Q 6= ∅.
Let D be the set of martingales Z with Ẑ taking values in K∗ and with
ẐT bounded. Under EMM we have the following description of the set of
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hedging endowments:

Γ (H) =
⋂

Z∈D
{v ∈ Rd : Ẑ0v ≥ EẐTH}.

It is left as an exercise to check that under this new description of Γ (H)
Theorems 4.1, 4.2, 5.1, which solve our problems, remain true.

Now consider a classical market model without transaction costs. Under
the no-arbitrage condition the price of a scalar contingent claim C is given
as supQ∈QEQ[C]. In the quantile hedging problem studied by Föllmer and
Leukert only those admissible strategies (x,B) are considered for which the
wealth process Xx,B

t is non-negative for all t = 0, 1, . . . , T . The authors use
as an effectiveness measure the success function defined as

ϕx,B = 1{Xx,B
T ≥C} +

Xx,B
T

C
1{Xx,B

N <C}.

The first problem

Let x0 < supQ∈QEQ[C] be a fixed initial endowment. We search for
an admissible strategy (x,B), where x ≤ x0, maximizing E[ϕx,B ]. We
write this problem as

E[ϕx,B ]→ max, x ≤ x0.

The second problem

Let ε be a fixed number in [0, 1]. We search for an admissible strategy
(x,B) with effectiveness not smaller than 1 − ε and minimizing the
initial capital. We write this problem as

E[ϕx,B ] ≥ 1− ε, x→ min.

To show that these problems can be formulated under zero transaction costs
we have to find scalar equivalents of multi-dimensional objects on our mar-
ket. Let Y ∈ Rd describe how our wealth is allocated in stock positions
on the market with transaction costs. Now choose the ith stock account to
transfer capitals from all others to it. Then the wealth of Y in the ith stock
is

Y (i) :=
d∑

j=0

(1− λji)Y j .

Usually Y (i) 6= Y (j) for i 6= j, but under zero transaction costs we have
Y (i) = Y (j) =

∑d
i=1 Y

i. Thus we adopt the following scalar equivalents: for
the initial endowment v we take xv :=

∑
vi, for the wealth process V v,B

t we
take Xxv ,B

t :=
∑

(V v,B
t )i, for the contingent claim H we take CH :=

∑
H i.

Now we show that the problems of quantile hedging under zero transac-
tion costs are the same as those formulated in [2] for scalar equivalents.
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First, note that

V v,B
T |L
H

=

∑
(V v,B
T )i∑
H i

∀L ∈ L(VT ,H).(8.0.5)

For each L ∈ L(VT ,H) we have

∑ V v,B
T |L
H

H i =
V v,B
T |L
H

∑
H i and

∑ V v,B
T |L
H

H i =
∑

(V v,B
T |L)i,

so
V v,B
T |L
H

=

∑
(V v,B
T |L)i
∑
H i

.

Since the costs are equal to zero, we have
∑

(V v,B
T |L)i =

∑
(V v,B
T )i and

(8.0.5) holds.
Since the relation “�” becomes the linear ordering “≥” for the sums of

components, we get the equality of the success functions:

ϕv,B = 1{V v,BT �H} + ess sup
L∈L(V v,BT ,H)

V v,B
T |L
H

1{V v,BT �H}c

= 1{∑(V v,BT )i≥∑Hi} +

∑
(V v,B
T )i∑
H i

1{∑(V v,BT )i<
∑
Hi}

= 1{Xxv,B
T ≥CH} +

Xxv ,B
T

CH
1{Xxv,B

T <CH} = ϕxv ,B .

One can check that the set of hedging endowments is of the form Γ (H) =
{v ∈ Rd :

∑
vi ≥ supQ∈QEQ[

∑
H i]}. Thus our problem of maximizing the

effectiveness,
E[ϕv,B]→ max, v � v0 6∈ Γ (H),

becomes
E[ϕx,B ]→ max, x ≤ xv0 < sup

Q∈Q
EQ[CH ],

which is the first problem considered by Föllmer and Leukert.
Our second problem is to determine the set Γε(H). First note that if for

v, v ∈ Rd we have
∑
vi ≥ ∑ vi and v ∈ Γε(H) then v ∈ Γε(H). For γv :=∑

vi define γ := infv∈Γε(H) γv. If
∑
vi ≥ γ for some v ∈ Rd then v ∈ Γε(H),

and if
∑
vi < γ then v 6∈ Γε(H). Thus Γε(H) = {v ∈ Rd :

∑
vi ≥ γ}.

The problem reduces to finding the number γ, which is the cost minimizing
capital searched by Föllmer and Leukert.

Remark 8.1. Föllmer and Leukert considered admissible strategies for
which Xx,B

t ≥ 0 for each t = 0, 1, . . . , T . We only require Xxv ,B
T ≥ 0, which

is a generalization.
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