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RISK MINIMIZATION IN
THE MODEL WITH TRANSACTION COSTS

Abstract. The problem of hedging a contingent claim with minimization
of quadratic risk is studied. Existence of an optimal strategy for the model
with proportional transaction cost and nondelayed observation is shown.

1. Introduction. Assume that on a given probability space (Ω,F , P )
equipped with a sequence F of increasing σ-fields F1 ⊆ . . . ⊆ FT there
is defined a stock price process S = (Sk)k=1,...,T , that is, a sequence of
F-adapted, almost surely positive random variables such that

E(S2
k) = ‖Sk‖L2(P ) <∞

for every k = 1, . . . , T .
Assume that there are proportional transaction costs given by positive

constants µ and λ. If an investor buys one unit of the asset S at time k, he
pays (1 + λ)Sk, while when selling it he receives only (1− µ)Sk.

We consider so called trading strategies which are defined as follows.

Definition 1. A trading strategy θ = (θk)k=1,...,T is a pair of F-adapted
processes (mk, lk)k=1,...,T which satisfy the following conditions:

(a1) mk, lk ≥ 0,
(a2) mkSk, lkSk ∈ L2(P ),

for all k = 1, . . . , T . Denote by Θ the set of all trading strategies.

The financial interpretation of mk and lk is that they represent quantities
of stocks that are sold or bought respectively at time k.

In what follows we assume that the investor has access to all available
information about the price of asset S.
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Definition 2. Let θ=(θk)k=1,...,T , θk=(mk, lk), be a trading strategy.

(i) A process X(θ) = (Xk(θ))k=1,...,T such that X0 = c ∈ R is the initial
endowment and

Xk(θ) = (1 + r)Xk−1(θ) + (1− µ)mkSk − (1 + λ)lkSk

is called the process of capital invested in a riskless bond.
(ii) A process Y (θ) = (Yk(θ))k=1,...,T such that

Yk(θ) = ξ̄kSk,

where ξ̄k =
∑k
i=1(li − mi), is called the process of capital invested in the

asset S. Notice that ξ̄k denotes the number of stocks held in the time interval
[k, k + 1).

Without loss of generality one may assume that the interest rate r is
equal to 0. Then

Xk(θ) = X0 +
k∑

i=1

∆Xi(θ) = X0 +
k∑

i=1

((1− µ)miSi − (1 + λ)liSi).

Notice that for each k = 1, . . . , T , Xk(θ) ∈ L2(P ). However square inte-
grability of the process Y (θ) is not assumed. To obtain it we impose an
additional assumption (RB) on the price process S, introduced in [4].

Definition 3. The price process S satisfies the relative boundedness
condition (RB) if there exists a constant C such that

E
[
S2
k+1

S2
k

∣∣∣∣Fk
]
≤ C

almost surely for each k = 1, . . . , T − 1.

We recall a simple lemma which will be very useful later on (for a proof
see [4]).

Lemma 1. Let Z be any Fi-measurable random variable such that
‖ZSj‖L2 < K for some j ∈ {i, . . . , T}. If the price process S satisfies the
(RB) condition then

‖ZSk‖L2 < KCk−j

for any k ∈ {j, . . . , T}.
From Lemma 1 we immediately obtain the following corollary.

Corollary 1. If S satisfies (RB) then the process [X(θ), Y (θ)]′ is
square integrable, i.e. [X(θ), Y (θ)]′ ∈ L2(P )×L2(P ) for any trading strategy
θ ∈ Θ.

Definition 4. The gain functional is the transformation GT : Θ →
L2(P )× L2(P ) of the form
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GT (θ) =
[
XT (θ)−X0

YT

]
=
[∑T

k=1((1− µ)mkSk − (1 + λ)lkSk)

(
∑T
k=1(lk −mk))ST

]
.

The image GT (Θ) := {GT (θ) : θ ∈ Θ} is called the set of attainable gains.

Using the notation introduced in [4] we formulate the following optimiza-
tion problem (we write x′ for the transposition of the vector x): For a given
ĉ = [c, 0]′ ∈ R2 and any contingent claim H ∈ L2(P )× L2(P ) find

(P) inf
g∈GT (Θ)

E[(H − (ĉ+ g))′(H − (ĉ+ g))].

Here we consider a very general model, which describes a so called incom-
plete market. One of the well known optimization criteria proposed in the
literature is quadratic risk minimization, which was considered in general as
minimization of global or local risk (see [6] for details). In a discrete time
model, the problem was studied e.g. in [7]. There are many papers devoted to
this problem, but without taking into account any transaction costs. Histor-
ically, the first attempt to incorporate transaction costs was made by Lam-
berton, Pham and Schweizer [3], but they only considered the local risk min-
imization. In [4], the existence and uniqueness of an optimal strategy mini-
mizing global risk was proved. One of the technical assumptions sufficient for
that result is predictability of the strategy, which practically means that the
investor does not know the current price (he knows the previous price) when
taking an investment decision. The reason for this assumption was the neces-
sity to move the controlled, predictable part outside the conditional expec-
tation, under fairly weak conditions (MND), (RS) and (RB) imposed on S.

In this paper we relax the predictability condition on θ, making the
trading strategy more realistic. Consequently, we are forced to use different
arguments to prove the closedness of GT (Θ). In order to achieve this objec-
tive we require that the price process S satisfies slightly stronger conditions,
which we introduce in the next section.

Finally in Section 3 we prove the main theorem of the paper.

The paper is part of a Ph.D. thesis written under the guidance of Prof.
Ł. Stettner to whom the author wishes to express his thanks.

2. Additional assumptions. In order to relax the assumption on pre-
dictability of a strategy θ, we impose some additional assumptions that en-
sure closedness of GT (Θ). The nondegeneracy condition (MND) (considered
in [4]) is now replaced by the following.

Definition 5. The process S ∈ L2(P ) satisfies the condition:

• (A1) if there exists a constant M > 0 such that

0 <
1
M
≤ E[∆S2

k1(∆Sk > 0) | Fk−1]
E[∆S2

k1(∆Sk < 0) | Fk−1]
≤M ;
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• (A2) if there exists a constant L > 0 such that

0 <
1
L
≤ E[1(∆Sk > 0) | Fk−1]

E[1(∆Sk < 0) | Fk−1]
≤ L,

for every k = 2, . . . , T .

The two conditions above also play a role of a nondegeneracy property,
but are stronger than the (ND) condition (see e.g. [7] or [5]) and stronger
than the well known condition (see [1]) that implies the existence of a mar-
tingale measure in the model. Therefore we have

Corollary 2. If S satisfies (A2) then there exists an equivalent mar-
tingale measure for S.

Remark 1. Notice that the assumptions allow us to consider S as an
element of a quite general class of discrete time processes. In particular if S
is modeled by the equation

Sk = Sk−1(1 + %k)

where the random variables %k are i.i.d. and moreover almost surely sepa-
rated from −1 and bounded, then both (A1) and (A2) are satisfied.

Notice that under (RB) and (A1), (A2) we do not need the (RS) condi-
tion required in [4].

In what follows we denote by ξk the number of stocks at time k− 1, i.e.
ξk =

∑k−1
i=1 (li −mi). Notice that the process ξ is predictable and ξ1 = 0.

3. Closedness of GT (Θ). Before we formulate the main theorem of the
paper we introduce an auxiliary lemma.

Lemat 2. If S satisfies conditions (A1), (A2) and

∥∥∥
( T∑

k=1

ξk∆Sk
)−∥∥∥

L2
≤ C1

for a constant C1 > 0, then there exists a constant C2 such that
∥∥∥
T∑

k=1

ξk∆Sk
∥∥∥
L2
≤ C2.

Proof. We argue by induction on T . Since we put ξ1 = 0, we start the
induction at T = 2. By condition (A1) for T = 2, we have

E[ξ2
2∆S2

2 | F1] ≤ (M + 1)ξ2
2E[∆S2

21(∆S2 < 0) | F1],

E[ξ2
2∆S2

2 | F1] ≤ (M + 1)ξ2
2E[∆S2

21(∆S2 > 0) | F1].

Consequently,

E[ξ2
21(ξ2 > 0)∆S2

2 | F1] ≤ (M + 1)E[ξ2
21(ξ2 > 0)∆S2

21(∆S2 < 0) | F1]
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and analogously

E[ξ2
21(ξ2 < 0)∆S2

2 | F1] ≤ (M + 1)E[ξ2
21(ξ2 < 0)∆S2

21(∆S2 > 0) | F1].

This implies that

‖ξ2∆S2‖2L2 ≤ (M + 1)‖(ξ2∆S2)−‖2L2 ≤ (M + 1)C2
1 ,

which yields the assertion for T = 2.
Assume that the assertion holds for T − 1. Let fT−1 :=

∑T−1
k=1 ξk∆Sk.

Then

‖(fT−1 + ξT∆ST )1(fT−1 < 0)1(ξT < 0)1(∆ST > 0)‖L2 ≤ C1,(1)

‖(fT−1 + ξT∆ST )1(fT−1 < 0)1(ξT > 0)1(∆ST < 0)‖L2 ≤ C1.(2)

Since fT−1 and ξT∆ST are negative on the given sets, we have

‖fT−11(fT−1 < 0)1(ξT < 0)1(∆ST > 0)‖L2 ≤ C1,(3)

‖fT−11(fT−1 < 0)1(ξT > 0)1(∆ST < 0)‖L2 ≤ C1,(4)

‖fT−11(fT−1 < 0)1(∆ST = 0)‖L2 ≤ C1.(5)

By (3) and (A2), we have

‖fT−11(fT−1 < 0)1(ξT < 0)1(∆ST < 0)‖L2

≤
√
L ‖fT−11(fT−1 < 0)1(ξT < 0)1(∆ST > 0)‖L2 ≤

√
LC1.

Therefore using (3) and (5) we obtain

‖fT−11(fT−1 < 0)1(ξT < 0)‖2L2 ≤ C2
1 (2 + L2).

In an analogous way we prove that

‖fT−11(fT−1 < 0)1(ξT > 0)‖2L2 ≤ C2
1 (2 + 1/L2).

Since by the assumption ‖fT−11(fT−1 < 0)1(ξT = 0)‖L2 ≤ C1, there is a
constant C3 such that

‖fT−11(fT−1 < 0)‖L2 ≤ C3.

Consequently, by the induction assumption we obtain ‖fT−1‖L2 ≤ C4. Now
by (1),

‖ξT∆ST1(fT−1 < 0)1(ξT < 0)1(∆ST > 0)‖L2 ≤ C1,

and by (2),

‖ξT∆ST1(fT−1 < 0)1(ξT > 0)1(∆ST < 0)‖L2 ≤ C1,

Using (A1) we have

‖ξT∆ST1(fT−1 < 0)1(ξT < 0)‖L2 ≤ C5

1 +M
,

‖ξT∆ST1(fT−1 < 0)1(ξT > 0)‖L2 ≤ MC6

1 +M
.
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Therefore

‖ξT∆ST1(fT−1 < 0)‖2L2 ≤ 2(C2
5 +M2C2

6 )
(1 +M)2 .

To complete the proof, it suffices to show that

‖ξT∆ST1(fT−1 ≥ 0)‖2L2 ≤ C7

for a constant C7. Observe that

‖(fT−1 + ξT∆ST )1(fT−1 ≥ 0)1(ξT∆ST < 0)‖2L2

= ‖(fT−1 + ξT∆ST )1(fT−1 ≥ 0)1(ξT∆ST < 0)1(fT−1 + ξT∆ST > 0)‖2L2

+ ‖(fT−1 + ξT∆ST )1(fT−1 ≥ 0)1(ξT∆ST < 0)1(fT−1 + ξT∆ST < 0)‖2L2

≤C2
2 + C2

1 .

Since in the first term fT−1 is positive and ξT∆ST < 0, we have fT−1 +
ξT∆ST ≤ f+

T−1, while in the second term both fT−1 and ξT∆ST are nega-
tive, and by the assumption ‖(fT−1 + ξT∆ST )−‖L2 ≤ C1.

Therefore, we obtain

‖ξT∆ST1(fT−1 ≥ 0)1(ξT∆ST < 0)‖2L2

≤ 2‖(fT−1 + ξT∆ST )1(fT−1 ≥ 0)1(ξT∆ST < 0)‖2L2

+ 2‖fT−11(fT−1 ≥ 0)1(ξT∆ST < 0)‖2L2

≤ 2(C2
1 + C2

2 ) + 2C2
2 .

It can be easily seen now that by considerations analogous to the proof
for T = 2, using (A1) we obtain the existence of constant bounds for the
norm of ξT∆ST1(fT−1 ≥ 0)1(ξT > 0) and ξT∆ST1(fT−1 ≥ 0)1(ξT < 0).
Consequently,

‖ξT∆ST1(fT−1 ≥ 0)‖L2 ≤ C7

for a constant C7 and the proof is complete.

A similar result, but in the L1(P ) norm instead of L2(P ), was achieved
in [2, Theorem 2]. The authors imposed slightly weaker assumptions and
used different techniques in the proof.

Before we prove the main theorem of the paper we need an auxiliary
lemma which is in some sense a generalization of [4, Lemma 4].

Lemma 5. Let (ηnk )n=1,2,... be a sequence of Fk-measurable random vari-
ables such that ηnkSk ∈ L2(P ) for n = 1, 2, . . . , and let ηk be an Fk-
measurable random variable such that ηkSk ∈ L2(P ) and ηnkSk is convergent
to ηkSk in the weak topology of L2(P ). If the process S satisfies (RB) then

ηnkSk+1 → ηkSk+1

in the weak topology of L2(P ).
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Proof. Observe that for any Fk+1-measurable f ∈ L2(P ),

lim
n→∞

E[(ηnk − ηk)Sk+1f ] = lim
n→∞

E
[
(ηnk − ηk)Sk

E[Sk+1f | Fk]
Sk

]
= 0

because by the Cauchy–Schwarz inequality and (RB) condition we have

E
[

(E[Sk+1f | Fk])2

S2
k

]
≤ E

[
E[f2 | Fk]E[S2

k+1 | Fk]
S2
k

]
≤ C‖f‖2L2(P )

and hence by weak convergence of ηnkSk to ηkSk we obtain weak convergence
of ηnkSk+1 to ηkSk+1.

We are in a position to formulate the main result of the paper.

Theorem 1. If S satisfies (RB), (A1) and (A2) then the cone GT (Θ)
is closed.

Proof. Let θn be a sequence of strategies such that X(θn) and Y (θn)
converge in L2(P ), i.e.

X(θn) =
T∑

k=1

((1− µ)mn
kSk − (1 + λ)lnkSk) L

2

→ z1,

Y (θn) =
T∑

k=1

(lnk −mn
k)ST =

T∑

k=1

(ξnk∆Sk + (lnk −mn
k )Sk) L

2

→ z2.

Then

X(θn) + (1− µ)Y (θn) = (1− µ)
T∑

k=1

ξnk∆Sk − (µ+ λ)
T∑

k=1

lnkSk,

X(θn) + (1 + λ)Y (θn) = (1 + λ)
T∑

k=1

ξnk∆Sk − (µ+ λ)
T∑

k=1

mn
kSk.

Since the sequences on the left side are bounded in the L2(P ) norm, by
nonnegativity of the strategies mn

k , l
n
k we have

∥∥∥
( T∑

k=1

ξnk∆Sk
)−∥∥∥

L2
≤ C1

for n ∈ N and by Lemma 2,
∥∥∥
T∑

k=1

ξnk∆Sk
∥∥∥
L2
≤ C2.

Therefore, there exists a constant K such that
∥∥∥
T∑

k=1

lnkSk

∥∥∥
L2
≤ K,

∥∥∥
T∑

k=1

mn
kSk

∥∥∥
L2
≤ K.
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Since every bounded set in Hilbert space is weakly compact, there is a sub-
sequence nj for which m

nj
k Sk

w→ φk and l
nj
k Sk

w→ ψk. Letting m̂k := φk/Sk
and l̂k := ψk/Sk we see that mnj

k Sk
w→ m̂kSk and l

nj
k Sk

w→ l̂kSk. More-
over, by the (RB) condition and Lemma 3, we obtain the weak convergence
m
nj
k Sl

w→ m̂kSl and l
nj
k Sl

w→ l̂kSl for any l ≥ k. Then ξ
nj
l ∆Sl

w→ ξ̂l∆Sl,
where ξ̂l =

∑l
k=1(l̂k−m̂k), which indicates that the limits z1 and z2 may be

represented in terms of weak limits and therefore they belong to GT (Θ).

Remark 2. Analyzing the proof we observe that analogous arguments
also show the closedness of the cone GT (Θ) in the case when it is a sub-
set of L2(P ) instead of L2(P ) × L2(P ), e.g. GT (Θ) = XT (Θ) + YT (Θ) or
GT (Θ) = XT (Θ) + (1− µ)YT (Θ), which can be interpreted as a book value
or mark-to-market value. The “one-dimensional” version of the set GT (Θ)
was considered in [3].
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