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LOCAL WELL-POSEDNESS OF THE CAUCHY PROBLEM
FOR THE GENERALIZED CAMASSA-HOLM EQUATION
IN BESOV SPACES

Abstract. We study local well-posedness of the Cauchy problem for the
generalized Camassa—Holm equation dyu — 95, u + 2k0,u + 0z[g(u)/2] =
Y(20,ud2,u+ udi,,u) for the initial data ug(z) in the Besov space Bj . (R)
with max(3/2,1+1/p) < s <m and (p,r) € [1,00]%, where g : R — R is a
given C™-function (m > 4) with ¢(0) = ¢’(0) =0, and x > 0 and v € R are
fixed constants. Using estimates for the transport equation in the framework
of Besov spaces, compactness arguments and Littlewood—Paley theory, we

get a local well-posedness result.

1. Introduction. In this paper we study the Cauchy problem for the
generalized Camassa—Holm equation

O — 03 u + 2k0,u + Ox[g(u) /2]
(1.1) = v(20,ud? u +udl,u), (t,z) € RT xR,
u((),:v) = uO(x)v z €R,
for the initial data uo(z) in the Besov space B, (R) with max(3/2, 1+1/p) <
s <m and (p,r) € [1,00]?, where g : R — R is a given C™-function (m > 4)
with ¢(0) = ¢’(0) =0, and k > 0 and v € R are fixed constants.

If g(u) = 3u? and v = 1, then (1.1) is the classical Camassa—Holm
equation, derived independently by R. Camassa and D. Holm in [2], and
by A. Fokas and B. Fuchssteiner in [16]. The classical Camassa—Holm equa-
tion models the unidirectional propagation of shallow water waves over a
flat bottom; wu(t,x) stands for the fluid velocity at time ¢ > 0 in the spa-
tial z-direction and k is a nonnegative parameter related to the critical
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shallow water speed. The classical Camassa—Holm equation possesses a bi-
Hamiltonian structure and infinitely many conservation laws [2, 16], and
is completely integrable [2, 4, 9]. Moreover, when x = 0 it has an infinite
number of solitary wave solutions, called peakons due to the discontinuity
of their first derivatives at the wave peak, interacting like solitons:

u(t,z) =ce = ceR.

The Cauchy problem for the Camassa—Holm equation has been extensively
studied (see [3, 5, 6, 8, 10, 14, 15, 19, 20]).

For g(u) = 3u?, kK = 0 and v € R, Dai [11-13] derived (1.1) as an
equation describing finite length, small amplitude radial deformation waves
in cylindrical compressible hyper-elastic rods, u(t, z) representing the radial
stretch relative to a prestressed state and v being a parameter related to the
material constants and the prestress of the rod. Moreover, if v = 0, equation
(1.1) becomes the regularized wave equation describing surface waves in a
channel [1].

From the mathematical viewpoint equation (1.1) has been much less
studied than the classical Camassa—Holm equation. Recently, Yin [21-23]
(see also Constantin and Escher [7]) proved local well-posedness, and global
well-posedness for a particular class of initial data; in particular, he showed
that smooth solutions blow up in finite time for a large class of initial data.

In this paper, we study the generalized Camassa—Holm equation (1.1) in
the framework of Besov spaces. Making use of some estimates for the trans-
port equation in Besov spaces, compactness arguments and Littlewood—
Paley theory, we get local well-posedness in the sense of Hadamard, i.e.,
(1.1) has a unique local solution in a suitable functional setting, and the
solution is continuous with respect to the initial data.

Throughout this paper, we shall assume that ug € B, , with max(3/2, 1+
1/p) < s < m and v > 0. Observe that the case v = 0 is much simpler
than the one we are considering. Moreover, if v < 0, we can use a similar
argument.

Applying the pseudo-differential operator (1 — 92,)~! to (1.1), we can
rewrite (1.1) as follows:

Ou + yudyu = P(D) <M + g (Opu)? — %u2 + 2/£u>,

(1.2) 2

u(0,2) = uo(x),
with P(D) = —0,(1 — 92,)~L.
To state our results, we need the following function spaces:
ES (T) N C([0,T7; B;,r) ﬂcl([O,T];BZ;l) ifl1<r< oo,
P L>(0,T; By o) NLip([0, T); BsLl) if r = oo,
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where T > 0, s € R, (p,r) € [1,00]?, and Lip is the space of continuous
bounded functions with bounded first derivatives.
Our main results are the following theorems.

THEOREM 1.1 (Local well-posedness). Let (p,r) € [1,00]? and max(3/2,
L+1/p) <s <m. Let ug € By, (R). Then there exists a time T > 0 such
that (1.1) or equivalently (1.2) has a unique solution in E; .(T).

THEOREM 1.2 (Energy conservation). Let s,p,r be as in Theorem 1.1.
Let w € E, (T) be a solution of (1.1) or (1.2) on [0,T] x R with data
up € By, N H'. Then

(1.3) vte[0,T],  |lu@®)lg = lluollm-

THEOREM 1.3 (Blow-up criterion). Denote by Ty the maximal lifespan
of the solution with data ug. Under the assumptions of Theorem 1.1, if T
< 00, then

*
,I'u 0

(1.4) | 102u(r)l| > dr = oc.
0

This paper is arranged as follows. In Section 2, we introduce some defini-
tions and properties of nonhomogeneous Besov spaces and Littlewood—Paley
decomposition. In Section 3, we introduce some estimates for transport equa-
tions in the framework of Besov spaces, and prove some estimates for the
generalized Camassa—Holm equation. In Section 4, using the results derived
in Section 3 and compactness arguments, we prove Theorem 1.1. In Sec-
tion 5, we prove Theorems 1.2 and 1.3.

2. Besov spaces and Littlewood—Paley decomposition. The proofs
of our results are based on a dyadic partition of unity in Fourier variables,
the so-called nonhomogeneous Littlewood—Paley decomposition.

Let (x, ) be a couple of smooth functions valued in [0, 1] such that x
is supported in the ball {£& € R™ | |¢] < 4/3}, ¢ is supported in the shell
{eeR"|3/a< ¢ < 8/3} and

O+ 279 =1, VEeR™
qeN
Writing ¢, (&) = ¢(279), hy = F L, and h= F~1x, we define the dyadic
blocks as
0 if ¢ < -2,
Aqu 2 § X(D)u = §g, h(y)u(z — y) dy if g =—
@(271D)u = [z, hy(y)u(z —y)dy if ¢ = 0.
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We shall also use the following low-frequency cut-off:
Syu = Z Agu = x(279D)u.
q'<q-1
The formal equality
(2.1) u= Z Aqu
q=—1

holds in &'(R™) and is called the nonhomogeneous Littlewood—Paley decom-
position. It has nice properties of quasi-orthogonality:

(22) AyAu=0 ifl¢ —q|>2, Ay(Sim1uldw)=0 if|¢ —q| >5.
Let us now define the nonhomogeneous Besov spaces:

DEFINITION 2.1. For s € R, (p,7) € [1,00]? and u € S'(R"), we set

1/r
lullp, 2 < 3 (zquAqu”Lp)r) if1<r< oo
g>—1
and
lullps . = sup 2| Aqu| -
oo

We then define the nonhomogeneous Besov spaces as
By, £ {u e S'(R") | |ullBg, < oo}
The above definition does not depend on the choice of the couple (x, ¢).

For a more complete study of Besov spaces, we refer to [18, 17]. Let us
just recall some basic properties.

PRrROPOSITION 2.1 ([14]). The following properties hold:

1. Density: the space C° of smooth functions with compact support is
dense in By . if and only if p and r are finite.

2. B3, =H".

3. Generalized derivatives: if f is a smooth function on R™\{0} which
is homogeneous of degree m, then f(D) is continuous from B, . to
By

4. Sobolev embeddings: if p1 < p2 and r1 < ro, then we have B

p1,71

B;;Z};l/pl_l/pz); if s1 < s9 and (p,r1,72) € [1,00]3, then the embedding
B2, — Byl is locally compact.

5 By, — L> < By .

6. B, — Lip — Bl .

7. Algebraic properties: for s > 0 the intersection B, , N L> is an al-
gebra with respect to pointwise multiplication. Moreover, (B;r s an
algebra) < (By , — L*°) < (either s > n/p, or s =n/p and r = 1).

8. Real interpolation: [lul] 4os,+(1-6)s, < Hu||?351 ||u|]113229 for 6 €[0,1].
b, p,r p,T
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9. Fatou property: if a sequence (fr)ken s uniformly bounded in By,
and converges weakly in S’ to f, then f € B, , and

17113

5. < Uminf (| fillp; .
We have the following continuity properties for the product of two func-

tions:

PROPOSITION 2.2 ([14]). If (p,r) € [1,00]% and s > 0, then there exists
a positive constant C = C(n, s) such that

(2.3) luvllpy, < Cllullr=<lvlizg, + lvllzellulB;,)-

p,r
If (p,7) € [1,00]2, 81,80 < n/pifr >1(s1,82 <n/pifr=1) and s1 + s9
> 0, then there exists a positive constant C = C(s1,82,p,7,n) such that

(2.4) ] ey oz < Cllll s, ol s

If (p,7) € [1,00]%, 51 < n/p, s2 >n/p (s2 >n/p if r =1) and s1 + 52 > 0,
then there exists a positive constant C = C(s1,s2,p,7,n) such that

(2.5) Juoll ey < Cllullgen ol -
We also have the following two important results (cf. [18]):

PROPOSITION 2.3. Let I be an open interval of R. Let o > 0 and o be
the least integer such that & > o. Let g : I — R satisfy g(0) = 0 and ¢’ €
W (I;R). Assume that u € By, has values in J CC I. Then g(u) € By,
and there exists a constant C' depending only on o, I, J and n, such that

(2.6) lg(w)llsg, < O+ llull )19/l (1) lull g, -

pr —

PROPOSITION 2.4. Let I be an open interval of R. Let o > 0 and ¢

be the least integer such that ¢ > o. Let g : I — R satisfy ¢’(0) = 0 and

g’ € Wo®(I;R). Assume that u,v € By . have values in J CC I. Then
there exists a constant C, depending only on o, I, J and n, such that

(2.7) lg(u) = g(v) 5z, < C(L+ ull=)7llg" woe(r)

p,r
“(lu—=vllBg, sup [lv+0(u—wv)|re
€[o,1

+ [lu = vl[ze sup [lv+60(u—wv)|zg,).
0€[0,1]

3. Linear estimates. First, consider the following linear transport
equation:
(31) {6tf+a Vf—F,

fli=o = fo,
where a : R x R" — R” stands for a given time dependent vector field,
fo:R* - R" and F : R x R"* — R" are known data.
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For (3.1), we have the following a priori estimates (for the proof we refer

o [14]):

LEMMA 3.1 (a priori estimates). Let 1 < p < p; < 00, 1 < r < o0,
= (1—1/p)~t. Assume that

) 1 1 . 1 1 -
(32) o>-nmin{ —,— |, or o>-l-nmin(—,— | ifdiva=0.
b1 p1p

There exists a constant Cv > 0, depending only on n, p, p1, v and o, such
that

(3.3) N fllzee(oB

7pr)
t

T / / +
< (HfOHBg’T + 86_01 §o Z (1) dr HF(T)”B,;‘T dT) 601 §o Z(1) d’r,
0

with
VOl iy g i 0 < 140/,
(34 Z(0)=1 [Va®llgs  io>1+n/m
or{oc =14+n/p1 and r =1}.

If f = a then for all o > 0, or 0 > —1 if diva = 0, estimate (3.3) holds
with Z(t) = ||Va(t)| pee-

Concerning the local well-posedness of the transport equation (3.1), we
also have the following lemma (the proof is in [14]):

LEMMA 3.2. Let p, p1, v and o be as in the statement of Lemma 3.1.
Let fo € By, and F' € LY(0,T; Bj ). Let a be a time dependent vector field

with coefficients in L¢(0,T; Bo_o{\go) for some o0 > 1 and M > 0, and such

that Va € LY(0, T; B%ﬁé NL®) if o <1+n/p, and Va € LY(0,T; BSH
if o >1+n/p1 oro =1+n/p1 and r = 1. Then the Cauchy problem
(3.1) has a unique solution f € L>(0,T;By,.) N[, ., C([0,T]; By ) and

the inequality (3.3) holds true. If in addztzon r < oo then f € C([o, T] By,).

Now, let us estimate the right-hand side of the generalized Camassa—
Holm equation (1.2).

LEMMA 3.3. Let (p,7) € [1,00]% and o > max(1/2,1/p). Then:

1. The function G : u +— P( )@ is continuous from By, to ngl.
2. The function H : (u,v) — P(D)(30,ud,v — Juv) is continuous from
Bg, x Bt to BgT

3. The function K : uw+ P(D)(2ku) is continuous from Bgm to ngl.
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Proof. 1. Applying Proposition 2.3 and the fact that P(D) is a multiplier
of order —1, we immediately get the first conclusion.

2. When o > 1/p, By, is an algebra by Proposition 2.1. Therefore,

: S lullsg, vl B,
Bg,

.
3.5 ——=
(35) -3 !

Y
|-
Byt
S llullsg, 1ol g

Ifo>14+1/p,oroc >1+1/pandr =1, then B;;l is also an algebra so
that

(3.6) H % 0 u0zv

S VMOzull gg-110zvll gg—1 S Ylullg, [0l B,
Bg 1 ’ ’

S llullsg, vl ggsr-

Otherwise, we still have ¢ > 1/p and o > 1/2. According to (2.5), we have

(3.7) ‘ % 0 u0zv

. < fy||8xu||Bg;1||axUHBg’r IS ’YHUHBg,THUHBg#'

D,T

Combining (3.5) with (3.6) or (3.7), we get

2

.

% Op U0z

Sllullsg, vl gosr-
o—1 o—1 Ds p,T
BPJ‘ BPK"
Therefore the second conclusion is proved.

3. The third conclusion is obvious. =

4. Local well-posedness. In this section we make use of the results
derived in Section 3, compactness arguments and Littlewood—Paley theory
to prove the local well-posedness of the Cauchy problem for the generalized
Camassa-Holm equation (1.1) or (1.2) in Besov spaces.

Uniqueness and continuity with respect to the initial data are a corollary
of the following:

PROPOSITION 4.1. Let (p,r) € [1,00]? and max(3/2,1+ 1/p) < s < m.
Suppose that (u,v) € (L>(0,T; Bs,) NC([0,T]; By,1))? are two solutions of
(1.1) or (1.2) with initial data ug,vo € B, ,. Then there exists a constant
Cy > 0 such that, for all t € [0, T],

(4.1)  flu(t) — o)l g5

t
< lluo = vol g1 exp(Caly + 1) [ (5 + 1+ u(r)ll s, + (73, )™ dr ).
0
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Proof. Let w £ u —v. Then w satisfies the following equation:
Aw + yud,w = —ywdv

+ P(D) <M + %&cw&v(u +0) — %w(u +v)+ 2mw>.

According to Lemma 3.1 and the Sobolev embedding B;;l — B;;Q, we
have

(42)  [wlt)] g

t
t 2 t /
Cry So Har“HBz;l dr 4 S eCI'YST ”aT“HBz;l dr <

< ”wOHBg;le ’y‘|w8$vHB;;1

) dr.
Byt

Since max(3/2,1 4+ 1/p) < s < m, by Proposition 2.4 and Lemma 3.3 there
exists a constant C'3 > 0 such that

0

+HP(D) (M + 20w, (u+v) — Tu(u+v) + 2/~ew)

(4.3) HP(D) <M + % Dpwdy(u + v) - %w(u +0) + 2kw)

s—1
BPV"
s—1

< C3((1+ Nlull gy + 0l g™ + iz, + llvlisg,) + &)lwl s

Plugging (4.3) in (4.2) and using the fact that Bf,;l is an algebra, we have

Cciy it o o1 dr’ Lot o o1 dr’
||U}(t)HB;—Tl < ”wOHBg;le 1780 I zu”B;?,rl T +S€ WXT I zu||B;m1 T
; ; 0

(CoNOvll gyt + Col(L+ al gyr + ol gy 1)
+(lullsg, +1lvliss,) + £)w(T)l g2 dr,
with a constant Cy > 0. Therefore, there exists a constant C5 > 0 such that

t
(2l g < Nl s O+ B4 4Rl ™ a7

t
T Gyl + 1) | (ST g bl )7

0
(s 1+ g, + o]z, )™ (7] -t dr.



Camassa—Holm equation in Besov spaces 261

Thus, we have
—C1 (1) (k14 s + s Y™dr!
e~ 1O+ D fo(rttlul 5 Hlvlsg )™ dr [w (@) g1

t
< Jlwoll g + Cs(y + 1) § (5 + 1+ [full 5, + o)™
0

) 6*01(’Y+1) §o (st1+lullps  +llvligg )™ dr’ l[w(r) HB;;l dr.

Applying the Gronwall lemma, we obtain

efcmms@<n+1+llullsz,r+““”Bzm>’”dT/Hw(ﬂHB;;l

t m /
< ”wo”3571605(7+1)So(’{+1+”“”BfmﬂJF”U”B;’,") dr’
p,T
Letting Cy £ O + Cs, we get (4.1). =

Proof of Theorem 1.1. The uniqueness is an immediate consequence of
Proposition 4.1.

Now, let us prove the existence. We will use a standard iterative process
to construct a solution.

STEP 1: approzimate solution. Starting from u® £ 0, we define recur-
rently a sequence (u");en of smooth functions by solving the following linear
transport equation:

(4.4) 2 2

(0, 2) = uhtH (@) & Sip1uo.

Since all the data belong to B}, Lemma 3.2 enables us to show by induction
that for all 7 € N, (4.4) has a global solution which belongs to C(R*; B}",.).

(O +yu'd,)u™! = P(D) <M + g @pu')? — L ()2 + 2nui),

STEP 2: uniform bounds. According to Lemma 3.2, Proposition 2.3 and
Lemma 3.3, we have the following inequality for all ¢ € N:

t
(4.5) ||ui+1(t)||B;’r < CgeCertU () <||U0HB;7. F(y+1) S e~ Co(y+1)U(7)
0

(k5 + 14 [l () |y, )™ ' (7) | B3, dT)’

with U¥(t) £ {{ [lu(r)| p;, dr and a constant Cg > 1.

Fix a T > 0 such that 2mCy™ (v + 1)(k + 1 + [uollBs, )™ T < 1 and
suppose that

i C§*(k+ 1+ |luolgs )™
(4.6) (k+1+ Huz(t)HBST)m < m(irl( [[ o] p,r) .
P T = 2mCE (1) (k4 1 uollsg, )™
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Plugging (4.6) in (4.5), we have
lu" ()] B,
< Col(k+ 1+ ||uoll By, )1 — 2mCF*H (v + 1) (5 + 1 + ||uo| 55, )™t /™

= Co(k + 1)[1 = 2mCg ™ (v + 1) (5 + 1+ [luol| 3y, )]~/

< Cﬁ(lﬁ‘i‘l‘i‘ HUOHB;,T)
T =2mCE N (y + 1)(k+ 14 [luol| By, )Y ™

—(k+1).

Thus we get

K41+ [u" ()] ps, < Colr + 1+ Juollz;,)
Pir = 1= 2mC (v + D)(k + 1 + l[uoll B, )t/

Therefore,

i N (s + 1+ Juoll 3, )™
(1 (@) 5, )™ < e -
S T amCy T (G )k 11+ oz, )™

Therefore, (u')sen is uniformly bounded in C([0, T; By ). This clearly entails
that u’'0,u"t! is uniformly bounded in C([0, T; B ). As the right-hand side
of (4.4) has been shown to be uniformly bounded in C([0,77]; B; ), one can
conclude that the sequence (u');en is uniformly bounded in E; .(T').

STEP 3: convergence. We will prove that (u');ey is a Cauchy sequence
in C([0, T]; B5;1).

For all (i,7) € N2, we have

(O + yutTI9y,) (ut T — 4t

_ ,Y(ui—&-j B ui)amui—f—l + P(D) (g(ui+j)2— g(m)

+ %@(uiﬂ _ ul)ax(uwrj + ul)

_ % (ui+j _ ui)(ui—i-j + U’L) + 2,{(ui+j _ uZ))

Applying Lemma 3.2, Lemma 3.3 and Proposition 2.4, and using the fact
that B;;l is an algebra, we show that for all ¢ € [0, T7,
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@~ ) e
t
< VO ([ s+ O [ OPU O
0
e T P v T Y L7 P 1 g

@ = ) (1) | g ).
for a constant C'; > 0.
Since (u')en is uniformly bounded in Ej (') and
o i+J
ug—&-]—i—l . u6+1 _ Z Aqu(%
g=i+1
we finally get a constant Cr independent of i, j and such that for all ¢ in
[07 T]7
t
9 a0 e < O (277 4 @ — ) (7)) dr)-

0
Arguing by induction, one can easily prove that
itjHl it
e U e 01531

(TCr)!
I

(TCT)iJrI

= i+ 1) w7l o.1585, + Cr Y 27070

=0

As HU‘jHLoo(O’T;BS’T) may be bounded independently of j, we deduce the ex-
istence of some new constant C. such that
< o2

T I

0,785,
Hence (u');en is a Cauchy sequence in C([0,T]; Bi!), whence it converges
to some limit function u € C([0,T7; B3, 1).

STEP 4: conclusion. Finally, let us check that u belongs to E; (1) and
satisfies (1.1) or equivalently (1.2).

Since (u');en is uniformly bounded in L (0, T; B, ), the Fatou property
for Besov spaces guarantees that u also belongs to L>°(0,7T; B, ,.).

On the other hand, as (u");en converges to u in C([0,T]; B5 '), an inter-

polation argument ensures that convergence actually holds in C([0,T7; BIS,:T)
for any s’ < s. It is then easy to pass to the limit in (4.4) to conclude that
u is indeed a solution to (1.1) or (1.2).

Now, because u belongs to L>(0,T; B, ), the right-hand side of (1.2)
is also in L*°(0,T;B,,). In the case r < oo, Lemma 3.2 enables us to
conclude that u € C([0,T]; B, ;). Finally, using again (1.2), we see that d;u
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is in C([O,T];B;;l) if r is finite, and in L*°(0,T; B;;l) otherwise. Thus,
(RS E]i,r( ) n

5. Energy conservation and blow-up criterion. This section is de-
voted to the proofs of Theorems 1.2 and 1.3. Both theorems are based on
the following lemma:

LEMMA 5.1. Let (p,r) € [L,00]* and 1 < s <m. Let u € L>(0,T;B5,)
solve (1.2) on [0,T) x R with ug € B, as an initial datum. Then there exist
a constant Cs > 0, depending only on s and p, and a constant Cy > 0 such
that for all t € [0,T),

(5.1) lu(t) 15, < Iluo s, e >+ Dbt 1H I hap)™ o,

(5.2) () ||Lip < lluol|Lipe®® 16 (k (D) |0pu(r) | oo ) dr

Proof. STEP 1. Lemma 3.1 and the fact that P(D) is a multiplier of
order —1 yield

o~ C17 i [102ull oo dr’ [ u(t)

;..
t

< HUOHBIS;’T + S e~ C17$¢ [10zul oo dr’

(%

As s — 1> 0, we have, according to Proposition 2.2,

2 2 2
‘Q(qu) ‘Qu

0
+ ‘ % (Oyu)?

s—1
Bp.r

72
—i-qu

T HQHUHB;,J) dr.

s—1 s—
BP!T BP»T

+

s—1
Bp,r

< OYlulluipllvllBg, -
o

By Proposition 2.3, we have
lg(u)/2l gss < COU+ [lullz=) ullsg, < C(1+ i)™ ulls,
Therefore,
—C1(v+1) §o (k14| Lip) ™ dr’
1O, )™ 47 (1) 5,
t
< Jluollz;, + Cro(y + 1) [~ CrrHD Gt 1)
0
(k1A [lulluip)™ lull g, d7,
with a constant C1g > 0. Applying the Gronwall lemma, we obtain

t ip)™
e CLOAD Sy L )™ e (1) 5

t ) ,
< ||uOHBZS)’TeClo(’Y+1) §0(m+1+||u||Llp)m dr ‘

Letting Cg = C; + C1p, we get (5.1).
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STEP 2. Differentiating equation (1.2) with respect to x, we easily prove
that

t
(5.3)  lu®)||Lip < ||u0HLip+S P( D)(@—i—g (3xu)2—%u2—|—2/ﬁu> dr.

0 Lip
Noting that (1 — 02,) " 'u = 2e M xu, we get

HP(D)(%Jr (Oyu)? — 2u2+2/<;u>

Lip
< Co(k + (v + D[ Oau(r) || oo ) ul[Lip,
for a constant Cg > 0. Plugging this into (5.3), we obtain
t
lu(®)llLip < llwolltip + Co § (5 + (v + D[ 0zu(r) || o) [w(7) | Lip d-
0
By the Gronwall lemma, we get (5.2). m

Proof of Theorem 1.3. Let u € (\p_p. Ej .(T) with S HE) u(T)| e dT

finite. Then by (5.2), Sg* |w(T)||Lip d7 is also finite. According to (5.1), we
have

T* m
Wt € [0,77), [[u(t) |35, < M+ 2 |lug|ps, 0Dl (HHulip™ d7 o o0

Let ¢ > 0 be such that 2mCg™ (v + 1)(k + 1 + Mp«)"e < 1. We then
have a solution u € E, ,.(¢) to (1.2) with the initial datum u(7T™ —¢/2). B
uniqueness, u(t) = u(t+7* —¢/2) on [0,£/2) so that u extends the solution
u beyond T™. We conclude that T* < T7; and Theorem 1.3 is proved. =

Proof of Theorem 1.2. Introduce a nonnegative mollifier ¢ € C§°(R) such
that {; ¢ = 1, and write & (x) = jo(jz). We then set ué £ ¢ xug and define
u? as the maximal solution of (1.2) corresponding to ug).

As Ay(¢? *up) = ¢ * Agup and ||¢’ || 1 = 1, we have

lupllzs, < lluollzy, and [lupllm < [luollm-
Following the second step of the proof of Theorem 1.1, we discover that there
exists a constant C7; > 0 such that u’ is a solution of (1.2) on [0,7] x R
with
Cn

Te L
||UHL°°(O,T;B§,7-)

and v/ € E5 (T) uniformly.

On the other hand, we also have uf) € H*, so that there exists some T >0

such that (1.2) with data u}, has a solution u’ € C([o, T7); HY). Thanks to the
uniqueness property, we actually have u/ = w’ on [0, min(7", 77)]. According
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to Lemma 5.1 and Proposition 2.1, there exists a constant C12 > 0 such that

vt € [0, min(T, T7)],
¢
I 0170 < s+ ex0(Cray + 1) § (4 1+ [l ()] g, )™ ).
0
Note that the right-hand side may be bounded independently of j and of ¢ €
[0,T]. Therefore, arguing as in the proof of Theorem 1.3, one can conclude
that 77 may be chosen greater than T'.
Now, the smoothness of u/ enables us to derive directly from (1.1) that

vt e [0,T],  |[w/ ()]l = lluglla < [luoll s

Therefore, passing to the limit and using the Fatou property for H', one

eventually gets ||u(t)| g1 < ||uol||gr for ¢ € [0,T].
To prove the reverse inequality, one can solve the equation backward,

starting from w (7). Then arguing as above and using uniqueness, one can
assert that

Cin

(T = )l < Nu(D) || for t < o
lull < (0,783,

Repeating the argument several times, we finally get ||u(t)|| g1 = ||uol|| g1 for
all t € [0, 7).

It is now easy to get equality on [0,7]. Indeed, as before, the above
yields equality on [T,2T], [2T,3T] etc., until the whole interval [0,7] is
exhausted. m
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