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MATHEMATICAL DESCRIPTION OF THEPHASE TRANSITION CURVE NEARTHE CRITICAL POINT

Abstrat. In this paper, by applying a simple mathematial model imi-tating the equation of state, behaviour of the phase transition urve near theritial point is investigated. The problem of �nding the unique vapour-liquidequilibrium urve passing through the ritial point is redued to solving anonlinear system of di�erential equations.1. Introdution. For hemial engineering appliations it is neessaryto predit very aurately the vapour-liquid equilibrium (VLE) urve (see[1, 2℄). Before the more detailed formulation of the problem we introduesome important quantities in thermodynamis of �uids. Let ̺, T and Pdenote the density, temperature and pressure of the �uid, respetively. Weassume that the equation of state (EOS) is given by P = P (̺, T ), where Pis an analyti funtion of T and ̺. Let µ = µ(̺, T ), an analyti funtion of
T and ̺, denote the hemial potential of the �uid. We an write the basithermodynami relation between P and µ as follows:(1) ∂µ

∂̺
=

1

̺

∂P

∂̺
.The VLE urve is given by two urves ̺V = ̺V (T ) and ̺L = ̺L(T ),whih are de�ned for any T below the ritial temperature TC . These urvessatisfy the lassial thermodynami requirements (see [1, 2℄)(2) {

P (̺V (T ), T ) = P (̺L(T ), T ),

µ(̺V (T ), T ) = µ(̺L(T ), T ).Moreover, ̺V (T ) < ̺L(T ) for T < TC and ̺V (TC) = ̺L(TC) = ̺C , where
̺C is alled the ritial density. The ritial temperature and ritial density2000 Mathematis Subjet Classi�ation: 34A34, 34C60, 80A17.Key words and phrases: VLE urve, EOS, nonlinear di�erential equations.[341℄ © Instytut Matematyzny PAN, 2007



342 T. Suªkowskidetermine the so-alled ritial point. It is known that at the ritial point
˙̺V (TC) = ∞ and ˙̺L(TC) = −∞.By physial onsiderations we also have

∂P

∂̺
(̺V (T ), T ) 6= 0 and ∂P

∂̺
(̺L(T ), T ) 6= 0.The determination of the ritial point from the thermodynami propertiesof the �uid is one of the main e�orts of hemial engineering.For eah given temperature T < TC , the system of equations (2) mustbe solved. Reently a new, easier and quiker, method has been proposed tosolve this system (see [4, 5℄). Pratially, this method gives us a ontinuousmathematial model for ̺V = ̺V (T ) and ̺L = ̺L(T ), without having tosolve (2) point by point. The method is based on solving a system of nonlineardi�erential equations and an be applied to every known EOS. It is almostimpossible to solve this system analytially, therefore numerial methodsshould be used. However, some examples show that small hanges of initialonditions for the system of di�erential equations imply that �nding the VLEurve is impossible beause the numerially determined ̺V and ̺L annotross at the ritial point (see [4, 5℄).In this paper we will onstrut a simple mathematial model imitating theequation of state and we will try to explain the above-mentioned di�ulties.On the basis of this model we shall show that there exist unique initialonditions ̺0

V = ̺V (T0), ̺0

L = ̺L(T0) for �xed T0 < TC , suh that thesystem of di�erential equations has a unique solution (̺V (T ), ̺L(T )) passingthrough the ritial point.2. Theoretial bakground of the method. In this part we reallthe theoretial base of the method presented in [4, 5℄.For any T below the ritial temperature TC , the urves ̺V = ̺V (T )and ̺L = ̺L(T ) satisfy (2). Sine P and µ are given by analytial formulas,di�erentiating the equations (2) with respet to T we get
(3)















∂P

∂T
(̺V (T ), T )+

∂P

∂̺
(̺V (T ), T ) ˙̺V =

∂P

∂T
(̺L(T ), T )+

∂P

∂̺
(̺L(T ), T ) ˙̺L,

∂µ

∂T
(̺V (T ), T )+

∂µ

∂̺
(̺V (T ), T ) ˙̺V =

∂µ

∂T
(̺L(T ), T )+

∂µ

∂̺
(̺L(T ), T ) ˙̺L,where ˙̺V and ˙̺L denote the derivatives of ̺V and ̺L with respet to T .From (3) we obtain the system of two nonlinear di�erential equations of�rst order(4) {

˙̺V = f(̺V , ̺L, T ),

˙̺L = f(̺L, ̺V , T ),
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(5) f(̺V , ̺L, T )

=

(

∂µ
∂T

(̺V , T ) − ∂µ
∂T

(̺L, T )
)

̺L̺V +
(

∂P
∂T

(̺L, T ) − ∂P
∂T

(̺V , T )
)

̺V

∂P
∂̺

(̺V , T )(̺V − ̺L)
.Sine the right-hand side of (5) is su�iently regular, the system (4) hasunique solutions ̺V and ̺L for given ̺0

V = ̺V (T0) and ̺0

L = ̺L(T0), where
T0 < TC (see [3℄). Obviously, it is almost impossible to �nd analyti expres-sions for solutions of (4) for given P and µ.3. Simple mathematial model imitating the equation of state(EOS). It is well known that the funtion P = P (̺, T ) has the followingproperties:

• P (0, T ) = 0 for any T ;
• for �xed T < TC the funtion P has two extrema, a maximum and aminimum;
• for �xed T >TC the funtion P is stritly inreasing with respet to ̺;
• ∂P

∂̺
(̺C , TC) =

∂2P

∂2̺
(̺C , TC) = 0;

• some observations suggest that for �xed T the funtion P (̺, T ) is ap-proximately ubi with respet to ̺.Having all this in mind we an model the qualitative properties of the fun-tion P by the following formula:(6) P (̺, T ) = ̺3 − 3̺2̺C + 3̺̺2

C + ̺(T − TC),whih behaves similarly to the Van der Waals equation of state near theritial point.By (1) the funtion µ has the form(7) µ(̺, T ) =
3

2
̺2 − 6̺̺C + (3̺2

C + T − TC) ln ̺ + C(T ).Without loss of generality we an assume TC = 0.Substituting (6) and (7) into (5) we get the system of two nonlineardi�erential equations
(8)



















˙̺V =
̺V ̺L ln ̺V

̺L
+ ̺V (̺L − ̺V )

(3(̺V − ̺C)2 + T )(̺V − ̺L)
,

˙̺L =
̺L̺V ln ̺V

̺L
+ ̺L(̺L − ̺V )

(3(̺L − ̺C)2 + T )(̺V − ̺L)
.Sine we onsider ̺V and ̺L very lose to ̺C , the ratio ̺V /̺L is very loseto one. Hene we an use the approximation ln z ∼= (z − 1) − (z − 1)2/2,



344 T. Suªkowskiwhere z = ̺V /̺L. From (8) we get
(9) 













˙̺V =
̺L − ̺V

2(3(̺V − ̺C)2 + T )
,

˙̺L =
̺V − ̺L

2(3(̺L − ̺C)2 + T )
.Studying (9) we an assume ̺C = 0. Thus

(10) 













˙̺V =
̺L − ̺V

2(3̺2

V + T )
,

˙̺L =
̺V − ̺L

2(3̺2

L + T )
.The solution of the system (10) desribes the behaviour of the urves ̺V (T )and ̺L(T ) given by (8) near the ritial point (̺C , TC) = (0, 0).In the next setion we will onsider the system of equations (10) undersome onditions having a physial meaning, namely

˙̺V (TC) = ∞, ˙̺L(TC) = −∞,
∂P

∂̺
(̺V (T ), T ) 6= 0,

∂P

∂̺
(̺L(T ), T ) 6= 0.We are interested in �nding the unique initial onditions ̺V (T0) = ̺0

V and
̺L(T0) = ̺0

L, where ̺0

V < ̺0

L, for whih the system (10) has a solutionpassing through the ritial point.4. Analysis of the mathematial model. We hange notation anddenote the vapour density ̺V (T ), liquid density ̺L(T ) and temperature Tby x(t), y(t) and t, respetively. Thus the system (10) an be written in thefollowing form:
(11) 













ẋ =
y − x

2(3x2 + t)
,

ẏ =
x − y

2(3y2 + t)
.We shall study the system (11) with the initial onditions x(t0) = x0 and

y(t0) = y0 (x0 < y0).Definition 1. By a solution of the system (11) we mean a pair (x(t), y(t))of funtions suh that(i) x(t), y(t) ∈ C1([t0, t
∗));(ii) x(t∗) = y(t∗) for some t∗ > t0;(iii) |ẋ(t∗

−
)| = |ẏ(t∗

−
)| = ∞;(iv) x(t) < y(t) for t ∈ [t0, t

∗).Theorem 2. If (x(t), y(t)) is a solution of (11) then(12) −x2 − xy − y2 = t for t ∈ [t0, t
∗].



Phase transition urve near the ritial point 345Proof. We an transform the equations (11) to the form
2(3x2 + t)ẋ = y − x,(13)
2(3y2 + t)ẏ = x − y.(14)Subtrating (13) and (14) we obtain

(3x2 + t)ẋ − (3y2 + t)ẏ = y − x.Hene we have
d

dt
(x3 + tx) − d

dt
(y3 + ty) = 0.Thus(15) x3 − y3 + t(x − y) = c, where c = const.The equation (15) has to be satis�ed for t ∈ [t0, t

∗). By ontinuity it alsoholds for t = t∗.Sine x(t∗) = y(t∗), we have c = 0, and as x(t) < y(t) for t ∈ [t0, t
∗), weobtain(16) −x2 − xy − y2 = t.By ontinuity (16) holds on the interval [t0, t

∗]. The theorem is proved.Corollary 3. If x(t) and y(t) satisfy the system (11), then the urves
x(t) and y(t) an ross only for t∗ = 0.Proof. Sine the left-hand side of (12) is non-positive de�nite, we obtain
t0 < t∗ ≤ 0. Thus the urves x(t) and y(t) annot ross for t > 0.By (12) the system (11) an be transformed into the autonomous system
(17) 













ẋ = − 1

2(2x + y)
,

ẏ = − 1

2(2y + x)
.Now suppose x(t∗) = y(t∗), where t∗ < 0. Then x∗ 6= 0 by (12). Thus by(17) we get |ẋ(t∗)| = |ẏ(t∗)| < ∞. This ontradits our de�nition of solution.If t∗ = 0 then from (12) we have x(t∗) = y(t∗) = 0. Moreover, by (17),

|ẋ(0−)| = |ẏ(0−)| = ∞. This ends the proof of the orollary.Theorem 4. Let t0 < 0 and (t∗, x(t∗)) = (t∗, y(t∗)) = (0, 0). Then thesystem (11) has a unique solution.Proof. Using the substitution(18) {

x(t) = ξ(t) − η(t),

y(t) = ξ(t) + η(t),we transform the ondition (12) to the form



346 T. Suªkowski(19) t = −(3ξ2 + η2),whih is valid for t ∈ [t0, t
∗].By (18) and (19), from (11) we get(20) ξ̇ = − 3ξ

24ξ2 + 2t
.Moreover, the funtion η(t) is oupled with the solution ξ(t) of (20) by theondition (19). Additionally, ξ(0) = η(0) = 0 by our assumption.If ξ 6≡ 0 we obtain the �rst order linear nonhomogeneous di�erentialequation(21) dt

dξ
+

2

3ξ
t = −8ξ.Solving it we get(22) t = −3ξ2 +

c
3

√

ξ2
,where c = const. We infer ξ(0) = 0 if and only if c = 0. Thus ξ = ±

√

−t/3.By (19) we also have η(t) ≡ 0, whih implies x(t) ≡ y(t). This ontraditsthe assumption that x(t) < y(t).If ξ ≡ 0 we obtain η = ±
√
−t. Thus by (18) we get x = −

√
−t and

y =
√
−t for x(t) < y(t), whih is the unique solution of the system (11)rossing at the ritial point. The theorem is proved.Corollary 5. There exist unique initial onditions x0 = −√−t0 and

y0 =
√−t0, where t0 < 0, for whih the system (11) has a solution (x(t), y(t))de�ning the VLE urve passing through the ritial point.5. Conlusions. We have found the unique solution of the system (11)whih satis�es the onditions mentioned in De�nition 1. This means thatthere exist unique urves ̺V (T ) and ̺L(T ) whih satisfy the system (10) andross at (0, 0). By Theorem 4 we see that the point (t∗, x(t∗)) = (t∗, y(t∗)) =

(0, 0) agrees with the physial ritial point (tC , ̺C) = (0, 0). The uniquesolution of the system (11) is an approximation of the solution of the system(8) whih haraterizes the behaviour of the urves ̺V and ̺L near theritial point.We expet that this researh an be useful for further tests in the numer-ial determination of the phase transition urve.
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