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SOME VALUES FOR CONSTANT-SUM AND BILATERAL
COOPERATIVE GAMES

Abstract. We prove new axiomatizations of the Shapley value and the
Banzhaf value, defined on the class of nonnegative constant-sum games with
nonzero worth of the grand coalition as well as on nonnegative bilateral
games with nonzero worth of the grand coalition. A characteristic feature of
the latter class of cooperative games is that for such a game any coalition and
its complement in the set of all players have the same worth. The axiomati-
zations are then generalized to the entire class of constant-sum or bilateral
games, respectively. Moreover, a new axiomatization of the Deegan—Packel
value on the set of all cooperative games is presented and possibilities of
creation of its version in those special cases are discussed.

Introduction. One of the most important problems in game theory
is axiomatization of the main, well-known solutions (values) of cooperative
games. The famous theorems formulated and proved by L. S. Shapley (1953),
J. Deegan and E. W. Packel (1978), H. P. Young (1985), E. Lehrer (1988),
J. A. M. Potters (1991) and L. M. Ruiz et al. (1996) belong to the fun-
damental results in this area. Besides the general approach applied in the
above-mentioned theorems, in some papers also other forms of axiomatiza-
tion of those values for some specific types of cooperative games are dis-
cussed. G. Owen (1977) gave an axiomatization of the Shapley value for
a game with a priori unions (this research for other values was continued
among others by A. Mlodak (2003)). S. C. Littlechild and G. Owen (1976)
as well as later M. Vazquez-Brage et al. (1997) investigated some properties
of the Shapley value for the so-called “airport” games, which is a class of
allocation cost games.
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The present paper contains an extension of the analysis conducted by
A. B. Khmelnitskaya (2003) and concerning constant-sum cooperative games.
She has noted that H. P. Young’s (1985) axiomatization for the Shapley
value, which characterizes it by the efficiency, symmetry and marginalism
axioms, is still valid for the Shapley value defined on the subclass of non-
negative constant-sum games with nonzero worth of the grand coalition (i.e.
one containing all the players of the game) as well as on the entire class of
constant-sum games. We give some parallel theorems for another coopera-
tive game value, namely the Banzhaf value restricted to the constant-sum
games (also in its nonnegative version). Its axiomatization consists of the
marginalism, symmetry and amalgamation properties.

Next we analyze another type of cooperative game called a bilateral game.
The main feature of this model is the coincidence of the worth of any coalition
of such a game with the worth of its complement in the grand set of players
N. If the worth of each coalition is nonnegative (and nonzero for the grand
coalition), then the game is called a nonnegative bilateral game. We give
an axiomatization of the above-mentioned value (and also of the Shapley
value) defined on this class of games which is quite similar to the one in
the case of constant-sum games (and in the case of its nonnegative variant).
It is worth noting that bilateral games also have an important practical
interpretation. The fact that any coalition and its complement in the grand
coalition receive the same benefit implies that individual participants are
relatively important. As a consequence of one participant’s transfer from
one coalition to another all other players can lose or all can gain.

Finally, we consider the Deegan—Packel value. We prove it is a unique
value satisfying the quasi-efficiency, zero-player, quasi-marginalism and sym-
metry axioms. The concept of quasi-marginalism is in some sense similar to
the notion of “classical” marginalism. Instead of marginal utility, we assume
the dependence of a value for a given player only on the worth of all the
coalitions he belongs to. Finally, we discuss the possibility of constructing
an axiomatization of this value defined on the set of constant-sum and bi-
lateral games.

1. Preliminaries. First we recall the fundamental definitions and facts
connected with cooperative game theory and specific models which will be
considered in this research.

Let n > 2 be a fixed natural number. An n-person transferable utility
cooperative game (briefly, a TU-game) is defined by the set of players N =
{1,...,n} (the grand coalition) and by a function v : 2V — R, with v((}) = 0,
called the characteristic function of the game. Therefore, when N is fixed,
a TU-game (N,v) can be identified with v. The cardinality of a coalition
S C N will be denoted by |S|.



Some values for cooperative games 361

Let G be the set of all n-person games v. The sum of v,w € Gy is
defined by (v+w)(S) = v(S) +w(S) for all S C N. Similarly, if v € G and
a is a nonzero real number then we define (av)(S) =a-v(S) for all S C N.
If v(SU{i}) =v(SU{j}) for all S C N\ {i,j5} and any i,j € N,i # j,
then the game v is said to be symmetric. The dual game to v is defined by
v*(S) =v(N)—ov(N\S) forall S C N.

Fix any 7' C N. The unanimity game up € Gy is given by up(S) =1 if
T C S and up(S) = 0 otherwise, for every S C N. The basic game wp € Gy
is defined by wr(S) = 1if S = T and wr(S) = 0 otherwise, for every S C N.

DEFINITION 1. A game v € Gy is called a constant-sum game if for
every S C N,
v(S) +v(N\S) =uv(N).

Thus any constant-sum game is self-dual, i.e. v = v*. The set of all
constant-sum games will be denoted by I'. One can see that the transfer of
a player from S to N \ S does not change the general balance of the game.

DEFINITION 2. A game v € Gy is called a nonnegative constant-sum
game if v € I'y and v(N) # 0 and v(S) > 0 for every S C N.

Thus, we assume that the worth of every coalition is nonnegative and
nonzero in the “grand” case. The set of all nonnegative constant-sum games
will be denoted by I" JJ\; .

Now we introduce two new (but in some sense similar) types of games.

DEFINITION 3. A game v € Gy is called a bilateral game if for every
SCN,S+0,N,
v(S) =v(V\9).

The set of all bilateral games will be denoted by . So, the worth of a
given coalition is equal to the worth of its complement in /N. This increases
the importance of an individual player. His decision regarding a prospective
change of coalition influences the benefits of all the other participants.

DEFINITION 4. A game v € G is called a nonnegative bilateral game if
v e Sy and v(N) # 0 and v(S) > 0 for every S C N.

The set of all nonnegative bilateral games will be denoted by SE .

A wvalue of the game v € Gy is defined to be a function ¢(v) = (¢1(v), ...,
©n(v)) which assigns to the game v a vector from R™. An n-dimensional
vector © = (z1,...,oy) € R™ is called a preimputation if

in =v(N).

If, additionally, z; > v({i}) for all i € N, then x is called an imputation.
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It seems useful to formulate here several fundamental properties of values
of cooperative games, which will be used to construct some axiomatizations,
restricted to special types of games.

Let ¢ be a value on G and v € G be any n-person game.

EFFICIENCY AXIOM. A value ¢ is efficient if for any game v,
n
Zgoi(v) = v(N).
i=1

This means that the vector ¢(v) is a preimputation.

QUASI-EFFICIENCY AXIOM. A value ¢ is quasi-efficient if for any game v,

n
>_¢ilv) = > v().
i=1 SCN
ZERO-PLAYER AXIOM. If i is the zero-player of a game v (i.e. if v(S) = 0
for any S C N with ¢ € S), then ¢;(v) = 0.
Let 0 : N — N be any permutation of the set of players and ov € Gy
be the game ov(S) = v(a(5)), where o(S) = {o(i) : i € S} for any S C N.
SYMMETRY AXIOM. A value ¢ is said to be symmetric if for any game v,
any o and any i € N, @,(;)(0v) = @i(v).
To formulate the next axiom, we recall the definition of amalgamation of
two players introduced by E. Lehrer (1988).

DEFINITION 5. Amalgamation of any two different players i,5 € N of
an m-person game v is a transformation of the game v into an (n — 1)-person
game v(;;) with the set of players (V'\ {4,j}) U{p}, where p denotes a player
represented by the coalition {i,j}. The characteristic function of the latter
game is defined by

v(S) if p ¢ S,
vy (5) = S
v((S\{ph u{ij}) ifpels,
for any set S C (N \ {i,7}) U{p}.
For a better description of further notions, it is also necessary to define
the set of all games with grand coalition being a subset of N, that is,

(1) é]\/ = U GT.
TCN

Analogously, one can define the sets fN, Z:JJ\;, §N, §~‘SJ+V Of course, in the
same way as for Gy, we can define a value ¢ of a game belonging to any of
the above-mentioned classes.

AMALGAMATION AXIOM. For any i,j € N, i # j, and v € Gy, ©p(viiz)
= pi(v) + ¢;(v).
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MARGINALISM AXIOM. A value ¢ is said to be marginalist if for all v €
Gy and every i € N, ¢;(v) depends only upon the ith marginal utility
vector, that is,

pi(v) = fi(v(SU{i}) —v(S5))scm i
where f; is a function of 2”1 variables, i.e. f; : R S R.

QUASI-MARGINALISM AXIOM. A value ¢ is said to be quasi-marginalist
if for all v € Gy and every i € N, ¢;(v) depends only on the values of the
characteristic function of this game for coalitions containing player ¢ (or, in
other words, on the ith quasi-marginal utility vector), that is,

pi(v) = fi(v(SU{i}))scm iy
where f; is a function of 2”1 variables, i.e. f; : R S R.

We recall three types of well-known values of cooperative games which
are the main object of our interest.

DEFINITION 6 (L. S. Shapley (1953)). The Shapley value of player i € N
in a game v € G is defined as

sy = 3 PRI s i) - o(s)).

SCN\{i}

The value Sh(v) is efficient and in some cases it is also an imputation.

DEFINITION 7 (J. F. Banzhaf IIT (1965)). The Banzhaf value of player
1 € N in a game v € Gy is defined as

o Y @SU{h - us)).
SCN\{i}

DEFINITION 8 (J. Deegan and E. W. Packel (1978)). The Deegan—Packel
value of player ¢ € N in a game v € G is defined as

DP;(v) = Y ”(5).

SCN, €S 5]

The value DP(v) is not efficient, but it is quasi-efficient.
The starting point of our considerations is the following theorem formu-
lated and proved by A. B. Khmelnitskaya (2003).

THEOREM 1. The only efficient, symmetric and marginalist value defined
on F]'\‘,' 1s the Shapley value.

In the above-cited paper this main idea was easily generalized to the
set I'y. The three axioms mentioned are sufficient and necessary to uniquely
describe the Shapley value also in this case. It is worth noting that Theorem 1
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is no longer valid for G . As a counterexample one can consider the three-
person game N = {1,2,3} with characteristic function v({1}) = v({2}) =
v({3}) =v({2,3}) =0 and v({1,2}) = v({1,3}) = v({1,2,3}) = 1. Then we
have Sh(v) = (2/3,1/6,1/6). On the other hand, the normalized Banzhaf
values are given as B*(v) = (B1(v)/6, Bo(v)/8, Bs(v)/5) = (3/5,1/5,1/5),
where 3 = By (v) + Ba(v) + Bs(v) = 5/4. Both values, Sh(v) and B*(v), are
efficient, symmetric and marginalist, but have quite different values. This
contradicts the uniqueness of the Shapley value in this case.

2. Main results. As stated earlier, the concept of a value may refer to
games representing various specific classes also with different grand coalitions
(cf. formula (1) and the remarks following it, for example). This remark will
be used in our approach.

To obtain an effective axiomatization of the Banzhaf value defined on the
set I' ]‘\; it is sufficient to replace the efficiency axiom (which is generally not
satisfied by this value) with the amalgamation property. Thus we obtain the
following result.

THEOREM 2. The only value defined on ff\; and satisfying the amalga-
mation, symmetry and marginalism axioms is the Banzhaf value.

Theorem 2 is also valid in the case of the set Iy. Analogous statements
on %J+V and %E (and also on Sy and Sy, respectively) are presented in
Theorems 3 and 4.

THEOREM 3. A walue defined on %E satisfies the efficiency, symmetry
and marginalism azxioms if and only if it coincides with the Shapley value.

THEOREM 4. The only value defined on §E and satisfying the amalga-
mation, symmetry and marginalism axioms is the Banzhaf value.

Because the Deegan—Packel value is not marginalist, there seems to be
no simple axiomatization of this value defined on the above-mentioned class
of games. But in this case a more general theorem holds which uses quasi-
efficiency and quasi-marginalism instead of the classical efficiency and mar-
ginalism axioms.

THEOREM 5. The Deegan—Packel value is a unique value defined on
GnN and satisfying the quasi-efficiency, zero-player, symmetry and quasi-
marginalism azrioms.

At the end of this paper, on the basis of the proof of this theorem, we
discuss in detail some problems concerning axiomatization of this value on
I'y and Sy (and consequently, on I ]J\? and SE) We also propose a partial
solution involving only the quasi-efficiency and quasi-marginalism axioms
satisfied by a value on I'y.
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3. Proofs. We begin with the proofs of Theorems 2 and 4. Since the
methods used are very similar, the two theorems will be proved simultane-
ously.

3.1. Proof of Theorems 2 and 4. (<) It is well-known (cf. E. Lehrer
(1988)) that the Banzhaf value satisfies the three axioms.

(=) We know (L. S. Shapley (1953)) that any game v € Gy can be
uniquely represented as a linear combination of unanimity games, that is,

(2) UV = Z )\TUT

for some real constants Ay, T C N. Note that for any v,v’ € G and any
real number o we have (v+v')* = v* +v"™ and (aw)* = a - v*. Therefore the
game dual to v is represented via the dual unanimity basis, i.e.

(3) = 3 g

Let v € I ]J\; be any nonnegative constant-sum game. Since clearly v, =
(ve + v})/2, formulas (2) and (3) directly imply that the game v, can be
represented in the form

0£TCN

with some reals )\gf) , where for every S C N,

S) + ui(S booTes
u%c)(s)zwz 1/2, TNS#0, T¢S,
0, TnS=0.

Let vy € %}C be any nonnegative bilateral game. Then, after putting
v = vp in (2) and considering the values of both sides of (2) for arbitrary
coalitions S and N \ S with S # () and S # N we easily see that

(5) w= Y Auy
0ATCN
with some reals /\gj), where ugi))(@) =0, uglf)(N) = 1/2 and for every S C N,
S#(Qand S# N,
ur(S) +ur(N\S) {1/2, TCSorTCN\S,

(b) _
up (5) = B)

0 otherwise.

Thus, every player i ¢ T is a dummy-player in both games ugf) and ugé),

that is, u{” (S U {i}) — ul? (S) = 0 for every S € N\ {i} and T C N\ {i},
T = ¢, b. It is easy to check that for every ¢ € N the Banzhaf values of games
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derived by transformation of unanimity games are

. . 1271 e,
&um>=meo=fzw$>={o/ o

= g W (000 + gy () -
+2in S (ur(SU{i}) Fur(N\ (S U{i})

SCN\{i}
S#0,N\{:i}
—ur(S) —ur(N\ S))
o (1/27, GeT,
B { 0, i¢T.

Because the coefficients Ar in the general formulas (4) and (5) are not
necessarily all nonnegative, we cannot apply the induction procedure imme-
diately (reduction of the number of coefficients in (4) and (5) may lead out-
side the classes I JJ\? and S‘sfv respectively). Applying an idea of A. B. Khmel-
nitskaya (2003) we take the following approach. For each ¢t =1, ..., n define

ur(N\ {i}) + uT({i})>
2

6 )\(ac) . ac) 0 d (z) — )\(m)_)\(x) >0 T C N.
(6) : maX{TCI]{[lEEgl ~ Ar’,0} and 7y t T = =

Consider two symmetric games

(7) M:iww Sy,

t=1 0ATCN, |T|=t
(©)

x = ¢, b. One can easily check that each u}’ is a constant-sum game and each
u&?) is a bilateral game. Moreover, all /\gx) > 0 because of (6). Therefore, by
(2), pe € 'y and i, € S Hence, taking into account (4)—(7) for z = ¢, b

we get the equalities

(8) Vg = Mo — Z 775?)“%)’
0ATCN
w1th all n(x) > 0. Therefore, in both cases x = ¢ and x = b, every summand

n (8) belongs to I'y; and "N’ respectively.
Let ¢. and ¢, denote the minimum numbers of summands in (8) for z = ¢
and x = b respectively. Thus

Vo = iz = Z%ﬂ%

for x = ¢, b, where all U(Tk) > 0.
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We will apply a double induction on the index ¢, (x = ¢,b) and the
number n of players. One can easily deduce that Theorems 2 and 4 hold
for n = 2. Assume that n > 2. Let £ be a value defined on F]'\,F and %j{,
satisfying the amalgamation, symmetry and marginalism axioms. If ¢, = 0
then v, = p,, * = ¢,b. Both u. and pp are symmetric games, therefore
by the symmetry axiom, for any 4,5 € N,i # j, we have &(vy) = &;(vz).
Amalgamate players i and j. Then using the fact that v(;;), is an (n — 1)-
person game and the induction hypothesis with respect to n we conclude
that

28i(v2) =&i(vz) +&(v2) =Ep(v(ij)a) = Bp(v(ij)z) = Bi(ve) + Bj(vz) = 2Bi(vz).

Thus we have proved that &(v,) = B;(vy) for z = ¢,b and i € N if
qz = 0.

Now suppose that for x = ¢,b, {(v;) = B(v,) for all games v, with
indices not greater than some ¢, > 0 (here v, € I ]'\’,' and v, € %} in the
cases = = ¢, b respectively). Consider next two arbitrary games z, € I’ ; and
zp € \SN with indices ¢. + 1 and g + 1, respectively. For all h,i € © =
ﬂq””H T}, the symmetry axiom implies that &£,(z;) = &i(25). We will prove
that £;(2,) = Bj(z,) for j §§ O, x = ¢, b. Consider the game

(9) Z nTk uTk

k:jeTy,

The index of zé 7 s at most q. and hence, by induction hypothesis with

respect to g,, we have 5( ) = B(z <]>) x = ¢,b. Since j ¢ O, player j is a

dummy-player in all games u(T) with j ¢ T. Consequently, the jth marginal

()

utility vectors of the games z; and zz* coincide and hence, by marginalism
for £ and for the Banzhaf value, for all j ¢ © we have §;(z;) = fj(zéﬁ) =
Bj(zg<;]>) = Bj(2), ¢ =¢,b.

Amalgamate now two players i € @ and j ¢ ©. Then by induction
hypothesis on n and the amalgamation property of £ we have &;(2,)+&;(22) =
Ep(2(ij)e) = Bp(2(ij)2). Moreover, {;(z;) = Bj(2:) as shown before. Therefore
§i(2x) = Bp(2(ij)e) — &(22) = Bp(2ij)a) — Bj(22) = Bi(za), = ¢, b.

Thus, the proof of Theorems 2 and 4 is complete. m

These results can be easily generalized to the sets fN and §N, respec-
tively. To do this, it is sufficient to conduct the considerations in the same
way but analyzing in the relevant places of the above proof the games on
I'y and Sy as well as solutions on Iy and FJJ\?.

3.2. Proof of Theorem 3. This proof is quite similar to the one by
A. Khmelnitskaya in the case of the Shapley value defined on FJJ\; and uses
some methods applied above.
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(<) It is well-known (cf. L. S. Shapley (1953)) that the Shapley value
satisfies the three stated conditions.

(=) Let v, € I be any nonnegative bilateral game. Then, as shown in
the proof of Theorem 4, it can be represented in the form (5). We recall our
observation in that proof, that every player i ¢ T is a dummy-player in the
game ugf) and if |T'| > 2 then any players i,j € T, i # j, are symmetric in
this game. Therefore, the Shapley value of any player ¢ € N in this case is

. (1/@QT]) ifieT,
Shlr’) = {0 itig¢T

Define ng)) as in (6) and 4 as in (7). Thus the game vy, can be represented

in the form (8) for x = b. Let g be the number of nonzero coefficients under
the summation sign in (8) for = b. Thus

= Hb — Z nTk uTk

with all ) # 0.

Let £ be an efficient, symmetric and marginalist value on & Repeatlng
the induction procedure with respect to ¢, applied in the proof of Theorem 4,
we have v, = up for g, = 0 and because of symmetry of the latter game we
conclude that in this case &;(vp) = &j(vp) for any i,j € N, i # j. Then the
efficiency and symmetry axioms imply that £(vp) = Sh(vy).

Now suppose that &(vy) = Sh(vy) for all games v, € %E with index
not greater than some ¢q;, > 0. Consider an arbitrary game z;, € %} with

index ¢, + 1. For all h,i € © = ﬂq”+ T}, the symmetry axiom implies that
En(zp) = &i(2p). Let j € N\ © and Zé i ¢ 3 be the game defined by (9) for

x = b. The index of zéj ) is at most gy and the jth marginal utility vectors of
7

the games zb and z, coincide. Hence, by the marginalism axiom for £ and
for the Shapley value and by induction hypothesis on g, for all j ¢ © we
have £;(2) = §j(zé]>) = Shj(zé]>) = Sh;(zp). Next, by the efficiency axiom
for ¢ as well as by the symmetry of the players belonging to the set © we
conclude that &;(z,) = Sh;(2p) for any i € ©. Thus, the proof is complete. m

Of course, our remarks following the proof of Theorem 2 are valid also in
this case. That is, the above procedure can be generalized to S in a similar
way.

3.3. Proof of Theorem 5. (<) It is well-known (cf. J. Deegan and E. W.
Packel (1978)) that the Deegan—Packel value satisfies the axioms given.

(=) We know (J. Deegan and E. W. Packel (1978)) that each game
v € Gy can be uniquely represented as a linear combination of basic games,
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that is,

(10) v = Z Yrwp

for some real constants v, T' C N.
The Deegan—Packel value of the game wr has the following form:
1/|T| ifieT,
DP;(wy) =1/n and DP;(wr) = {0 fidT,
if TCNand T #0,N, for any i € N.

Let £ be a value on GGy satisfying the quasi-efficiency, zero-player, symme-
try and quasi-marginalism axioms. Assume that ¢ is the number of nonzero
coefficients under the summation sign in (10). We will apply the induction
procedure on q.

If ¢ = 1 then v = ypwr for some T' C N. Thus, by the symmetry,
quasi-efficiency and zero-player axioms for £ (note that any player belonging
to N\ T is a zero-player in the game wr) we have &(v) = &(ypwr) =
DP(’)’T’LUT) =T DP(IUT)

Suppose that {(v) = DP(v) for all games v € Gy with index not greater
than ¢. Let z € Gy be a game of the form (10) with ¢+ 1 nonzero coefficients
in the summation sign. Thus

q+1
z = E VT3, WT 5
k=1

where yr, #0, k=1,...,¢+ 1.
Put © = ﬂiii Ty. For all h,i € © the symmetry of £ implies that
&n(2) = &(2). We will prove that £;(z) = DP;(z) for any j € N \ ©. Define

a game zU) € Gy such that
L) — Z 1 W, -

k:jETk

The index of z¥) is at most ¢ and therefore, by induction hypothesis, we
have §j(z<j>) = DPj(z<j>). Since j ¢ O, player j is a zero-player in all games
wr with j ¢ T. Consequently, for any j ¢ © the jth quasi-marginal utility
vectors of the games z and 2z coincide and hence, by the quasi-marginalism
axiom for ¢, it follows that &;(2) = &;(29)) = DP;(21)) = DP;(z),j € N\O.
Hence, using the quasi-efficiency of &, we obtain

DG+ Y g = ) A9,
i€ JEN\O SCN

and by symmetry of players belonging to © we conclude that &;(z) = DP;(z)
forany i € O. u
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REMARK. It is worth noting that in contrast to the previous theorems we
have some difficulty in formulating a similar axiomatization of the Deegan—
Packel value defined on I'y or Sy (i.e., specific to those classes of games).
First we must give up the zero-player axiom. This can be justified as follows.
Let v1 € I'y, v2 € Sy and @ € N be a zero-player of both games. Then
0 = vi(S) = vi(N) —vi(N\ S) for any S > i. Hence, v1(N) = 0 and
v1(A) = 0 for any A C N. Analogously, 0 = v2(S) = v2(N \ S), v2(N) =0
and vy(A) = 0 for any A C N. Therefore for any nontrivial constant-sum or
bilateral game no member of the grand coalition is a zero-player. Thus, the
zero-player property is not useful here.

Consider a value ¢ defined on &y which is quasi-efficient, symmetric
and quasi-marginalist. Let v € Sy. Denote by ¢;(v), i € N, the ith quasi-
marginal utility vector of v. If N 5 j # ¢ is another player of this game, then
we obtain {v(S): S C N,ie€ S} ={v(S): SCN,i,jeStU{v(S): S CN,
i€S,j¢S={v(S):SCN,i,jeStU{v(N\S): SCN,ie€S j¢S}=
{v(S): SCN,i,je S}U{v(S): SCN,i¢S5,jeS={vS):SCN,
j € S} and hence ¢;(v) = ¢;(v).

So, by quasi-marginalism and quasi-efficiency of &, we have

Gi(v) = ZSQNU(S) — DP; (v)

n

for any ¢ € N. Therefore, it is easy to observe that the requirement of sym-
metry of £ is redundant. The situation here is similar to the case of symmet-
ric games, but a bilateral game need not be symmetric (a counterexample
is e.g. the three-person game v defined as v({1}) = v({2}) = v({1,3}) =
v({2,31) = 0, v({3}) = v({1,2}) = 1 and v({1,2,3}) = v(N) = 2).

The case of I’y seems to be slightly more sophisticated. There exists some
premise suggesting that the construction of an effective axiomatization may
not be possible by known methods. Let £ be a value defined on Iy satisfying
the quasi-efficiency, symmetry and quasi-marginalism axioms. Denote by wr
a basis of I'y indexed by T" C N. That is, wr € I'y, T C N, are simple
games such that any game v € I'y can be uniquely represented as

(11) v = Z XTWT

TCN

for some real constants y7, T C N. Let ¢ be the number of nonzero coefhi-
cients in (11). Thus

q
v = E XTkwTk‘
k=1

Let © =(N{_, T) and i ¢ ©. Putting Q = {1,...,¢} we obtain
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v = Z XTpWT;, T Z XT3, WT, -

kEQ :i€Ty, keQ :i¢Ty,
In order that the ¢th quasi-marginal utility vectors of the games v and
Y keQ-ieT, XTWT, coincide it is necessary and sufficient that J(S5) :=
keQ:igT, XTpwr, = 0 whenever S 3 i. But ¢ € I'y is a nontrivial constant-
sum game and ¢ must be a zero-player in 9. As we noted earlier, this is
impossible.
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