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SOME VALUES FOR CONSTANT-SUM AND BILATERALCOOPERATIVE GAMES
Abstrat. We prove new axiomatizations of the Shapley value and theBanzhaf value, de�ned on the lass of nonnegative onstant-sum games withnonzero worth of the grand oalition as well as on nonnegative bilateralgames with nonzero worth of the grand oalition. A harateristi feature ofthe latter lass of ooperative games is that for suh a game any oalition andits omplement in the set of all players have the same worth. The axiomati-zations are then generalized to the entire lass of onstant-sum or bilateralgames, respetively. Moreover, a new axiomatization of the Deegan�Pakelvalue on the set of all ooperative games is presented and possibilities ofreation of its version in those speial ases are disussed.Introdution. One of the most important problems in game theoryis axiomatization of the main, well-known solutions (values) of ooperativegames. The famous theorems formulated and proved by L. S. Shapley (1953),J. Deegan and E. W. Pakel (1978), H. P. Young (1985), E. Lehrer (1988),J. A. M. Potters (1991) and L. M. Ruiz et al. (1996) belong to the fun-damental results in this area. Besides the general approah applied in theabove-mentioned theorems, in some papers also other forms of axiomatiza-tion of those values for some spei� types of ooperative games are dis-ussed. G. Owen (1977) gave an axiomatization of the Shapley value fora game with a priori unions (this researh for other values was ontinuedamong others by A. Mªodak (2003)). S. C. Littlehild and G. Owen (1976)as well as later M. Vázquez-Brage et al. (1997) investigated some propertiesof the Shapley value for the so-alled �airport� games, whih is a lass ofalloation ost games.2000 Mathematis Subjet Classi�ation: Primary 91A12.Key words and phrases: ooperative game, onstant-sum game, bilateral game, value,Banzhaf value, Deegan�Pakel value. [359℄ © Instytut Matematyzny PAN, 2007



360 A. MªodakThe present paper ontains an extension of the analysis onduted byA. B. Khmelnitskaya (2003) and onerning onstant-sum ooperative games.She has noted that H. P. Young's (1985) axiomatization for the Shapleyvalue, whih haraterizes it by the e�ieny, symmetry and marginalismaxioms, is still valid for the Shapley value de�ned on the sublass of non-negative onstant-sum games with nonzero worth of the grand oalition (i.e.one ontaining all the players of the game) as well as on the entire lass ofonstant-sum games. We give some parallel theorems for another oopera-tive game value, namely the Banzhaf value restrited to the onstant-sumgames (also in its nonnegative version). Its axiomatization onsists of themarginalism, symmetry and amalgamation properties.Next we analyze another type of ooperative game alled a bilateral game.The main feature of this model is the oinidene of the worth of any oalitionof suh a game with the worth of its omplement in the grand set of players
N . If the worth of eah oalition is nonnegative (and nonzero for the grandoalition), then the game is alled a nonnegative bilateral game. We givean axiomatization of the above-mentioned value (and also of the Shapleyvalue) de�ned on this lass of games whih is quite similar to the one inthe ase of onstant-sum games (and in the ase of its nonnegative variant).It is worth noting that bilateral games also have an important pratialinterpretation. The fat that any oalition and its omplement in the grandoalition reeive the same bene�t implies that individual partiipants arerelatively important. As a onsequene of one partiipant's transfer fromone oalition to another all other players an lose or all an gain.Finally, we onsider the Deegan�Pakel value. We prove it is a uniquevalue satisfying the quasi-e�ieny, zero-player, quasi-marginalism and sym-metry axioms. The onept of quasi-marginalism is in some sense similar tothe notion of �lassial� marginalism. Instead of marginal utility, we assumethe dependene of a value for a given player only on the worth of all theoalitions he belongs to. Finally, we disuss the possibility of onstrutingan axiomatization of this value de�ned on the set of onstant-sum and bi-lateral games.1. Preliminaries. First we reall the fundamental de�nitions and fatsonneted with ooperative game theory and spei� models whih will beonsidered in this researh.Let n ≥ 2 be a �xed natural number. An n-person transferable utilityooperative game (brie�y, a TU-game) is de�ned by the set of players N =
{1, . . . , n} (the grand oalition) and by a funtion v : 2N → R, with v(∅) = 0,alled the harateristi funtion of the game. Therefore, when N is �xed,a TU-game (N, v) an be identi�ed with v. The ardinality of a oalition
S ⊆ N will be denoted by |S|.



Some values for ooperative games 361Let GN be the set of all n-person games v. The sum of v, w ∈ GN isde�ned by (v +w)(S) = v(S)+w(S) for all S ⊆ N . Similarly, if v ∈ GN and
a is a nonzero real number then we de�ne (av)(S) = a · v(S) for all S ⊆ N .If v(S ∪ {i}) = v(S ∪ {j}) for all S ⊆ N \ {i, j} and any i, j ∈ N, i 6= j,then the game v is said to be symmetri. The dual game to v is de�ned by
v∗(S) = v(N) − v(N \ S) for all S ⊆ N .Fix any T ⊆ N . The unanimity game uT ∈ GN is given by uT (S) = 1 if
T ⊆ S and uT (S) = 0 otherwise, for every S ⊆ N . The basi game wT ∈ GNis de�ned by wT (S) = 1 if S = T and wT (S) = 0 otherwise, for every S ⊆ N .Definition 1. A game v ∈ GN is alled a onstant-sum game if forevery S ⊆ N ,

v(S) + v(N \ S) = v(N).Thus any onstant-sum game is self-dual, i.e. v = v∗. The set of allonstant-sum games will be denoted by ΓN . One an see that the transfer ofa player from S to N \ S does not hange the general balane of the game.Definition 2. A game v ∈ GN is alled a nonnegative onstant-sumgame if v ∈ ΓN and v(N) 6= 0 and v(S) ≥ 0 for every S ⊆ N .Thus, we assume that the worth of every oalition is nonnegative andnonzero in the �grand� ase. The set of all nonnegative onstant-sum gameswill be denoted by Γ+
N .Now we introdue two new (but in some sense similar) types of games.Definition 3. A game v ∈ GN is alled a bilateral game if for every

S ⊆ N , S 6= ∅, N ,
v(S) = v(N \ S).The set of all bilateral games will be denoted by ℑN . So, the worth of agiven oalition is equal to the worth of its omplement in N . This inreasesthe importane of an individual player. His deision regarding a prospetivehange of oalition in�uenes the bene�ts of all the other partiipants.Definition 4. A game v ∈ GN is alled a nonnegative bilateral game if

v ∈ ℑN and v(N) 6= 0 and v(S) ≥ 0 for every S ⊆ N .The set of all nonnegative bilateral games will be denoted by ℑ+
N .A value of the game v ∈ GN is de�ned to be a funtion ϕ(v) = (ϕ1(v), . . . ,

ϕn(v)) whih assigns to the game v a vetor from R
n. An n-dimensionalvetor x = (x1, . . . , xn) ∈ R

n is alled a preimputation if
n∑

i=1

xi = v(N).If, additionally, xi ≥ v({i}) for all i ∈ N , then x is alled an imputation.



362 A. MªodakIt seems useful to formulate here several fundamental properties of valuesof ooperative games, whih will be used to onstrut some axiomatizations,restrited to speial types of games.Let ϕ be a value on GN and v ∈ GN be any n-person game.Effiieny axiom. A value ϕ is e�ient if for any game v,
n∑

i=1

ϕi(v) = v(N).This means that the vetor ϕ(v) is a preimputation.Quasi-effiieny axiom. A value ϕ is quasi-e�ient if for any game v,
n∑

i=1

ϕi(v) =
∑

S⊆N

v(S).Zero-player axiom. If i is the zero-player of a game v (i.e. if v(S) = 0for any S ⊆ N with i ∈ S), then ϕi(v) = 0.Let σ : N → N be any permutation of the set of players and σv ∈ GNbe the game σv(S) = v(σ(S)), where σ(S) = {σ(i) : i ∈ S} for any S ⊆ N .Symmetry axiom. A value ϕ is said to be symmetri if for any game v,any σ and any i ∈ N , ϕσ(i)(σv) = ϕi(v).To formulate the next axiom, we reall the de�nition of amalgamation oftwo players introdued by E. Lehrer (1988).Definition 5. Amalgamation of any two di�erent players i, j ∈ N ofan n-person game v is a transformation of the game v into an (n−1)-persongame v(ij) with the set of players (N \{i, j})∪{p}, where p denotes a playerrepresented by the oalition {i, j}. The harateristi funtion of the lattergame is de�ned by
v(ij)(S) =

{
v(S) if p /∈ S,

v((S \ {p}) ∪ {i, j}) if p ∈ S,for any set S ⊆ (N \ {i, j}) ∪ {p}.For a better desription of further notions, it is also neessary to de�nethe set of all games with grand oalition being a subset of N , that is,(1) G̃N =
⋃

T⊆N

GT .

Analogously, one an de�ne the sets Γ̃N , Γ̃+
N , ℑ̃N , ℑ̃+

N . Of ourse, in thesame way as for GN , we an de�ne a value ϕ of a game belonging to any ofthe above-mentioned lasses.Amalgamation axiom. For any i, j ∈ N , i 6= j, and v ∈ G̃N , ϕp(v(ij))
= ϕi(v) + ϕj(v).



Some values for ooperative games 363Marginalism axiom. A value ϕ is said to be marginalist if for all v ∈
GN and every i ∈ N , ϕi(v) depends only upon the ith marginal utilityvetor, that is,

ϕi(v) = fi(v(S ∪ {i}) − v(S))S⊆N\{i},where fi is a funtion of 2n−1 variables, i.e. fi : R
2n−1

→ R.Quasi-marginalism axiom. A value ϕ is said to be quasi-marginalistif for all v ∈ GN and every i ∈ N , ϕi(v) depends only on the values of theharateristi funtion of this game for oalitions ontaining player i (or, inother words, on the ith quasi-marginal utility vetor), that is,
ϕi(v) = fi(v(S ∪ {i}))S⊆N\{i},where fi is a funtion of 2n−1 variables, i.e. fi : R

2n−1

→ R.We reall three types of well-known values of ooperative games whihare the main objet of our interest.Definition 6 (L. S. Shapley (1953)). The Shapley value of player i ∈ Nin a game v ∈ GN is de�ned as
Shi(v) =

∑

S⊆N\{i}

|S|! (n − |S| − 1)!

n!
(v(S ∪ {i}) − v(S)).

The value Sh(v) is e�ient and in some ases it is also an imputation.Definition 7 (J. F. Banzhaf III (1965)). The Banzhaf value of player
i ∈ N in a game v ∈ GN is de�ned as

Bi(v) =
1

2n−1

∑

S⊆N\{i}

(v(S ∪ {i}) − v(S)).

Definition 8 (J. Deegan and E. W. Pakel (1978)). The Deegan�Pakelvalue of player i ∈ N in a game v ∈ GN is de�ned as
DPi(v) =

∑

S⊆N, i∈S

v(S)

|S|
.

The value DP(v) is not e�ient, but it is quasi-e�ient.The starting point of our onsiderations is the following theorem formu-lated and proved by A. B. Khmelnitskaya (2003).Theorem 1. The only e�ient , symmetri and marginalist value de�nedon Γ̃+
N is the Shapley value.In the above-ited paper this main idea was easily generalized to theset ΓN . The three axioms mentioned are su�ient and neessary to uniquelydesribe the Shapley value also in this ase. It is worth noting that Theorem 1



364 A. Mªodakis no longer valid for GN . As a ounterexample one an onsider the three-person game N = {1, 2, 3} with harateristi funtion v({1}) = v({2}) =
v({3}) = v({2, 3}) = 0 and v({1, 2}) = v({1, 3}) = v({1, 2, 3}) = 1. Then wehave Sh(v) = (2/3, 1/6, 1/6). On the other hand, the normalized Banzhafvalues are given as B∗(v) = (B1(v)/β, B2(v)/β, B3(v)/β) = (3/5, 1/5, 1/5),where β = B1(v) + B2(v) + B3(v) = 5/4. Both values, Sh(v) and B∗(v), aree�ient, symmetri and marginalist, but have quite di�erent values. Thisontradits the uniqueness of the Shapley value in this ase.2. Main results. As stated earlier, the onept of a value may refer togames representing various spei� lasses also with di�erent grand oalitions(f. formula (1) and the remarks following it, for example). This remark willbe used in our approah.To obtain an e�etive axiomatization of the Banzhaf value de�ned on theset Γ+

N it is su�ient to replae the e�ieny axiom (whih is generally notsatis�ed by this value) with the amalgamation property. Thus we obtain thefollowing result.Theorem 2. The only value de�ned on Γ̃+
N and satisfying the amalga-mation, symmetry and marginalism axioms is the Banzhaf value.Theorem 2 is also valid in the ase of the set Γ̃N . Analogous statementson ℑ+

N and ℑ̃+
N (and also on ℑN and ℑ̃N , respetively) are presented inTheorems 3 and 4.Theorem 3. A value de�ned on ℑ+

N satis�es the e�ieny , symmetryand marginalism axioms if and only if it oinides with the Shapley value.Theorem 4. The only value de�ned on ℑ̃+
N and satisfying the amalga-mation, symmetry and marginalism axioms is the Banzhaf value.Beause the Deegan�Pakel value is not marginalist, there seems to beno simple axiomatization of this value de�ned on the above-mentioned lassof games. But in this ase a more general theorem holds whih uses quasi-e�ieny and quasi-marginalism instead of the lassial e�ieny and mar-ginalism axioms.Theorem 5. The Deegan�Pakel value is a unique value de�ned on

GN and satisfying the quasi-e�ieny , zero-player , symmetry and quasi-marginalism axioms.At the end of this paper, on the basis of the proof of this theorem, wedisuss in detail some problems onerning axiomatization of this value on
ΓN and ℑN (and onsequently, on Γ+

N and ℑ+
N ). We also propose a partialsolution involving only the quasi-e�ieny and quasi-marginalism axiomssatis�ed by a value on ΓN .



Some values for ooperative games 3653. Proofs. We begin with the proofs of Theorems 2 and 4. Sine themethods used are very similar, the two theorems will be proved simultane-ously.3.1. Proof of Theorems 2 and 4. (⇐) It is well-known (f. E. Lehrer(1988)) that the Banzhaf value satis�es the three axioms.
(⇒) We know (L. S. Shapley (1953)) that any game v ∈ GN an beuniquely represented as a linear ombination of unanimity games, that is,(2) v =

∑

∅6=T⊆N

λT uTfor some real onstants λT , T ⊆ N . Note that for any v, v′ ∈ GN and anyreal number α we have (v + v′)∗ = v∗ + v′∗ and (αv)∗ = α · v∗. Therefore thegame dual to v is represented via the dual unanimity basis, i.e.(3) v∗ =
∑

∅6=T⊆N

λT u∗
T .

Let vc ∈ Γ+
N be any nonnegative onstant-sum game. Sine learly vc =

(vc + v∗c )/2, formulas (2) and (3) diretly imply that the game vc an berepresented in the form(4) vc =
∑

∅6=T⊆N

λ
(c)
T u

(c)
T .

with some reals λ
(c)
T , where for every S ⊆ N ,

u
(c)
T (S) =

uT (S) + u∗
T (S)

2
=





1, T ⊆ S,

1/2, T ∩ S 6= ∅, T 6⊂ S,
0, T ∩ S = ∅.Let vb ∈ ℑ+

N be any nonnegative bilateral game. Then, after putting
v = vb in (2) and onsidering the values of both sides of (2) for arbitraryoalitions S and N \ S with S 6= ∅ and S 6= N we easily see that(5) vb =

∑

∅6=T⊆N

λ
(b)
T u

(b)
T

with some reals λ
(b)
T , where u

(b)
T (∅) = 0, u

(b)
T (N) = 1/2 and for every S ⊆ N ,

S 6= ∅ and S 6= N ,
u

(b)
T (S) =

uT (S) + uT (N \ S)

2
=

{
1/2, T ⊆ S or T ⊆ N \ S,

0 otherwise.Thus, every player i /∈ T is a dummy-player in both games u
(c)
T and u

(b)
T ,that is, u

(x)
T (S ∪ {i}) − u

(x)
T (S) = 0 for every S ⊆ N \ {i} and T ⊆ N \ {i},

x = c, b. It is easy to hek that for every i ∈ N the Banzhaf values of games



366 A. Mªodakderived by transformation of unanimity games are
Bi(uT ) = Bi(u

∗
T ) = Bi(u

(c)
T ) =

{
1/2|T |−1, i ∈ T ,
0, i /∈ T.and

Bi(u
(b)
T ) =

1

2n−1
u

(b)
T ({i}) +

1

2n−1

(
u

(b)
T (N) −

uT (N \ {i}) + uT ({i})

2

)

+
1

2n

∑

S⊆N\{i}
S 6=∅,N\{i}

(uT (S ∪ {i}) + uT (N \ (S ∪ {i}))

− uT (S) − uT (N \ S))

=

{
1/2n, i ∈ T,

0, i /∈ T.Beause the oe�ients λT in the general formulas (4) and (5) are notneessarily all nonnegative, we annot apply the indution proedure imme-diately (redution of the number of oe�ients in (4) and (5) may lead out-side the lasses Γ+
N and ℑ+

N respetively). Applying an idea of A. B. Khmel-nitskaya (2003) we take the following approah. For eah t = 1, . . . , n de�ne
(6) λ

(x)
t = max { max

T⊆N :|T |=t
λ

(x)
T , 0} and η

(x)
T = λ

(x)
t −λ

(x)
T ≥ 0, T ⊆ N.Consider two symmetri games(7) µx =

n∑

t=1

λ
(x)
t

∑

∅6=T⊆N, |T |=t

u
(x)
T ,

x = c, b. One an easily hek that eah u
(c)
T is a onstant-sum game and eah

u
(b)
T is a bilateral game. Moreover, all λ

(x)
t ≥ 0 beause of (6). Therefore, by(2), µc ∈ Γ+

N and µb ∈ ℑ+
N . Hene, taking into aount (4)�(7) for x = c, bwe get the equalities(8) vx = µx −

∑

∅6=T⊆N

η
(x)
T u

(x)
T ,

with all η
(x)
T ≥ 0. Therefore, in both ases x = c and x = b, every summandin (8) belongs to Γ+

N and ℑ+
N , respetively.Let qc and qb denote the minimum numbers of summands in (8) for x = cand x = b respetively. Thus
vx = µx −

qx∑

k=1

η
(x)
Tk

u
(x)
Tkfor x = c, b, where all η

(x)
Tk

> 0.



Some values for ooperative games 367We will apply a double indution on the index qx (x = c, b) and thenumber n of players. One an easily dedue that Theorems 2 and 4 holdfor n = 2. Assume that n > 2. Let ξ be a value de�ned on Γ̃+
N and ℑ̃+

Nsatisfying the amalgamation, symmetry and marginalism axioms. If qx = 0then vx = µx, x = c, b. Both µc and µb are symmetri games, thereforeby the symmetry axiom, for any i, j ∈ N, i 6= j, we have ξi(vx) = ξj(vx).Amalgamate players i and j. Then using the fat that v(ij)x is an (n − 1)-person game and the indution hypothesis with respet to n we onludethat
2ξi(vx)=ξi(vx)+ ξj(vx)=ξp(v(ij)x)=Bp(v(ij)x) = Bi(vx)+Bj(vx)=2Bi(vx).Thus we have proved that ξi(vx) = Bi(vx) for x = c, b and i ∈ N if
qx = 0.Now suppose that for x = c, b, ξ(vx) = B(vx) for all games vx withindies not greater than some qx ≥ 0 (here vc ∈ Γ+

N and vb ∈ ℑ+
N in theases x = c, b respetively). Consider next two arbitrary games zc ∈ Γ+

N and
zb ∈ ℑ+

N with indies qc + 1 and qb + 1, respetively. For all h, i ∈ Θ =⋂qx+1
k=1 Tk the symmetry axiom implies that ξh(zx) = ξi(zx). We will provethat ξj(zx) = Bj(zx) for j /∈ Θ, x = c, b. Consider the game(9) z〈j〉x = µx −

∑

k:j∈Tk

η
(x)
Tk

u
(x)
Tk

.

The index of z
〈j〉
x is at most qx and hene, by indution hypothesis withrespet to qx, we have ξ(z

〈j〉
x ) = B(z

〈j〉
x ), x = c, b. Sine j /∈ Θ, player j is adummy-player in all games u

(x)
T with j /∈ T . Consequently, the jth marginalutility vetors of the games zx and z

〈j〉
x oinide and hene, by marginalismfor ξ and for the Banzhaf value, for all j /∈ Θ we have ξj(zx) = ξj(z

〈j〉
x ) =

Bj(z
〈j〉
x ) = Bj(zx), x = c, b.Amalgamate now two players i ∈ Θ and j /∈ Θ. Then by indutionhypothesis on n and the amalgamation property of ξ we have ξi(zx)+ξj(zx) =

ξp(z(ij)x) = Bp(z(ij)x). Moreover, ξj(zx) = Bj(zx) as shown before. Therefore
ξi(zx) = Bp(z(ij)x) − ξj(zx) = Bp(z(ij)x) − Bj(zx) = Bi(zx), x = c, b.Thus, the proof of Theorems 2 and 4 is omplete.These results an be easily generalized to the sets Γ̃N and ℑ̃N , respe-tively. To do this, it is su�ient to ondut the onsiderations in the sameway but analyzing in the relevant plaes of the above proof the games on
ΓN and ℑN as well as solutions on Γ̃N and Γ̃+

N .3.2. Proof of Theorem 3. This proof is quite similar to the one byA. Khmelnitskaya in the ase of the Shapley value de�ned on Γ+
N and usessome methods applied above.



368 A. Mªodak
(⇐) It is well-known (f. L. S. Shapley (1953)) that the Shapley valuesatis�es the three stated onditions.
(⇒) Let vb ∈ ℑ+

N be any nonnegative bilateral game. Then, as shown inthe proof of Theorem 4, it an be represented in the form (5). We reall ourobservation in that proof, that every player i /∈ T is a dummy-player in thegame u
(b)
T and if |T | ≥ 2 then any players i, j ∈ T , i 6= j, are symmetri inthis game. Therefore, the Shapley value of any player i ∈ N in this ase is

Shi(u
(b)
T ) =

{
1/(2|T |) if i ∈ T ,
0 if i /∈ T.De�ne η

(b)
T as in (6) and µb as in (7). Thus the game vb an be representedin the form (8) for x = b. Let qb be the number of nonzero oe�ients underthe summation sign in (8) for x = b. Thus

vb = µb −

qb∑

k=1

η
(b)
Tk

u
(b)
Tkwith all η

(b)
Tk

6= 0.Let ξ be an e�ient, symmetri and marginalist value on ℑ+
N . Repeatingthe indution proedure with respet to qb applied in the proof of Theorem 4,we have vb = µb for qb = 0 and beause of symmetry of the latter game weonlude that in this ase ξi(vb) = ξj(vb) for any i, j ∈ N , i 6= j. Then thee�ieny and symmetry axioms imply that ξ(vb) = Sh(vb).Now suppose that ξ(vb) = Sh(vb) for all games vb ∈ ℑ+

N with indexnot greater than some qb ≥ 0. Consider an arbitrary game zb ∈ ℑ+
N withindex qb + 1. For all h, i ∈ Θ =

⋂qb+1
k=1 Tk the symmetry axiom implies that

ξh(zb) = ξi(zb). Let j ∈ N \Θ and z
〈j〉
b ∈ ℑ+

N be the game de�ned by (9) for
x = b. The index of z

〈j〉
b is at most qb and the jth marginal utility vetors ofthe games z

〈j〉
b and zb oinide. Hene, by the marginalism axiom for ξ andfor the Shapley value and by indution hypothesis on qb, for all j /∈ Θ wehave ξj(zb) = ξj(z

〈j〉
b ) = Shj(z

〈j〉
b ) = Shj(zb). Next, by the e�ieny axiomfor ξ as well as by the symmetry of the players belonging to the set Θ weonlude that ξi(zb) = Shi(zb) for any i ∈ Θ. Thus, the proof is omplete.Of ourse, our remarks following the proof of Theorem 2 are valid also inthis ase. That is, the above proedure an be generalized to ℑN in a similarway.3.3. Proof of Theorem 5. (⇐) It is well-known (f. J. Deegan and E. W.Pakel (1978)) that the Deegan�Pakel value satis�es the axioms given.

(⇒) We know (J. Deegan and E. W. Pakel (1978)) that eah game
v ∈ GN an be uniquely represented as a linear ombination of basi games,
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∑

∅6=T⊆N

γT wTfor some real onstants γT , T ⊆ N .The Deegan�Pakel value of the game wT has the following form:
DPi(wN ) = 1/n and DPi(wT ) =

{
1/|T | if i ∈ T ,
0 if i /∈ T ,if T ⊆ N and T 6= ∅, N , for any i ∈ N .Let ξ be a value on GN satisfying the quasi-e�ieny, zero-player, symme-try and quasi-marginalism axioms. Assume that q is the number of nonzerooe�ients under the summation sign in (10). We will apply the indutionproedure on q.If q = 1 then v = γT wT for some T ⊆ N . Thus, by the symmetry,quasi-e�ieny and zero-player axioms for ξ (note that any player belongingto N \ T is a zero-player in the game wT ) we have ξ(v) = ξ(γT wT ) =

DP(γT wT ) = γT · DP(wT ).Suppose that ξ(v) = DP(v) for all games v ∈ GN with index not greaterthan q. Let z ∈ GN be a game of the form (10) with q+1 nonzero oe�ientsin the summation sign. Thus
z =

q+1∑

k=1

γTk
wTk

,where γTk
6= 0, k = 1, . . . , q + 1.Put Θ =

⋂q+1
k=1 Tk. For all h, i ∈ Θ the symmetry of ξ implies that

ξh(z) = ξi(z). We will prove that ξj(z) = DPj(z) for any j ∈ N \ Θ. De�nea game z〈j〉 ∈ GN suh that
z〈j〉 =

∑

k : j∈Tk

γTk
wTk

.

The index of z〈j〉 is at most q and therefore, by indution hypothesis, wehave ξj(z
〈j〉) = DPj(z

〈j〉). Sine j /∈ Θ, player j is a zero-player in all games
wT with j /∈ T . Consequently, for any j /∈ Θ the jth quasi-marginal utilityvetors of the games z and z〈j〉 oinide and hene, by the quasi-marginalismaxiom for ξ, it follows that ξj(z) = ξj(z

〈j〉) = DPj(z
〈j〉) = DPj(z), j ∈ N \Θ.Hene, using the quasi-e�ieny of ξ, we obtain

∑

i∈Θ

ξi(z) +
∑

j∈N\Θ

ξj(z) =
∑

S⊆N

z(S),

and by symmetry of players belonging to Θ we onlude that ξi(z) = DPi(z)for any i ∈ Θ.



370 A. MªodakRemark. It is worth noting that in ontrast to the previous theorems wehave some di�ulty in formulating a similar axiomatization of the Deegan�Pakel value de�ned on ΓN or ℑN (i.e., spei� to those lasses of games).First we must give up the zero-player axiom. This an be justi�ed as follows.Let v1 ∈ ΓN , v2 ∈ ℑN and i ∈ N be a zero-player of both games. Then
0 = v1(S) = v1(N) − v1(N \ S) for any S ∋ i. Hene, v1(N) = 0 and
v1(A) = 0 for any A ⊆ N . Analogously, 0 = v2(S) = v2(N \ S), v2(N) = 0and v2(A) = 0 for any A ⊆ N . Therefore for any nontrivial onstant-sum orbilateral game no member of the grand oalition is a zero-player. Thus, thezero-player property is not useful here.Consider a value ξ de�ned on ℑN whih is quasi-e�ient, symmetriand quasi-marginalist. Let v ∈ ℑN . Denote by φi(v), i ∈ N , the ith quasi-marginal utility vetor of v. If N ∋ j 6= i is another player of this game, thenwe obtain {v(S) : S ⊆ N, i ∈ S} = {v(S) : S ⊆ N, i, j ∈ S}∪{v(S) : S ⊆ N,
i ∈ S, j /∈ S} = {v(S) : S ⊆ N, i, j ∈ S}∪{v(N \S) : S ⊆ N, i ∈ S, j /∈ S} =
{v(S) : S ⊆ N, i, j ∈ S} ∪ {v(S) : S ⊆ N, i /∈ S, j ∈ S} = {v(S) : S ⊆ N,
j ∈ S} and hene φi(v) = φj(v).So, by quasi-marginalism and quasi-e�ieny of ξ, we have

ξi(v) =

∑
S⊆N v(S)

n
= DPi(v)for any i ∈ N . Therefore, it is easy to observe that the requirement of sym-metry of ξ is redundant. The situation here is similar to the ase of symmet-ri games, but a bilateral game need not be symmetri (a ounterexampleis e.g. the three-person game v de�ned as v({1}) = v({2}) = v({1, 3}) =

v({2, 3}) = 0, v({3}) = v({1, 2}) = 1 and v({1, 2, 3}) = v(N) = 2).The ase of ΓN seems to be slightly more sophistiated. There exists somepremise suggesting that the onstrution of an e�etive axiomatization maynot be possible by known methods. Let ξ be a value de�ned on ΓN satisfyingthe quasi-e�ieny, symmetry and quasi-marginalism axioms. Denote by ωTa basis of ΓN indexed by T ⊆ N . That is, ωT ∈ ΓN , T ⊆ N , are simplegames suh that any game v ∈ ΓN an be uniquely represented as(11) v =
∑

T⊆N

χT ωT

for some real onstants χT , T ⊆ N . Let q be the number of nonzero oe�-ients in (11). Thus
v =

q∑

k=1

χTk
ωTk

.

Let Θ =
⋂q

k=1 Tk and i /∈ Θ. Putting Q = {1, . . . , q} we obtain
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v =

∑

k∈Q : i∈Tk

χTk
ωTk

+
∑

k∈Q : i/∈Tk

χTk
ωTk

.In order that the ith quasi-marginal utility vetors of the games v and∑
k∈Q : i∈Tk

χTk
ωTk

oinide it is neessary and su�ient that ϑ(S) :=∑
k∈Q : i/∈Tk

χTk
ωTk

= 0 whenever S ∋ i. But ϑ ∈ ΓN is a nontrivial onstant-sum game and i must be a zero-player in ϑ. As we noted earlier, this isimpossible.Aknowledgements. I am grateful to the anonymous referee for are-fully reading the paper as well as for useful omments and suggestions.
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