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GROWTH-OPTIMAL PORTFOLIOS
UNDER TRANSACTION COSTS

Abstract. This paper studies a portfolio optimization problem in a
discrete-time Markovian model of a financial market, in which asset price
dynamics depends on an external process of economic factors. There are
transaction costs with a structure that covers, in particular, the case of fixed
plus proportional costs. We prove that there exists a self-financing trading
strategy maximizing the average growth rate of the portfolio wealth. We
show that this strategy has a Markovian form. Our result is obtained by
large deviations estimates on empirical measures of the price process and by
a generalization of the vanishing discount method to discontinuous transition
operators.

1. Introduction. Researchers and practitioners have long been aware
that Markovian models of asset price dynamics, such as the Cox–Ross–
Rubinstein model or the Black–Scholes model, have significant deficiencies
related to non-stationarity of the financial market. They observed that the
volatility and the expected rate of return of asset prices are not constant but
depend on the economic situation, which may change over longer time spans.
As a remedy, they introduced additional processes modelling vital market
variables, such as market trend or price volatility. However, a unified frame-
work has only recently been introduced and has attracted a lot of interest
(see e.g. [5], [6], [12], [26], [25], [31]). Existing literature concentrates mainly
on continuous-time diffusion models. Bielecki et al. [6] solve an asset manage-
ment problem where economic factors, as those additional market variables
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are called, form a diffusion that is independent of the Brownian motion gov-
erning the price process and they affect only the drift of the price process.
Fleming and Sheu [12] allow both processes to have dependent Brownian
motions but their diffusions are of a special form. Palczewski and Stettner
[26], though, assume only that asset prices and economic factors follow one
general continuous-time Markov process and prove results concerning opti-
mal portfolio selection for an infinite time-discounted performance functional
under transaction costs.

In the present paper we study a portfolio management problem in which
performance is measured by an average growth rate of the portfolio wealth.
We work within a discrete time framework which allows us to overcome lim-
itations and technicalities of the existing theory of continuous time Markov
processes and impulsive control. The market consists of d assets, whose prices
are, in general, interdependent. Their dynamics are affected by a process of
economic factors, which is a Markov process on a Polish space (for details
see Section 2). We assume that assets cannot go bankrupt (their prices are
positive). We impose costs of performing transactions. These costs, in the
simplest, consist of a fixed part, independent of the transaction, and a pro-
portional part, depending on the volume and type of assets sold or purchased
(see (4), (5) and the following discussion). This type of transaction costs pre-
vents continuous trading in continuous-time models (see e.g. [26]) and emu-
lates existing market mechanisms. The framework of this paper covers more
general transaction costs structures as well (see Section 6). Performance of
a portfolio Π is measured by the functional

(1) J(Π) = lim inf
T→∞

1
T

E lnXΠ(T ),

where XΠ(T ) is the wealth of the portfolio Π at time T . This functional
computes an average growth rate of the portfolio Π as can be seen from the
following reformulation of the above formula:

(2) J(Π) = lim inf
T→∞

1
T

E
T−1∑
k=0

ln
XΠ(k + 1)
XΠ(k)

.

The aim of this paper is to find a portfolio that maximizes the value of (1).
This is an infinite-time counterpart of the logarithmic utility maximization,
which is widely used in the economic and financial community, where opti-
mal portfolios are referred to as log-optimal or growth-optimal. For a broader
treatment see textbooks [10], [24]. In mathematical context the research goes
back to Kelly (see [21], [32]) and has continued in discrete time ([3]) and con-
tinuous time ([1], [2]) till the present day ([13], [17], [27]). Functional (1) can
also be seen as a risk sensitive functional and the literature is here broad as
well ([6], [22], [31]). It should be stressed that most of the papers consider



Growth-optimal portfolios under transaction costs 3

continuous time diffusion models, where an optimal strategy is obtained as
a solution to an appropriate HJB equation, usually reformulated in a vari-
ational form. Consequently, the results are based on a sophisticated theory
of PDEs and solutions usually do not use directly probabilistic properties
of the phenomena under study. Moreover, due to complexity of the studied
PDEs the results are often of existential form.

In this paper, we approach the optimization problem (1) from a prob-
abilistic point of view. We prove that there exists a self-financing portfolio
strategy maximizing the growth rate (1). We show that this trading strategy
has a Markovian form, i.e. an investment decision at time t is based only
on the state of asset prices and economic factors at t. Main additions to the
existing theory are transaction costs with a fixed term and a general form
of dependence of asset prices on economic factors. As far as we know there
is no paper that treats this type of problem in such generality.

Our study depends strongly on the reformulation (2) of the performance
functional. It exposes the Markovian structure of the functional and allows
application of the theory of optimization of long-run average cost function-
als. A survey of standard methods for long-run average cost functionals is
in [4]. We will, however, borrow from a new technique invented by Schäl
[28], who initiated the use of Bellman inequalities leading to significantly
more general results. His ideas thrive in [16] (weighted norms), [14] (stochas-
tic games) and recently in [19]. Those results strongly depend on continuity
properties of the controlled transition operator of the Markov process under
consideration. In this paper we show that the above ideas can also be used
in the study of problems which fail to satisfy the continuity assumptions.
Moreover, following [19] we are able to remove a requirement for the state
space to be locally compact as is needed in the seminal paper [28]. This
significantly generalizes the applicability of this framework to incomplete in-
formation case (for details on the incomplete information model see Section 6
and [25]).

The paper is organized as follows. In Section 2 we introduce the model.
We specify the dynamics of the asset price process and the form of transac-
tion costs. We introduce a process representing proportions of the portfolio
wealth invested in the individual assets and we reformulate the initial prob-
lem in terms of the proportions. This reformulation plays a major role in the
paper.

In Section 3 the main assumptions are listed. We prove ergodicity results
and large deviation estimates on empirical measures of the price process.
They give a new insight into the dynamics of the price process.

The study of value functions of discounted functionals related to (2) is
pursued in Section 4. A few important technical results on the consequences
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of the transaction costs are stated (their proofs are in Appendix). They are
used to build a relation between value functions for the discounted problems
with and without the fixed term in the transaction costs structure. This
is a starting point for derivation of the Bellman inequality, which is done
in Section 5. At this stage we also deal with the lack of continuity of the
controlled transition operator. We prove the existence of a growth-optimal
strategy and show its form. We also relate the results to the case without
constant term in the transaction costs structure (see [31]).

Section 6 presents extensions of our results to other transaction costs
structures and shows how existing results can be used in the case of incom-
plete observation of economic factors.

2. Preliminaries. The market model is constructed on a probability
space (Ω,F,P). Prices of d assets are represented by a process (S(t))t=0,1,...,
S(t) = (S1(t), . . . , Sd(t)) ∈ (0,∞)d. Economic factors are modelled by a time
homogeneous Markov process (Z(t))t=0,1,... with values in a Polish (separa-
ble, complete, metric) space E with Borel σ-algebra E . The dynamics of the
price process are governed by the equation

(3)
Si(t+ 1)
Si(t)

= ζi(Z(t+ 1), ξ(t+ 1)), Si(0) = si > 0, i = 1, . . . , d,

where (ξ(t))t=1,2,... is a sequence of i.i.d. random variables with values in
a Polish space (Eξ, Eξ) and the functions ζi : (E, E) × (Eξ, Eξ) → (0,∞)
are Borel measurable for i = 1, . . . , d. We assume that (S(t), Z(t)) forms
a weak Feller process, i.e. its transition operator transforms the space of
bounded continuous functions into itself. In the following we shall write
ζi(t) for ζi(Z(t), ξ(t)), and ζ(t) for the vector (ζ1(t), . . . , ζd(t)), whenever
this does not lead to ambiguity.

Let (Ft) be a filtration generated by (S(t), Z(t)). It represents the know-
ledge of an investor observing the market. Therefore, in general, it de-
pends on the starting point of the process (S(t), Z(t)). Due to (3) the fil-
tration is in fact independent of S(0). It depends only on the initial value
z of the process (Z(t)), and to stress this dependence it will be denoted
by (Fzt ).

Fix s ∈ (0,∞)d and z ∈ E, the initial values of the processes (S(t))
and (Z(t)). A trading strategy is a sequence of pairs ((Nk, τk))k=0,1,..., where
τ0 = 0, (τk)k=1,2,... are (Fzt ) stopping times, and τk+1 > τk, k = 1, 2, . . . . The
stopping times (τk), k ≥ 1, represent times of transactions, whereas τ0 = 0
is only introduced for convenience of notation. The number of shares held
in the portfolio in the time interval [τk, τk+1) is denoted by Nk, which is
an Fzτk -measurable random variable with values in [0,∞)d. Hence, N0 is a
deterministic initial portfolio.



Growth-optimal portfolios under transaction costs 5

The share holding process is given by

N(t) =
∞∑
k=1

1t∈[τk,τk+1)Nk, t ≥ 0.

In what follows we shall consider transaction costs of one of the forms

c̃(η1, η2, S) =
d∑
i=1

(c1iS
i(ηi1 − ηi2)+ + c2iS

i(ηi1 − ηi2)−) + C,(4)

c̃(η1, η2, S) = max
(
C,

d∑
i=1

(c1iS
i(ηi1 − ηi2)+ + c2iS

i(ηi1 − ηi2)−)
)
,(5)

where c1i , c
2
i ∈ [0, 1) are proportional costs, C ≥ 0, S stands for the asset

prices at the time of transaction, η1 denotes the portfolio contents before
transaction, and η2 after transaction. We impose a self-financing condition
on portfolios, i.e.

(6) Nk · S(τk) = Nk−1 · S(τk) + c̃(Nk−1, Nk, S(τk)), k = 1, 2, . . . .

Notice that due to the lower bound C on the transaction costs function,
transactions cannot be executed if the wealth of the portfolio is smaller
than C. It is also clear that (6) depends on the initial value (s, z) of the
process (S(t), Z(t)).

For the clarity of presentation, we shall restrict our attention to the costs
of the form (4). However, all the results are easily modified to fit (5), and,
in fact, they extend to a larger family of transaction costs structures (see
Section 6).

In the case of no transaction costs or proportional transaction costs it is
natural to reformulate the problem in terms of proportions as it transforms
the set of controls (possible portfolios) to a compact set, which facilitates
mathematical analysis. In our more general framework, we shall also benefit
from this reformulation.

Denote by X−(t) the wealth of the portfolio before a possible transaction
at t and by X(t) the wealth just after the transaction:

(7) X(t) = N(t) · S(t), X−(t) = N(t− 1) · S(t).

If there is no transaction at t the two values are identical. In a similar way,
for i = 1, . . . , d, we construct two processes representing proportions of our
capital invested in asset i:

(8) πi(t) =
N i(t)Si(t)
X(t)

, πi−(t) =
N i(t− 1)Si(t)

X−(t)
.

Since short sales are prohibited we have π(t), π−(t) ∈ S, where S is the unit
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simplex in Rd:

S =
{

(π1, . . . , πd) : πi ≥ 0,
d∑
i=1

πi = 1
}
.

Denote by S0 the polyhedral set generated by S:

S0 =
{

(π1, . . . , πd) : πi ≥ 0,
d∑
i=1

πi ≤ 1
}

and let g : [0,∞)d \ {0} → S be a projection to S,

g(π1, . . . , πd) =
(

π1∑
πi
, . . . ,

πd∑
πi

)
.

Define

c(π−, π̃) =
d∑
i=1

(c1i (π̃
i − πi−)+ + c2i (π̃

i − πi−)−).

The self-financing condition (6) can be written as

(9) X−(τk) = X(τk) +X−(τk)
(
c(π−(τk), π̃k) +

C

X−(τk)

)
, k = 1, 2, . . . ,

for some π̃k ∈ S0 such that π(τk) = g(π̃k). From (6) one can deduce that
π̃k = X(τk)

X−(τk)
π(τk) satisfies (9).

Given π−, π ∈ S, x− > 0 define a function

F π−,π,x−(δ) = c(π−, δπ) +
C

x−
+ δ.

Equation (9) can be written equivalently as

F π−(τk),π(τk),X−(τk)
( d∑
i=1

π̃ik

)
= 1.

The following lemma states a crucial property of F that will be used to
reformulate the self-financing condition.

Lemma 2.1. There exists a unique function e : S × S × (0,∞) → [0, 1]
such that

(1) if e(π−, π, x) > 0, then F π−,π,x−(e(π−, π, x−)) = 1,
(2) e(π−, π, x−) = 0 if and only if the equation F π−,π,x−(·) = 1 has no

solution in (0, 1].

Moreover , e is continuous.

Proof. The proof is rather straightforward and resembles the proof of
Lemma 1 in [31].
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Let ((Nk, τk)) be a self-financing trading strategy and let π−(τk), π(τk)
be defined as above. By virtue of Lemma 2.1 for any k ∈ N we have

F π−(τk),π(τk),X−(τk)(e(π−(τk), π(τk), X−(τk))) = 1

and X(τk)/X−(τk) = e(π−(τk), π(τk), X−(τk)). The second assertion is a
consequence of the uniqueness of e and equation (9). Therefore, any transac-
tion can be described solely by means of the proportions π−(τk) and π(τk),
and the portfolio wealth X−(τk). Consequently, any trading strategy has a
unique representation in the following form: the initial wealth x− = N0 ·S(0),
the initial proportion

π− =
(
N1

0S
1(0)

N0 · S(0)
, . . . ,

Nd
0S

d(0)
N0 · S(0)

)
,

and ((πk, τk))k=1,2,..., where πk is the post-transaction proportion represented
by an S-valued Fτk -measurable random variable. Indeed, define the corre-
sponding pre-transaction proportion process π−(t) by

(10)
π−(0) = π−,

π−(t) = πk � ζ(τk + 1) � · · · � ζ(t), τk < t ≤ τk+1,

where for simplicity of the notation we have τ0 = 0 and

(11) π � ζ = g(π1ζ1, . . . , πdζd), π ∈ S, ζ ∈ (0,∞)d.

The corresponding post-transaction proportion process is given by

(12) π(t) =


π−, t = 0 and τ1 > 0,
πk, t = τk,

πk � ζ(τk + 1) � · · · � ζ(t), τk < t < τk+1.

At time τk the pre-transaction wealth X−(τk) is diminished to

X(τk) = X−(τk)e(π−(τk), π(τk), X−(τk)).

Furthermore,

X−(t+ 1) =
d∑
i=1

πi(t)X(t)
Si(t)

Si(t+ 1) = X(t)(π(t) · ζ(t+ 1)).

Consequently,

(13) X−(t)

= X−(0)
t−1∏
s=0

(π(s) · ζ(s+ 1))
∞∏
k=1

(1τk<te(π−(τk), π(τk), X−(τk)) + 1τk≥t),

which finishes the construction of the correspondence between the primal
definition of a trading strategy with the share holding process N(t) and the
equivalent form with proportions. Notice that due to our reformulation, the
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self-financing condition no longer depends on the initial value of the asset
price process (S(t)).

Let Az be the set of sequences ((πk, τk))k=1,2,..., where τk is an (Fzt )
stopping time, πk is an Fzτk -measurable random variable with values in S,
and τk+1 > τk, k = 1, 2, . . . . Elements of Az will be called admissible trading
strategies or admissible portfolios. Notice that for a fixed initial wealth x−
and an initial proportion π− not every admissible trading strategy ((πk, τk))
corresponds to some self-financing strategy ((Nk, τk)). Indeed, if X−(τk) is
small for some k, not all proportions π(τk) are attainable from π−(τk). If
π(τk) is attainable, we have

F π−(τk),π(τk),X−(τk)(e(π−(τk), π(τk), X−(τk))) = 1
and

X(τk) = X−(τk)e(π−(τk), π(τk), X−(τk)).

If π(τk) is not attainable, we have, by the above construction,

e(π−(τk), π(τk), X−(τk)) = 0
and

X(τk) = 0.

Therefore, in what follows we may assume that all proportions are attainable
from π−(τk) irrespective of the value of X−(τk), but they may lead to a
zero wealth process if we cannot afford to pay transaction costs. Since the
strategy allowing annihilation of wealth is not optimal (the functional in (2)
evaluates to −∞), the extension of the set of trading strategies does not have
any impact on optimal strategies.

As noticed before, the set of admissible strategies and the wealth of the
portfolio are independent of the initial prices of the assets. Therefore, instead
of writing P(s,z) and E(s,z) to stress dependence of the probability measure on
the initial state of the Markov process (S(t), Z(t)) we will write Pz and Ez.

The goal of this paper is to maximize the functional

(14) Jπ−,x−,z(Π) = lim inf
T→∞

1
T

Ez lnX−(T )

over all portfolios Π ∈ Az, where π− is the initial proportion, x− denotes
the initial wealth and z is the initial state of the economic factor process.
Observe that using (13) we obtain

(15) Jπ−,x−,z(Π) = lim inf
T→∞

1
T

{ T−1∑
t=0

Ez lnπ(t) · ζ(t+ 1)

+
∞∑
k=1

Ez{1τk<T ln e(π−(τk), πk, X−(τk))}
}
.

This transforms our problem to a form suitable for further analysis.
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3. Assumptions and basic properties of the price process. Denote
by P (z, dy) the transition operator of the process (Z(t)). Let Ê = E × Eξ,
and let ν be the law of ξ(1) on Eξ. For x = (z, ξ) and a bounded measurable
function w on Ê define

P̂w(x) =
�

E

�

Eξ

w(z′, ξ′) ν(dξ′)P (z, dz′).

Consider the following assumptions:

(A1) The process (S(t), Z(t)) has the Feller property, i.e. its transition
operator maps the space of continuous bounded functions into itself.

(A2) S × E 3 (π, z) 7→ h(π, z) = Ez{lnπ · ζ(Z(1), ξ(1))} is a bounded,
continuous function.

(A3) sup
z,z′∈E

sup
B∈E

(Pn(z,B)− Pn(z′, B)) = κ < 1 for some n ≥ 1.

(A4) There is a continuous function û0 defined on Ê such that û0(x) ≥ 1
for x ∈ Ê, the function x 7→ P̂ û0(x) is bounded on compact subsets
of Ê and for any positive real number l the set {x : û0(x)/P̂ û0(x)
≤ l} is compact.

(A5) The function ζ(z, ξ) is continuous and bounded away from 0, i.e.
infz,ξ ζi(z, ξ) > 0 for i = 1, . . . , d.

Due to assumption (A3) the process Z(t) is uniformly ergodic. Together
with (A4)–(A5) this gives important estimates on the behavior of the asset
prices, as can be seen in the following theorem:

Theorem 3.1. Under (A1)–(A5):

(i) The process Z(t) has a unique invariant probability measure ϑ.
(ii) For each nonnegative measurable function f with

	
E f(z)ϑ(dz) <∞,

lim
T→∞

1
T

T∑
t=0

Ezf(Z(t)) =
�

E

f(z)ϑ(dz).

(iii) The following large deviations estimate holds: for each ε > 0 there
exist T ∗, γ,K > 0 such that for all T ≥ T ∗,

Pz
{

1
T

ln
(T−1∏
t=0

ζ̂(Z(t+ 1), ξ(t+ 1))
)
≤ p̂− ε

}
≤ Ke−γT ,

where
ζ̂(z, ξ) = min(ζ1(z, ξ), . . . , ζd(z, ξ)),

p̂ =
�

E×Eξ
ln ζ̂(z, ξ)ϑ(dz) ν(dξ).
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Proof. Notice that (A3) implies that for arbitrary z, z′ ∈ E and B ∈ E ,
Pn(z,B) ≤ κ+ Pn(z′, B).

Therefore, Condition (D) (a version of Doeblin’s hypothesis) in [9, Section
V.5] holds with φ(B) = Pn(z′, B) for some z′ ∈ E and ε = (1− κ)/2.
Applying (A3) one also finds that for any bounded measurable function f
we have

Ez1f(Z(n))− Ez2f(Z(n)) =
�

E

f(z) (Pn(z1, dz)− Pn(z2, dz)) ≤ κ‖f‖∞.

Therefore, due to Theorems V.5.7 and V.6.2 in [9] there is a unique invariant
probability measure for (Z(t)) and (ii) holds.

Statement (iii) results from application of large deviations theory to the
Markov process (Z(t), ξ(t)). Recall that the transition operator of this pro-
cess is denoted by P̂ . The measure ϑ ⊗ ν is the unique invariant measure
of P̂ . Let

Ln =
1
n

n∑
t=1

δ(Z(t), ξ(t)), n = 1, 2, . . . ,

denote the empirical distribution of the process (Z(t), ξ(t)). Notice that Ln
takes values in the space P = P(E×Eξ) of probability measures on E×Eξ
with the weak convergence topology. By Section 4 of [8] (see also [11] and
[23]) there exists a convex lower semicontinuous function J : P → R (called
a good rate function) such that for any compact set Γ ∈ B(P) we have

lim sup
n→∞

1
n

log(sup
z∈E

Pz({ω : Ln(ω) ∈ Γ})) ≤ − inf
µ∈Γ

J(µ).

Under assumption (A4) the above inequality holds for any closed set Γ (not
necessarily compact). By Lemma 4.2 of [8], the set of measures µ ∈ P such
that J(µ) ≤ l is compact for each l ∈ R. Consequently, for a closed set Γ ⊂ P
such that ϑ⊗ ν /∈ Γ we have (see Proposition 1 of [11]) infµ∈Γ J(µ) > 0.

Define

Γ̂ =
{
µ ∈ P :

�

E×Eξ
ln ζ̂(z, ξ)µ(dz × dξ) ≤ p̂− ε

}
.

To complete the proof it is enough to show that inf
µ∈ bΓ J(µ) > 0. Due to

unboundedness of ζ̂ the set Γ̂ may not be closed in P. However, under (A5),
for every N > 0,

ΓN =
{
µ ∈ P :

�

E×Eξ
min(ln ζ̂(z, ξ), N)µ(dz × dξ) ≤ p̂− ε

}
is closed and Γ̂ ⊆ ΓN . By the monotone convergence theorem there exists
N such that ϑ⊗ ν /∈ ΓN , and consequently inf

µ∈ bΓN J(µ) > 0.
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Statement (iii) of the above lemma reads that whenever the average one-
step growth rate of the asset prices p̂ is positive then the prices grow expo-
nentially fast on a large subset of Ω, i.e. for T > T ∗,

P{Si(T ) ≥ Si(0)eT (bp−ε) ∀i = 1, . . . , d} ≥ 1−Ke−γT .

This is a surprising result, since the condition p̂ > 0 is often viewed as a
prerequisite for investors to be willing to invest on the market. Therefore,
promising markets offer exponential speed of growth of investors’ wealth.

The following remarks explain the assumptions (A1)–(A5):

(1) Assume that (Z(t)) is a Feller process. If ζi(z, ξ), i = 1, . . . , d, are
continuous in z then (A1) is satisfied. Indeed, let φ : (0,∞)d × E → R be
continuous bounded. Define

g(s, z, ξ) =
�

E

φ(s1ζ1(z̃, ξ), . . . , sdζd(z̃, ξ), z̃)P (z, dz̃).

It is continuous by the Feller property of (Z(t)). Consequently, the mapping

(s, z) 7→ E(s,z)φ(S(1), Z(1)) =
�

Eξ

g(s, z, ξ) ν(dξ),

where ν is a distribution of ξ(1) on Eξ, is continuous by the dominated
convergence theorem, and (A1) holds. In particular, if (Z(t)) is a Markov
chain with a finite state space, (A1) is always satisfied.

(2) Assumption (A2) reads that the expected one-period growth rate is
finite.

(3) Assume that ζi(z, ξ), i = 1, . . . , d, are bounded functions bounded
away from 0 and continuous in z. Clearly, h(π, z) is bounded. By (A1),
(Z(t)) is a Feller process, hence h(π, z) is continuous and (A2) holds.

(4) By Jensen’s inequality,

inf
π∈S

h(z, π) = min
i=1,...,d

Ez{ln ζi(Z(1), ξ(1))}.

Therefore, h(π, z) is bounded from below if and only if

inf
z∈E

Ez{ln ζi(Z(1), ξ(1))} > −∞, i = 1, . . . , d.

(5) Condition (A2) does not imply boundedness of ζi. Consider a gener-
alized Black–Scholes model with economic factors (see [5], [6], [26]), i.e.

Si(t+ 1) = Si(t) exp(σi(Z(t+ 1)) · (W (t+ 1)−W (t)) + µi(Z(t+ 1))),
i = 1, . . . , d,

where (Z(t)) is a Feller process, (W (t)) is an m-dimensional Wiener process
and σi : E → Rm, µi : E → R, i = 1, . . . , d, are continuous bounded func-
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tions. Clearly, (A1) is satisfied by (1). To show (A2) we recall the definition

h(π, z) = Ez ln
( d∑
i=1

πi exp(σi(Z(1)) · ξ(1) + µi(Z(1)))
)

with ξ(1) = W (1)−W (0). Consequently,

Ez{−D1(Z(1))‖ξ(1)‖2 −D2(Z(1))}
≤ h(π, z) ≤ Ez{D1(Z(1))‖ξ(1)‖2 +D2(Z(1))},

where ξ has a standard normal distribution on Rm, denoted by ν, D1(z) =
maxi=1,...,d ‖σi(z)‖2, D2(z) = maxi=1,...,d |µi(z)|, and ‖ · ‖2 stands for the
L2 norm in Rm. Therefore, h(π, z) is bounded. Continuity follows from the
dominated convergence theorem.

(6) In the stochastic control literature, one-step uniform ergodicity is
usually assumed, i.e. (A3) with n = 1 (see e.g. condition (UE) in [31]).
Allowing for n > 1 opens a new class of applications. In particular, if Z(t) is
a recursive Markov chain on a finite state space then (A3) holds with some
n > 0, but usually it does not hold with n = 1.

Consider now the following assumption:

(H∗) There is a continuous function u0 defined on E such that u0(x) ≥ 1
for x ∈ E, Pu0(x) is bounded on compact subsets of E and for any l
the set {z : u0(z)/Pu0(z) ≤ l} is compact.

We have

Lemma 3.2. If Eξ is locally compact and (H∗) is satisfied then (A4)
holds.

Proof. Without loss of generality we may assume that the support of ν
is not compact (otherwise we can replace Eξ by a compact set). Let (Kn)
be an increasing sequence of compact sets such that ν(Kn+1 \Kn) ≤ 1/n2

and Kn+1 \Kn ∩ Kn−1 = ∅ for n = 1, 2, . . . , and
⋃
nKn = Eξ. Define a

function g on Eξ to be equal to 1 on K1 and
√
n on Kn+1 \Kn for odd n,

and extend g using the Tietze theorem to a continuous function on the
whole Eξ. The construction in the Tietze theorem implies that g(ξ) ≥ 1 and
ν(g) :=

	
Eξ g(ξ) ν(dξ) < ∞. Let û0(z, ξ) = u0(z)g(ξ). We shall prove that

the set

Γl =
{
x ∈ Ê :

û0(x)

P̂ û0(x)
≤ l
}

=
{

(z, ξ) ∈ Ê :
u0(z)g(ξ)
Pu0(z) ν(g)

≤ l
}

is compact for any l. Let (zn, ξn) ⊂ Γl. If (ξn) leaves all compact sets Km

then g(ξn) → ∞. Consequently, u0(zn)/Pu0(zn) → 0, which contradicts
infz∈E u0(z)/Pu0(z) > 0. Therefore, there exists m such that (ξn) is con-
tained in Km. Compactness of Km implies that ξnk → ξ ∈ Km for some
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subsequence nk. Since
u0(znk)
Pu0(znk)

≤ lν(g)
g(ξnk)

≤ lν(g),

by (H∗) there is a subsequence of znk convergent to z. By continuity of
û0/P̂ û0, we have (z, ξ) ∈ Γl, which completes the proof of compactness
of Γl.

4. Discounted functionals and estimates. This section is devoted
to an in-depth study of the discounted functional related to the functional
(15). It plays a major role in the derivation of the Bellman inequality for our
optimization problem.

Given π−, x−, z consider a discounted functional

(16) J
π−,x−,z
β (Π)

= Ez
{ ∞∑
t=0

βth(π(t), Z(t)) +
∞∑
k=1

βτk ln e(π−(τk), πk, X−(τk))
}
, β ∈ (0, 1),

and its value function

vβ(π−, x−, z) = sup
Π∈Az

J
π−,x−,z
β (Π).

Denote by M an impulse operator acting on measurable functions,

(17) Mw(π−, x−, z) = sup
π∈S
{ln e(π−, π, x−) + w(π, x− e(π−, π, x−), z)}.

Lemma 4.1. The impulse operator maps the space of continuous bounded
functions into itself. Moreover , given any bounded continuous function w
there exists a measurable selector for Mw.

Proof. The proof is standard (see [7, Corollary 1] or [15]).

Theorem 4.2. Under (A1)–(A2) the function vβ is continuous and
bounded , and satisfies the Bellman equation

(18) vβ(π−, x−, z)

= sup
τ

Ez
{ τ−1∑
t=0

βth(π(t), Z(t)) + βτMvβ(π−(τ), X−(τ), Z(τ))
}
,

where
π−(0) = π−, π−(t+ 1) = π−(t) � ζ(t+ 1),
X−(0) = x−, X−(t+ 1) = X−(t)(π−(t) · ζ(t+ 1))

are counterparts of (10), (12), (13).

Proof. By Lemma 2.1 the function ln e(π−, π, x−) is bounded, and by
(A2), h(π, z) is bounded. Therefore, vβ(π−, x−, z) is bounded. For a contin-
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uous bounded function v : S × (0,∞)× E → R let

Tβv(π, x, z) = sup
τ

Ez
{ τ−1∑
t=0

βth(π(t), Z(t)) + βτMv(π−(τ), X−(τ), Z(τ))
}
.

The operator Tβ maps the space Cb = Cb(S × (0,∞) × E; R) of bounded
continuous functions into itself. This results from the Feller property (A1)
of the transition operator of the process (S(t), Z(t)) by a general result on
the continuity of the value function of optimal stopping problems (see [30]).
Let

v0
β(π−, x−, z) =

∞∑
t=0

βtEzh(π−(t), X−(t)).

Put vk+1
β = Tβvkβ . Thanks to continuity of vkβ and Mvkβ it can be shown that

vkβ is a value function for the maximization of Jβ over portfolios with at most
k transactions. Observe that it is never optimal to have two transactions at
the same time (P(τk = τk+1) > 0), by the subadditivity of the transaction
costs structure. Therefore, we have the estimate

‖vβ − vkβ‖∞ ≤
∞∑
l=k

βl‖h‖∞ = βk
‖h‖∞
1− β

,

which implies that vkβ tends uniformly to vβ . Consequently, vβ is a continuous
bounded function and satisfies vβ = Tβvβ , which is equivalent to the Bellman
equation (18).

There are two distinct cases: C > 0 (fixed plus proportional transaction
costs) and C = 0 (proportional costs only). Theorem 4.2 applies to both.
The rest of this section is devoted to estimation of the difference between
value functions of problems with and without a fixed term in transaction
costs. Let us first examine the equation for e(π−, π, x−):

c(π−, e(π−, π, x−)π) +
C

x−
+ e(π−, π, x−) = 1.

Clearly, if C = 0, the solution is independent of x−. Similarly, for C = 0, the
impulse operator M does not depend on x−, hence the value function vβ is
independent of x−. Therefore, in the case without a fixed term in transaction
costs, we shall skip x− in the list of arguments and write J̃π−,zβ (Π), ṽβ(π−, z)
and ẽ(π−, π).

4.1. Technical estimates. This subsection presents auxiliary results. They
are similar to those obtained in [25]. For completeness, their proofs are in-
cluded in Appendix.

Due to self-financing of portfolios, transaction costs decrease portfolio
wealth. It is therefore important to derive estimates on the diminution factor
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e(π−, π, x−) and to study the relationship between e(π−, π, x−) and ẽ(π−, π).
The first lemma below states lower bounds for e and ẽ:

Lemma 4.3. We have

1− ẽ(π−, π) ≤ 2 maxi(c1i , c
2
i )

1−maxi(c1i , c
2
i )
,

1− e(π−, π, x−) ≤ 2 maxi(c1i , c
2
i ) + C/x−

1−maxi(c1i , c
2
i )

.

Let x∗ = inf{x− : e(π−, π, x−) > 0 for all π−, π ∈ S}. If the wealth of
the portfolio is greater than x∗, any transaction can be executed. We use
this rough threshold in the following lemma:

Lemma 4.4. For π−, π ∈ S:

(i) e(π−, π, x̃−) ≤ e(π−, π, x−) ≤ ẽ(π−, π), x− ≥ x̃− > 0.

(ii) ẽ(π−, π)− e(π−, π, x−) ≤ C

(1−maxi c1i )x−
for x− > x∗.

(iii) For all M > x∗ and x− ≥M ,

ln
ẽ(π−, π)

e(π−, π, x−)
≤ 1

infeπ−,eπ e(π̃−, π̃,M)
C

(1−maxi c1i )x−
.

Corollary 4.5. The value function vβ(π−, x−, z) is nondecreasing
in x−.

By Theorem 4.2 the value function ṽβ(π−, z) is bounded and continuous
for each β. However, this does not imply that it is uniformly bounded in β.
On the contrary, it increases to infinity as β grows to 1 in market models of
interest. To account for this fact, we shall study the span seminorm of ṽβ
defined as ‖ṽβ‖sp = sup ṽβ(·)− inf ṽβ(·).

Lemma 4.6. Under (A3) there exists M <∞ such that

‖ṽβ‖sp ≤M

for all β ∈ (0, 1).

4.2. Large deviations and proportional transaction costs. Theorem 3.1
provides an important insight into the dynamics of asset prices. In this sec-
tion we apply this result to describe the dynamics of the portfolio wealth
under proportional transaction costs. Let us introduce a general assumption:

(A6) η < p̂,

where the p̂ is the constant from Theorem 3.1 and

η = − ln
(

1− 2 maxi(c1i , c
2
i )

1−maxi(c1i , c
2
i )

)
.



16 J. Palczewski and Ł. Stettner

Since η is a unique solution to the equation

e−η = 1− 2 maxi(c1i , c
2
i )

1−maxi(c1i , c
2
i )
,

by virtue of Lemma 4.3, e−η is a lower bound on ẽ(π−, π). Formula (13) gives
the following estimate:

X−(t) ≥ X−(0)
t−1∏
s=0

(e−ηπ(s) · ζ(s+ 1)) = X−(0)e−ηt
t−1∏
s=0

(π(s) · ζ(s+ 1)).

Consequently, setting ζ̂(t) = min(ζ1(t), . . . , ζd(t)), we obtain

(19) X−(t) ≥ X−(0)e−ηt
t−1∏
s=0

ζ̂(s+ 1).

In view of Theorem 3.1 for any ε > 0 there exist K, γ > 0 and T ∗ such that

P
{
eT (bp−ε) ≤ t−1∏

s=0

ζ̂(s+ 1)
}
≥ 1−Ke−γT , T > T ∗,

and the wealth of the portfolio satisfies

P{X−(0)eT (bp−η−ε) ≤ X−(T )} ≥ 1−Ke−γT , T > T ∗.

Due to (A6) there exists an ε with 0 < ε < p̂− η, which implies that X−(t)
increases exponentially fast irrespective of the portfolio trading strategy.

4.3. Bounds on ṽβ(π−, z) − vβ(π−, x−, z). For the rest of this section
assume that (A1)–(A6) are satisfied. Since

lim
m→∞

− ln
(

1− 2 maxi(c1i , c
2
i ) + C/m

1−maxi(c1i , c
2
i )

)
= η < p̂,

there exists a constant M > 0 such that

(20) p̂ > ηM := − ln
(

1− 2 maxi(c1i , c
2
i ) + C/M

1−maxi(c1i , c
2
i )

)
.

Theorem 4.7. For any z ∈ E and any admissible strategy Π̃ ∈ Az,
π− ∈ S, x− ∈ (0,∞) there exists an admissible trading strategy Π ∈ Az
such that

J̃
π−,z
β (Π̃)− Jπ−,x−,zβ (Π) ≤ L(x−), β ∈ (0, 1),

where
L(x−) = K1 +K2 max(K3,− lnx−)

for some strictly positive constants K1,K2,K3 independent of the choice of
z, Π̃, π− and x−.
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Corollary 4.8. We have

0 ≤ ṽβ(π−, z)− vβ(π−, x−, z) ≤ L(x−), β ∈ (0, 1), π− ∈ S, z ∈ E.
where L(x−) is the function from Theorem 4.7.

Proof. The inequality 0 ≤ ṽβ(π−, z) − vβ(π−, x−, z) is obvious. For the
second inequality it is enough to notice that

ṽβ(π−, z)− vβ(π−, x−, z) ≤ supeΠ∈A{J̃
π−,z
β (Π̃)− J̃π−,x−,zβ (Π)},

where Π denotes a strategy related to Π̃ as in Theorem 4.7.

The strength of the above theorem and corollary lies in the fact that the
estimates are uniform in β, π− and z.

Proof of Theorem 4.7. Fix π−, x−, z and Π̃ ∈ Az. We construct Π, with
its pre-transaction wealth denoted byX−(t), in the following way: ifX−(t) ≥
M we mimic the strategy Π̃, i.e. we keep the same proportions of stocks. On
the other hand, if X−(t) is smaller than M we do not make any transactions
and wait for the wealth to raise over M∗ = MeηM . At that time we perform
a transaction to make the proportions equal to those defined by Π̃. This
decreases the wealth at most by e−ηM , so the resulting portfolio wealth is
not less than M .

Let π̃−(t) and π̃(t) denote the pre-transaction and post-transaction pro-
cesses corresponding to the strategy Π̃. Analogously, π−(t) and π(t) are
the processes corresponding to Π. By the construction of Π we know that
π(t) = π̃(t) if X−(t) ≥ M∗. However, if the wealth X−(t) is below M∗ but
above M we cannot determine whether π(t) = π̃(t). This is caused by the
fact that the wealth X−(t) can be between M and M∗ as a result of either
a normal investing process or recovering from the shortage of wealth (being
below M).

By the definition of Jπ−,x−,zβ and J̃π−,zβ we have

J̃
π−,z
β (Π̃)− Jπ−,x−,zβ (Π) = Ez

{ ∞∑
t=0

βt(h(π̃(t), Z(t))− h(π(t), Z(t))

+ 1eπ−(t)6=eπ(t) ln ẽ(π̃−(t), π̃(t))− 1π−(t)6=π(t) ln e(π−(t), π(t), X−(t)))
}
.

The above difference can be bounded from above by the sum of the following
two expressions:

(21) Ez
{ ∞∑
t=0

βt1X−(t)<M∗(h(π̃(t), Z(t))− h(π(t), Z(t))

− 1π−(t)6=π(t) ln e(π−(t), π(t), X−(t)))
}
,
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(22) Ez
{ ∞∑
t=0

βt1X−(t)≥M∗

(
h(π̃(t), Z(t))− h(π(t), Z(t))

+ 1π−(t)6=π(t) ln
ẽ(π−(t), π(t))

e(π−(t), π(t), X−(t))

)}
.

By construction of the strategy Π no transaction is performed if X−(t)
< M , so

−1π−(t) 6=π(t) ln e(π−(t), π(t), X−(t)) ≤ ηM .

This yields

(21) ≤ L1 Ez
∞∑
t=0

1X−(t)<M∗ ,

where L1 = suph(·)− inf h(·) + ηM . On the other hand, if X−(t) ≥M∗, we
have π(t) = π̃(t), so

(22) ≤ Ez
{ ∞∑
t=0

(
1X−(t)≥M∗ ln

ẽ(π−(t), π(t))
e(π−(t), π(t), X−(t))

)}
.

By virtue of Lemma 4.4(iii) we obtain

(22) ≤ Ez
{ ∞∑
t=0

(
1X−(t)≥M∗

L2

X−(t)

)}
,

where

L2 =
C

infbπ−,bπ e(π̂−, π̂,M∗) .
Consequently, we have the estimate

(23) J̃
π−,z
β (Π̃)− Jπ−,x−,zβ (Π)

≤ L1Ez
∞∑
t=0

1X−(t)<M∗ + L2Ez
∞∑
t=0

(
1X−(t)≥M∗

1
X−(t)

)
.

To complete the proof we use the large deviations estimate. Fix ε > 0
small enough that p̂− ηM − ε > 0. Denote by At the event

At =
{

1
t

ln
(t−1∏
j=0

ζ̂(Z(j + 1), ξ(j + 1))
)
− p̂ ≥ −ε

}
.

The strategy Π is constructed in such a way that trade takes place only if
X−(t) ≥M . Thus on the set At we have

(24) X−(t) ≥ x−e−tηM et(bp−ε) = x−e
t(bp−ηM−ε).

This means an exponentially fast growth of the wealth due to p̂−ηM−ε > 0.
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Let K, γ > 0 and T ∗ be the constants from Theorem 3.1(iii) for the
given ε. By the large deviations estimate we have

Pz(Act) ≤ Ke−γt for t ≥ T ∗,
where Act denotes the complement of At. Let t0 be the smallest integer such
that t0 ≥ T ∗ and

et0(bp−ηM−ε) ≥M∗/x−.
Clearly, X−(t) ≥M∗ on At for all t ≥ t0. Hence

Ez
∞∑
t=0

1X−(t)<M∗ ≤ t0 +
∞∑
t=t0

P(Act) ≤ t0 +
∞∑
t=t0

Ke−γt =: L3.

Computation of a bound for the second term of (23) has to be split into two
parts depending on At:

Ez
∞∑
t=0

(
1X−(t)≥M∗

1
X−(t)

)

= Ez
∞∑
t=0

(
1X−(t)≥M∗

1At
X−(t)

)
+ Ez

∞∑
t=0

(
1X−(t)≥M∗

1Act
X−(t)

)
.

Clearly,

Ez
∞∑
t=0

(
1X−(t)≥M∗

1Act
X−(t)

)

≤ 1
M∗

Ez
∞∑
t=0

P(Act) ≤
1
M∗

Ez
∞∑
t=0

Ke−γt =: L4.

By (24),

Ez
∞∑
t=0

(
1X−(t)≥M∗

1At
X−(t)

)

≤ Ez
t0−1∑
t=0

(
1X−(t)≥M∗

1At
X−(t)

)
+ Ez

∞∑
t=t0

(
1X−(t)≥M∗

1At
X−(t)

)

≤ t0
M∗

+
1
M∗

∞∑
t=t0

e−(t−t0)(bp−ηM−ε) =: L5.

Consequently,

J̃
π−,z
β (Π̃)− Jπ−,x−,zβ (Π) ≤ L1L3 + L2(L4 + L5).

The constants L1, . . . , L5 do not depend on π−, Π̃ and z. However, they
depend on x− through t0. Combining the estimates for L1, . . . , L5 we obtain
the formula for L(x−).
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5. Growth optimal portfolios. Now we are in a position to state
and prove the main result of this paper: existence and form of an optimal
strategy maximizing the expected average rate of return of a portfolio of
financial assets.

Theorem 5.1. Under assumptions (A1)–(A6) there exists a measurable
function p : S × (0,∞) × E → S, a constant λ and a measurable set I ⊆
S × (0,∞)× E such that

(25) λ = Jπ−,x−,z(Π∗) = sup
Π∈Az

Jπ−,x−,z(Π),

where the optimal portfolio Π∗ = ((π∗1, τ
∗
1 ), (π∗2, τ

∗
2 ), . . .) is given by the for-

mulas

τ∗1 = inf{t ≥ 0 : (π−(t), X−(t), Z(t)) ∈ I},
τ∗k+1 = inf{t > τ∗k : (π−(t), X−(t), Z(t)) ∈ I},
π∗k = p(π−(τ∗k ), X−(τ∗k ), Z(τ∗k )).

The strength of the above theorem is in its generality. We are not aware of
papers dealing with the maximization of the average rate of return in such a
general setting and with fixed and proportional transaction costs. This result
also extends the area of applicability of the vanishing discount approach to
models with non-weakly continuous controlled transition probabilities. Ex-
isting results require either strongly or weakly continuous (Feller) controlled
transition probabilities (see [15], [19], [28], [30]). Moreover, in Section 6 we
generalize Theorem 5.1 to other transaction costs structures.

Corollary 5.2.

(i) The optimal value for the problem with only proportional transaction
costs (C = 0) is equal to the λ from Theorem 5.1. The strategy
optimal for fixed plus proportional transaction costs is also optimal
for proportional transaction costs.

(ii) There exists an optimal portfolio Π for the problem with propor-
tional transaction costs that depends only on the current state of the
processes (π−(t)) and (Z(t)) (and does not depend on (X−(t))).

(iii) If Π is the portfolio from (ii), then the portfolio ΠM optimal for
fixed plus proportional transaction costs is constructed as follows (for
notation consult Subsection 4.3): whenever X−(t) < M , do not make
any transactions and wait until the wealth increases over MeηM ;
otherwise as long as X−(t) ≥M keep the same proportions of stocks
as in Π.

Optimal strategies for proportional costs can be efficiently computed in
a number of cases: there are closed-form formulas in simple diffusion models
and efficient algorithms for more complicated models, all benefiting from
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compactness of the state space. Corollary 5.2(iii) shows how an optimal
portfolio for proportional costs can be employed to construct an optimal
trading strategy for fixed and proportional transaction costs. However, unlike
the Π∗ from Theorem 5.1, ΠM constructed in Corollary 5.2 depends on past
variations of the wealth and hence is not Markovian. A detailed proof of
Corollary 5.2 is given later.

Proof of Theorem 5.1. We use a generalization of the vanishing discount
method ([4], [15], [19], [28], [31]). We obtain a Bellman inequality for our op-
timization problem as a limit of Bellman equations for discounted problems
(16). We cannot directly apply known results since they require continuity
of the controlled transition function q defined below. Instead, we follow the
approach pioneered by [28]: we exchange the parts of argument where the
continuity of q is needed by considerations based on specific properties of
our control problem. We also ease the requirement of local compactness of
the state space in the spirit of [19].

Denote by H = S × (0,∞)×E the state space of our Markovian control
model. It is complete and separable, which is needed for the existence of
measurable selectors. Denote by q the controlled transition operator, i.e.
a function q : H× S → P(H), where P(H) is the space of Borel probability
measures on H, uniquely determined by the formula

(26)
�

H
f(π̃−, x̃−, z̃) q(π−, x−, z, π)(dπ̃−, dx̃−, dz̃)

= Ezf(π � ζ(z, ξ(1)), Xπ
−(1), z(1))

for all bounded measurable f : H → R, where

Xπ
−(1) =

{
x− e(π−, π, x−)(π · ζ(z, ξ(1))) when π− 6= π,

x− (π · ζ(z, ξ(1))) when π− = π.

Obviously, q is not weakly continuous as long as the constant term in trans-
action costs is non-null. Indeed, Xπ−

− (1) − Xeπ
−(1) ≥ C for any π̃ 6= π−.

Consider

η(π−, π, x−, z) =
{
h(π, z), π− = π,

h(π, z) + ln e(π−, π, x−), π− 6= π.

The Bellman equation (18) can be written in an equivalent form

(27) vβ(π−, x−, z) = sup
π∈S

{
η(π−, π, x−, z) + β

�
vβ dq(π−, x−, z, π)

}
.

Let aβ : H → S be a measurable selector for Mvβ (see Lemma 4.1) and Iβ
be the impulse region

Iβ = {(π−, x−, z) ∈ H : vβ(π−, x−, z) = Mvβ(π−, x−, z)}.
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The optimal strategy in this formulation is given by a measurable function
fβ : H → S,

fβ(π−, x−, z) =
{
π−, (π−, x−, z) /∈ Iβ,
aβ(π−, x−, z), (π−, x−, z) ∈ Iβ.

Since vβ is unbounded as β grows to ∞ we introduce the relative dis-
counted value function

wβ(π−, x−, z) = mβ − vβ(π−, x−, z),

where
mβ = sup

π−∈S
sup
z∈E

ṽβ(π−, z)

is well-defined due to Lemma 4.6. Moreover, we have

Lemma 5.3.

(i) 0 ≤ wβ(π−, x−, z) ≤ M1 + M2 max(M3,− lnx−) with M1,M2,M3

> 0 independent of β, π−, x−, z.
(ii) {(1 − β)mβ : β ∈ (0, 1)} is a pre-compact set , i.e. its closure is

compact.

Proof. By Lemma 4.6 and Corollary 4.8, we have

wβ(π−, x−, z) ≤ mβ − vβ(π−, z) + vβ(π−, z)− vβ(π−, x−, z) ≤M + L(x−),

where L(x−) is a function defined in Theorem 4.7. We conclude by using the
form of L(x−). Part (ii) follows from boundedness of h(·) and ln ẽ(·).

Put λ = lim supβ↑1(1 − β)mβ , which is finite by Lemma 5.3(ii). Denote
by βk a sequence of discount factors converging to 1 such that

λ = lim
k→∞

(1− βk)mβk .

Let
w(ϑ) = lim inf

k→∞, ϑ′→ϑ
wβk(ϑ

′), ϑ ∈ H.

This can be written equivalently as

w(ϑ) = inf{lim inf
k→∞

wβk(ϑk) : ϑk → ϑ}, ϑ ∈ H.

Lemma 5.4 ([20, Lemma 3.1]). The function w is lower semicontinuous.

The proof of this lemma is straightforward and is based on the following
reformulation of the definition of w:

w(ϑ) = sup
n

inf
k≥n
{ inf
ϑ′∈B(ϑ,1/n)

wβk(ϑ
′)},

where B(ϑ, 1/n) is a ball in H of radius 1/n.
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In the following we use two transition operators corresponding to q. Let
q be given by the formula (26) with

Xπ
−(1) = x− e(π−, π, x−) (π · ζ(z, ξ(1)))

and q with
Xπ
−(1) = x− (π · ζ(z, ξ(1))).

They are weakly continuous. Indeed, it is straightforward by (A1) and the
continuity of e(π−, π, x−) (see Lemma 2.1) that the mapping

(π−, x−, z) 7→
( �

H
f dq(π−, x−, z),

�

H
f dq(π−, x−, z)

)
is continuous for any continuous bounded function f : H → R.

Lemma 5.5 ([29, Lemma 3.2]). Let {µn} be a sequence of probability
measures on a separable metric space X converging weakly to µ and {gn} be
a sequence of measurable nonnegative functions on X . Then�

g dµ ≤ lim inf
n→∞

�
gn dµn, where g(x) = lim inf

n→∞, y→x
gn(y), x ∈ X .

Theorem 5.6. Under assumptions (A1)–(A5) there exists a measurable
function f1 : H → S and a measurable function w : H → (−∞, 0] such that

(28) w(ϑ) + λ ≤ η(ϑ, f1(ϑ)) +
�
w(ϑ′) q(ϑ, f1(ϑ))(dϑ′), ϑ ∈ H.

Proof. From equation (27) we derive

wβ(ϑ) + (β − 1)mβ = −η(ϑ, fβ(ϑ)) + β
�
wβ(ϑ′) q(ϑ, fβ(ϑ))(dϑ′),

ϑ ∈ H, β ∈ (0, 1),

where fβ defines an optimal strategy for vβ . Fix ϑ ∈ H and a sequence (ϑk)
converging to ϑ. The above equation can be rewritten as

wβk(ϑk) + (βk − 1)mβk = −η(ϑk, fβk(ϑk)) + βk
�
wβk(ϑ

′) q(ϑk, fβk(ϑk))(dϑ
′).

Applying lim infk→∞ to both sides yields

(29) lim inf
k→∞

wβk(ϑk)− λ

= − lim sup
k→∞

η(ϑ, fβk(ϑk)) + lim inf
k→∞

�
βkwβk(ϑ

′) q(ϑk, fβk(ϑk))(dϑ
′).

Since S is compact there exists a sequence (nk) such that fβnk (ϑ)→ π∗ and
either (a) ϑnk ∈ Iβnk for every k, or (b) ϑnk /∈ Iβnk for every k. Assume first
that (a) holds. By virtue of Lemma 5.5 we have

lim inf
k→∞

�
βkwβk(ϑ

′) q(ϑk, fβk(ϑk))(dϑ
′) ≥

�
w(ϑ′) q(ϑ, π∗)(dϑ′).

By Corollary 4.5 the functions vβ(π−, x−, z) are nondecreasing in x−. This
implies that w(π−, x−, z) is nonincreasing in x−. Hence

	
w(ϑ′) q(ϑ, π∗)(dϑ′)
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≥
	
w(ϑ′) q(ϑ, π∗)(dϑ′) and

(30) lim inf
k→∞

�
βkwβk(ϑ

′) q(ϑk, fβk(ϑk))(dϑ
′) ≥

�
w(ϑ′) q(ϑ, π∗)(dϑ′).

In case (b) we have fβnk (ϑk) = πk−, where ϑk = (πk−, x
k
−, z

k). Obviously,
π∗ = π−, where ϑ = (π−, x−, z). From the equalities q(ϑ, π∗) = q(ϑ, π∗) and
q(ϑnk , fβnk (ϑk)) = q(ϑnk , fβnk (ϑk)) and Lemma 5.5 we obtain (30). Since η
is upper semicontinuous we conclude that

lim inf
k→∞

wβk(ϑk)− λ ≥ −η(ϑ, π
∗) +

�
w(ϑ′) q(ϑ, π∗)(dϑ′).

Consequently,

lim inf
k→∞

wβk(ϑk)− λ ≥ inf
π∈S

{
−η(ϑ, π) +

�
w(ϑ′) q(ϑ, π)(dϑ′)

}
.

Taking the infimum over all sequences ϑn converging to ϑ we finally obtain

(31) w(ϑ)− λ ≥ inf
π∈S

{
−η(ϑ, π) +

�
w(ϑ′) q(ϑ, π)(dϑ′)

}
.

To complete the proof we have to show that there exists a measurable selector
for the infimum on the right-hand side of (31). Corollary 4.5 implies that w
is non-increasing in x−. Thus, for (π−, x−, z) ∈ H,

�
w(ϑ′) q(π−, x−, z, π−)(dϑ′) ≤

�
w(ϑ′) q(π−, x−, z, π−)(dϑ′),

and the infimum in (31) can be equivalently written as

(32) min
{
−η(ϑ, π−) +

�
w(ϑ′) q(ϑ, π−)(dϑ′),

inf
π∈S

{
−η(ϑ, π) +

�
w(ϑ′) q(ϑ, π)(dϑ′)

}}
,

where ϑ = (π−, x−, z). Recall that by Lemma 5.4 the function w is lower
semicontinuous. By weak continuity of the transition probabilities q, q the
mappings

(π−, x−, z, π) 7→
�

H
w(ϑ′) q(π−, x−, z, π)(dϑ′),

(π−, x−, z, π) 7→
�

H
w(ϑ′) q(π−, x−, z, π)(dϑ′)

are lower semicontinuous (see [14, Lemma 3.3(a)]). Corollary 1 in [7] implies
that there exists a measurable selector f2 : H → S for

inf
π∈S

{
−η(ϑ, π) +

�
w(ϑ′) q(ϑ, π)(dϑ′)

}
.
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Define f1 : H → S by

f1(π−, x−, z)

=



π− if −η(ϑ, π−) +
�
w(ϑ′) q(ϑ, π−)(dϑ′)

≤ inf
π∈S

{
−η(ϑ, π) +

�
w(ϑ′) q(ϑ, π)(dϑ′)

}
,

f2(π−, x−, z) if −η(ϑ, π−) +
�
w(ϑ′) q(ϑ, π−)(dϑ′)

> inf
π∈S

{
−η(ϑ, π) +

�
w(ϑ′) q(ϑ, π)(dϑ′)

}
,

and put w = −w. This completes the proof.

Fix (π−, x−, z) ∈ H and define a portfolio Π = ((π1, τ1), (π2, τ2), . . .) by
the formulas of Theorem 5.1 with I = {(π−, x−, z) ∈ H : f1(π−, x−, z) 6= π−}
and p = f1. Iterating (28) T times, dividing by T and letting T → ∞ we
obtain

λ ≤ Jπ−,x−,z(Π) + lim inf
T→∞

Ez
w(πΠ− (T ), XΠ

− (T ), Z(T ))
T

≤ Jπ−,x−,z(Π),

since w is nonpositive. On the other hand, by a well-known Tauberian rela-
tion,

Jπ−,x−,z(Π) ≤ lim inf
β→1

(1− β)Jπ−,x−,zβ (Π) ≤ lim inf
β→1

(1− β)vβ(π−, x−, z)

≤ lim inf
β→1

(1− β)vβ(π−, z) ≤ λ,

which proves the optimality of Π and completes the proof of Theorem 5.1.

Proof of Corollary 5.2. First notice that λ is the optimal value for the
problem with proportional transaction costs. Indeed, if in the proof of The-
orem 5.6 we put wβ(π−, z) = mβ − ṽβ(π−, z), we obtain an analog of (28)
with w depending on π−, z and λ as above. Consequently, λ is the optimal
value for the problem with proportional transaction costs, and the corre-
sponding optimal strategy depends only on the current state of the processes
(π−(t)) and (Z(t)).

Let Π be the optimal portfolio for the case with fixed and proportional
transaction costs (as defined in Theorem 5.1). Denote by X̃Π

− (t) the wealth
of the portfolio governed by Π when the fixed term of the transaction cost
function is equal to 0. Obviously X̃Π

− (t) ≥ XΠ
− (t) and

lim
T→∞

1
T

Ez ln X̃Π
− (t) ≥ λ.

Since λ is the optimal value for the problem with proportional transaction
costs we also have the opposite inequality.

(iii) follows directly from the proof of Theorem 4.7.
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6. Extensions. The paper can be extended in two directions. First we
can generalize the cost function c̃. Assume that c̃ is subadditive and satisfies

c̃(N1, N2, S) ≥
d∑
i=1

(c1iS
i(N i

1 −N i
2)

+ + c2iS
i(N i

1 −N i
2)
−),(33)

c̃(N1, N2, S) ≤
d∑
i=1

(c1iS
i(N i

1 −N i
2)

+ + c2iS
i(N i

1 −N i
2)
−) + C(34)

for some C ≥ 0 and c1i , c
i
2 ∈ [0, 1), i = 1, . . . , d. If the cost function on the

right-hand side of (34) satisfies (A6) then there exists an optimal portfolio
of the form given in Theorem 5.1. Moreover, the portfolio optimal for the
cost

(35)
d∑
i=1

(c1iS
i(N i

1 −N i
2)

+ + c2iS
i(N i

1 −N i
2)
−) + C

is optimal for c̃ as well. To see this, denote by Ĵπ−,x−,z(Π) the functional (15)
for the cost function c̃, by Jπ−,x−,z(Π) the functional (15) for the cost func-
tion (35), and finally by J̃π−,z(Π) the functional (15) for the cost function
(this a proportional cost)

(36)
d∑
i=1

(c1iS
i(N i

1 −N i
2)

+ + c2iS
i(N i

1 −N i
2)
−).

Clearly, for any portfolio Π ∈ Az we have

J̃π−,z(Π) ≥ Ĵπ−,x−,z(Π) ≥ Jπ−,x−,z(Π).

This implies that

sup
Π∈Az

J̃π−,z(Π) ≥ sup
Π∈Az

Ĵπ−,x−,z(Π) ≥ sup
Π∈Az

Jπ−,x−,z(Π).

Since by virtue of Theorem 5.1 and Corollary 5.2 there exists a constant λ
such that

λ = sup
Π∈Az

J̃π−,z(Π) = sup
Π∈Az

Jπ−,x−,z(Π)

we conclude that λ = supΠ∈Az Ĵπ−,x−,z(Π). Moreover, due to Corollary 5.2
the optimal portfolio for the functional Jπ−,x−,z is also optimal for J̃π−,z.
Therefore, it is also optimal for Ĵπ−,x−,z. Notice now that the cost function
(5) satisfies (33) and (34). Therefore, Theorem 5.1 extends to this important
case.

The results of this paper can be applied to an incomplete information
case and extend [25]. Let us first sketch some motivation for this develop-
ment. It is well known that investors do not have full information about
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variables influencing the economy. This is due to errors in statistical data
or simply due to the lack of information. Therefore, it is natural to extend
our model to cover the case where a number of economic factors are either
observable with noise or not observable at all. For simplicity we restrict our-
selves to the case when a group of factors can be precisely observed and
the rest are not observable. However, our results can be extended to a more
general situation.

Following the above remark assume that the space E of economic fac-
tors is a direct sum of metric spaces E1, E2 with Borel σ-algebras E1, E2.
Therefore, (Z(t)) has a unique decomposition into (Z1(t), Z2(t)). We shall
treat E1 as the observable part of the economic factor space and (Z1(t)) as
the observable factor process. The process (Z2(t)) is the unobservable factor
process. We denote byMt,Z1

t ,Z2
t the filtrations generated, respectively, by

(ζ(t)), (Z1(t)) and (Z2(t)). Denote by Yt the filtration generated by Mt

and Z1
t and by Ãz the space of Yt-adapted portfolios admissible for z, i.e.

Ãz ⊆ Az. Our aim is to prove existence of an optimal strategy maximizing
the functional

Jπ−,x−,z
1,%(Π) = lim inf

T→∞

1
T

Ez
1,% lnXΠ

− (T )

over all strategies Π ∈ Ã. Here (z1, %) ∈ E1 × P(Z2) denotes the initial
distribution of (Z1(t), Z2(t)) and P(Z2) stands for the space of probability
measures on (Z2, E2). Now, we can follow a similar reasoning as in [25]
to apply Theorem 5.1 and prove existence of an optimal portfolio. Here,
however, we improve several aspects of the result; firstly, the transaction
costs structure covers important examples (4) and (5). The model setting is
more general. Moreover, in [25] the space E2 has to be compact to guarantee
that P(E2) is locally compact. Here, due to a different method of proof of
Theorem 5.1 we allow E2 to be a general complete separable metric space
(in this case, P(E2) is also a complete separable metric space). For further
details see [25].

7. Appendix

Proof of Lemma 4.3. The first inequality is a direct consequence of the
second. Set δ = e(π−, π, x−). By Lemma 2.1, δ ≥ 0 and c(π−, δπ) +C/x− +
δ ≥ 1. Noticing that c(π−, δπ) ≤ d

∑d
i=1 |πi− − δπi| we obtain

1 ≤ d(1− δ) + 2dδ +
C

x−
+ δ,

which easily leads to the desired inequality.

Proof of Lemma 4.4. We shall prove (i) by contradiction: assume that
ẽ(π−, π) < e(π−, π, x−). Noticing a+− b+ ≤ (a− b)+ and a−− b− ≤ (a− b)−
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we obtain

|c(π−, δ2π)− c(π−, δ1π)| ≤ |δ2 − δ1|max
i

(c1i , c
2
i ) for δ1, δ2 ∈ [0, 1].

Moreover, we have

0 ≤ e(π−, π, x−)− ẽ(π−, π) ≤ (e(π−, π, x−)− ẽ(π−, π)) max
i

(c1i , c
2
i )−

C

x−
.

This gives the estimate

1 +
C

x− (e(π−, π, x−)− ẽ(π−, π))
≤ max

i
(c1i , c

2
i ),

which contradicts the assumption that c1i , c
2
i ∈ [0,1). The proof of e(π−, π, x−)

≤ e(π−, π, x̃−) is analogous. Statement (ii) follows immediately from the
inequality

ẽ(π−, π)− e(π−, π, x−) ≤ (ẽ(π−, π)− e(π−, π, x−)) max
i
c1i +

C

x−
.

For (iii) we apply the inequality ln(1 + x) ≤ x for x > 0.

Proof of Corollary 4.5. For given π− ∈ S, z ∈ E and x̃− ≤ x−
vβ(π−, x̃−, z)− vβ(π−, x−, z) ≤ sup

Π∈Az
{Jπ−,ex−,zβ (Π)− Jπ−,x−,zβ (Π)}.

Therefore, the result follows from the observation that J
π−,ex−,z
β (Π) −

J
π−,x−,z
β (Π) ≤ 0 for any π ∈ Az.

Proof of Lemma 4.6. Let e = infπ−,π∈S ẽ(π−, π). Since maxi(c1i , c
2
i ) < 1,

we have e > 0. Fix z, z′ ∈ E and π−, π
′
− ∈ S. Denote by Π the portfolio

optimal for ṽβ(π−, z), and by Π ′ the one optimal for ṽβ(π′−, z′) (they exist by
Theorem 4.2). The corresponding proportion processes πΠ,z− (t), πΠ

′,z′

− (t) will
be written as π−(t), π′−(t) and the corresponding wealth processes XΠ,z

− (t),
XΠ′,z′

− (t) as X−(t), X ′−(t). We then have

ṽβ(π−, z)− ṽβ(π′−, z′)

=
n−1∑
t=0

βtEzh(π−(t), z(t)) +
∞∑
k=1

Ez{1τk<nβ
τk ln ẽ(π−(τk), πk)}

−
n−1∑
t=0

βtEz
′
h(π′−(t), z′(t))−

∞∑
k=1

Ez
′{1τk<nβ

τk ln ẽ(π′−(τk), πk)}

+ βn(Ez ṽβ(π−(n), z(n))− Ez
′
ṽβ(π′−(n), z′(n))).

There are at most n transactions between 0 and n−1, since by subadditivity
of the cost function it is never optimal to have more than one transaction at
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a time. Hence,

ṽβ(π−, z)− ṽβ(π′−, z′)
≤ n‖h‖sp − n ln e+ βn(Ez ṽβ(π−(n), z(n))− Ez

′
ṽβ(π′−(n), z′(n))),

where ‖h‖sp = suph− inf h is a span seminorm. Choose an arbitrary π∗ ∈ S
and observe that

Ez ṽβ(π−(n), z(n))− Ez
′
ṽβ(π′−(n), z′(n))

≤ Ez{ṽβ(π−(n), z(n))− ṽβ(π∗, z(n))}

+ Ez
′{ṽβ(π∗, z′(n))− ṽβ(π′−(n), z′(n))}

+ Ez ṽβ(π∗, z(n))− Ez
′
ṽβ(π∗, z′(n)).

Since ṽβ(π−, z)− ṽβ(π′−, z) ≤ − ln ẽ(π, π′), we have

Ez{ṽβ(π−(n), z(n))− ṽβ(π∗, z(n))} ≤ − ln e,

Ez
′{ṽβ(π∗, z′(n))− ṽβ(π′−(n), z′(n))} ≤ − ln e.

Notice that

Ez ṽβ(π∗, z(n))− Ez
′
ṽβ(π∗, z′(n)) =

�

E

ṽβ(π∗, y) q(dy),

with q = Pn(z, ·) − Pn(z′, ·). Let Γ ∈ E be the set from the Hahn–Jordan
decomposition of the signed measure q, i.e. q is nonnegative on Γ and non-
positive on Γ c. By (A3),�

E

ṽβ(π∗, y) q(dy) ≤ ‖ṽβ(π∗, ·)‖sp q(Γ ) ≤ κ‖ṽβ(π∗, ·)‖sp.

Consequently,

ṽβ(π−, z)− ṽβ(π′−, z′) ≤ n‖h‖sp − (n+ 2) ln e+ κ‖ṽβ(π∗, ·)‖sp.

Since π−, π′− ∈ S and z, z′ ∈ E are arbitrary we obtain

‖ṽβ(π∗, ·)‖sp ≤ n‖h‖sp − (n+ 2) ln e+ κ‖ṽβ(π∗, ·)‖sp,
which yields the desired result.
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