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EVALUATIONS OF EXPECTED GENERALIZED ORDER
STATISTICS IN VARIOUS SCALE UNITS

Abstract. We present sharp upper bounds for the deviations of expected
generalized order statistics from the population mean in various scale units
generated by central absolute moments. No restrictions are imposed on the
parameters of the generalized order statistics model. The results are derived
by combining the unimodality property of the uniform generalized order
statistics with the Moriguti and Hölder inequalities. They generalize evalu-
ations for specific models of ordered observations.

1. Introduction. The derivation of bounds for moments of order statis-
tics from an iid sample has received a great attention in the literature. Clas-
sical results are the Gumbel (1954) and Hartley and David (1954) bounds
for the expected sample maximum and the Moriguti (1953) bounds for ar-
bitrary expected order statistics. Some refinements and improvements were
proposed, e.g., by Balakrishnan (1990, 1993) and Balakrishnan and Bendre
(1993). The Moriguti (1953) method, based on the greatest convex mino-
rant, was utilized by Raqab (1997) for kth record values and by Balakrishnan
et al. (2001) for progressively type II censored order statistics. Since these
results are also based on the Cauchy–Schwarz inequality, the bounds are
given in terms of the mean and standard deviation. However, instead of the
Cauchy–Schwarz inequality it is near at hand to use its direct generalization,
the Hölder inequality with 1 ≤ p ≤ ∞. This leads to bounds where the mea-
surement units are powers of absolute central moments of the underlying
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distribution:
σp = (E|X − µ|p)1/p.

In the context of order statistics, Arnold (1985) applied this method to the
sample maximum. A generalization to L-statistics was proposed by Rychlik
(1998). Arnold (1985) and Rychlik (1993) presented analogous evaluations
for the maximum and arbitrary L-statistics of dependent identically dis-
tributed samples, respectively. Recently Raqab and Rychlik (2002) consid-
ered p-norm bounds for record statistics.

We consider generalized order statistics as a unified approach to models
of ordered random variables (cf. Kamps (1995)). In this paper we show that
the preceding results can be seen as particular results for generalized order
statistics. No restrictions are imposed on the parameters of the generalized
order statistics model. The bounds follow from the fundamental observa-
tion that densities of uniform generalized order statistics are unimodal (cf.
Cramer et al. (2002)), which is thoroughly discussed in Section 2. Section 3
contains the main results of the paper.

2. Preliminaries. Generalized order statistics based on some distribu-
tion function G and parameters γ1, . . . , γn > 0 were introduced by Kamps
(1995) via the quantile transformation

Xr = G−1(Ur), 1 ≤ r ≤ n,
where U1, . . . , Un are generalized order statistics based on the (standard)
uniform distribution and the parameters γ1, . . . , γn. The joint density func-
tion of U1, . . . , Un is given by

fU1,...,Un(u1, . . . , un) = k
( n−1∏

j=1

γj

)( n−1∏

j=1

(1− uj)γj−γj+1−1
)

(1− un)γn−1

on the cone {(u1, . . . un) : 0 ≤ u1 ≤ . . . ≤ un < 1} ⊂ Rn with parameters
n ∈ N, γ1, . . . , γn > 0.

It was shown in Cramer and Kamps (2002) that the marginal density
of the rth uniform generalized order statistic can be written in terms of
a particular Meijer G-function, i.e.,

fr(t) = fUr(t) =
( r∏

i=1

γi

)
Gr,0
r,r

[
1− t

∣∣∣∣
γ1, . . . , γr

γ1 − 1, . . . , γr − 1

]
, t ∈ [0, 1).

The marginal cumulative distribution function of the rth uniform gener-
alized order statistic is denoted by Fr. Hence, the cumulative distribution
function of Xr = G−1(Ur) based on some distribution function G is given by
Gr = Fr◦G. Since only the marginal distribution is considered in the follow-
ing calculations, and this does not depend on the ordering of the parameters
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γ1, . . . , γr, we assume without loss of generality that the parameters are de-
creasingly ordered, i.e., γ1 ≥ . . . ≥ γr > 0.

Let X be a random variable with distribution function G. Subsequently,
we tacitly assume that the expectation µ = EX and the pth absolute central
moment

σpp = E|X − µ|p =
1�
0

|G−1(u)− µ|p du, 1 ≤ p <∞,

exist and are finite whenever they are used. Moreover, if the support of X is
bounded, we denote the essential supremum of its deviation from the mean
by

σ∞ = ess sup |X − µ| = sup{|G−1(u)− µ| : u ∈ (0, 1)}.
In the following, the behavior of fr at the endpoints of the interval (0, 1) is
important. For r = 1, the density function f1(t) = γ1(1− t)γ1−1, t ∈ (0, 1),
has the limits

lim
t→0+

f1(t) = γ1 > 0, lim
t→1−

f1(t) =

{+∞ if γ1 < 1,
1 if γ1 = 1,
0 if γ1 > 1.

If r ≥ 2, we have

lim
t→0+

fr(t) = 0,

lim
t→1−

fr(t) =

{+∞ if γr < 1 or γr = γr−1 = 1,
fr(1) ∈ (0,∞) if γr = 1 < γr−1,
0 if γr > 1.

The value of fr(1) in the the case γr = 1 < γr−1 can be calculated explicitly
(see Cramer and Kamps (2002)).

Subsequently, we denote the limits of fr at the endpoints of (0, 1) by fr(0)
and fr(1), respectively. The following theorem is fundamental in deriving
bounds on expected generalized order statistics (cf. Cramer et al. (2002)).

Proposition 2.1 The density function of each uniform generalized or-
der statistic is unimodal.

For r = 1, the density function is strictly increasing , constant and strictly
decreasing for γ1 < 1, = 1, and > 1, respectively.

For r ≥ 2 the following result holds: If γr ≤ 1, then the density function
is strictly increasing. Otherwise it is strictly unimodal with a mode in (0, 1).

Four cases are distinguished in the following considerations:

(A) fr ≡ 1, i.e., r = 1, γ1 = 1;

(B) fr is strictly decreasing, i.e., r = 1, γ1 > 1;

(C) fr is strictly increasing with
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(i) fr(1) <∞, i.e., r ≥ 2, γr−1 > γr = 1;
(ii) fr(1) =∞, i.e., r ≥ 1, γr < 1 or r ≥ 2, γr−1 = γr = 1;

(D) fr is strictly unimodal with a mode zr ∈ (0, 1) and fr(0) = fr(1) = 0,
i.e., r ≥ 2, γr > 1.

3. Bounds via a combination of the Moriguti and Hölder in-
equalities. We aim now at deriving the projections Pfr of the density func-
tions fr onto the family of nondecreasing functions in the space L2([0, 1), du)
of square integrable functions on the standard unit interval. Considering the
preceding set-ups (A)–(D) and Proposition 2.1, we come up with the follow-
ing conclusions.

Proposition 3.1 (i) Pfr = 1 in cases (A) and (B);
(ii) Pfr = fr in case (C);
(iii) Pfr(·) = fr(min(·, b)) in case (D), where 0 < b < zr is the unique

solution of the equation

(1) (1− x)fr(x) = 1− Fr(x), x ∈ (0, 1).

Proof. The projection Pfr of fr onto the convex cone of nondecreasing
functions in L2([0, 1), du) is derived by means of Moriguti’s greatest convex
minorant method. This is the derivative of the greatest convex minorant
of the antiderivative Fr of the density function fr. A formal justification
can be found in Rychlik (2001, pp. 14–16). In cases (A) and (C), fr is
actually nondecreasing, and coincides with the projection Pfr. In case (B),
Fr(t) = 1 − (1 − t)γ1 is concave increasing from Fr(0) = 0 to Fr(1) = 1.
Therefore its greatest convex minorant is the linear function F̃r(t) = t,
t ∈ [0, 1], with the derivative F̃ ′r = Pfr ≡ 1.

The only nontrivial case is (D), where Fr is strictly convex increasing
on (0, zr) and strictly concave increasing on (zr, 1). The greatest convex
minorant F̃r of Fr is

(2) F̃r(t) =





Fr(t) for t ∈ [0, b],

1− Fr(b)
1− b (t− 1) + 1 for t ∈ [b, 1],

for some 0 ≤ b ≤ zr. The case b = 0 is excluded, because fr(0) = 0, and
Fr lies below the line joining (0, 0) and (1, 1) in a neighborhood of 0, i.e.,
Fr(t) < t for t ∈ (0, ε). Looking for b, we consider the linear functions

lx(t) = fr(x)(t− x) + Fr(x), t ∈ R,
tangent to Fr at x ∈ (0, zr] and evaluate them for t = 1. Since lx(1) is a
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continuous function in x, the values lx(1) strictly increase from l0(1) = 0 to

lzr (1) = fr(zr)(1− zr) + Fr(zr)

=
zr�
0

fr(u) du+
1�
zr

fr(zr) du >
1�
0

fr(u) du = Fr(1) = 1.

Consequently, there exists a unique b ∈ (0, zr) such that

lb(1) = Fr(b) + (1− b)fr(b) = 1

(cf. (1)). Combining this property with (2) we obtain the derivative

(3) Pfr(t) = F̃ ′r(t) =
{
fr(t) for t ∈ [0, b],
fr(b) for t ∈ [b, 1],

which has the desired representation.

In consequence, we obtain the Moriguti inequality (cf. Rychlik (2001,
p. 34))

(4) EXr =
1�
0

G−1(u)fr(u) du ≤
1�
0

G−1(u)Pfr(u) du.

Equality holds in (4) if G−1 is constant on each interval where the distri-
bution function Fr is greater than its greatest convex minorant. In cases
(A) and (C), there is no restriction since fr = Pfr so that (4) holds with
equality. In case (B), G−1 is constant on (0, 1), which means that G is con-
centrated at the single point µ. In the remaining case (D), G−1 is constant
on the interval (b, 1), implying that G has a jump of probability at least
1− b at the right endpoint of its support.

Applying the equalities � 1
0 Pfr(u) du = 1 and � 1

0[G−1(u) − µ] du = 0 we
find for arbitrary c ∈ R the inequality

EXr − µ ≤
1�
0

[G−1(u)− µ]Pfr(u) du(5)

=
1�
0

[G−1(u)− µ][Pfr(u)− c] du.

Choosing c = 1 in cases (A) and (B), we can evaluate the right hand side of
(4) directly:

EXr − µ ≤
1�
0

[G−1(u)− µ][Pfr(u)− 1] du = 0.

We have equality in case (A), and the simple relation EXr = µ holds for
every distribution functionG. In case (B), the bound EXr ≤ µ is attained for
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the one-point distribution with mass at µ. These trivial cases are excluded
from the further study.

In the remaining cases (C) and (D), the Hölder inequality is applied to
evaluate the upper bound (5). Note that Pfr has the common form (3) with
b = 1 under assumption (C). Moreover, Pfr = fr, and it suffices to evaluate
the middle term in (4). The cases p = 1, 1 < p < ∞, and p = ∞ are
considered separately in the subsequent sections.

3.1. Case p = 1. The relations (5) yield

EXr − µ ≤
1�
0

[G−1(u)− µ][Pfr(u)− c] du(6)

≤ sup
u∈(0,1)

|Pfr(u)− c|
1�
0

|G−1(u)− µ| du = B1(c)σ1.

The constant c is chosen so that it minimizes the factor B1(c).

Theorem 3.2. With b defined in (1), we have

sup
G

EXr − µ
σ1

= B1 =




∞ in case (C)(ii),
fr(1)/2 <∞ in case (C)(i),
fr(b)/2 <∞ in case (D).

The bounds are not attained , but there are sequences of distributions, e.g.,
three-point distributions, which attain the bounds in the limit.

Proof. Since Pfr is nondecreasing, Pfr(0) = 0, and Pfr(1) = fr(1) <
∞, Pfr(1) =∞, and Pfr(1) = fr(b) <∞ in cases (C)(i), (C)(ii), and (D),
respectively, the upper bounds are immediately determined by calculating

B1 = inf
c∈R

B1(c) = inf
c∈R

sup
u∈(0,1)

|Pfr(u)− c|.

We show that the bounds are attained.
In case (C), for 0 < ε < 1/2, we define a random variable X with the

distribution

P

(
X = µ− σ1

2ε

)
= P

(
X = µ+

σ1

2ε

)
= ε, P (X = µ) = 1− 2ε.

It is easily checked that EX = µ and E|X − µ| = σ1. Moreover,

EXr − µ
σ1

=
1�
0

G−1(u)− µ
σ1

fr(u) du =
1
2ε

[ 1�
1−ε

fr(u) du−
ε�
0

fr(u) du
]

≥ fr(1− ε)− fr(ε)
2

→ fr(1)
2

= B1 as ε→ 0.
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In case (D), for 0 < ε < b, we choose X so that

P

(
X = µ− σ1

2ε

)
= ε, P (X = µ) = b− ε, P

(
X = µ+

σ1

2(1− b)

)
= 1− b.

This distribution satisfies the moment conditions, and has a jump of height
1− b at the right end of its support. Therefore

EXr − µ
σ1

=
1�
0

G−1(u)− µ
σ1

Pfr(u) du =
fr(b)

2
− 1

2ε

ε�
0

fr(u) du

≥ fr(b)− fr(ε)
2

→ fr(b)
2

= B1 as ε→ 0.

3.2. Case 1 < p < ∞. Applying the Hölder inequality and setting q =
p/(p− 1) we conclude that

EXr − µ ≤
1�
0

[G−1(u)− µ][Pfr(u)− c] du(7)

≤ ‖G−1(u)− µ‖p‖Pfr − c‖q
= ‖Pfr − c‖qσp = Bp(c)σp,

where the bounds Bp(c) = ‖Pfr − c‖q depend on the constants c ∈ R.

Theorem 3.3. Let b = 1 in case (C) and let b solve equation (1) in
case (D). Then

(8) sup
G

EXr − µ
σp

= Bp,

where

Bpp =
a�
0

[fr(a)− fr(u)]q du+
b�
a

[fr(u)− fr(a)]q du

+ (1− b)[fr(b)− fr(a)]q,

and a ∈ (0, b) is the unique solution of the equation

a�
0

[fr(a)− fr(u)]q−1 du =
b�
a

[fr(u)− fr(a)]q−1 du(9)

+ (1− b)[fr(b)− fr(a)]q−1.

A distribution function G that attains the bound (8) is given by

(10) G(t) =





0 if t ≤ α,

f−1
r

(
fr(a) + sgn(t− µ)

Bp
σp
|t− µ|p/q

)
if α ≤ t < β,

1 if t ≥ β,
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for

α = µ− σp
[
fr(a)
Bp

]q/p
and β = µ+ σp

[
fr(b)− fr(a)

Bp

]q/p
.

Proof. First we determine the constant c that minimizes the bound in
(7). The function Pfr is continuous nondecreasing with image [0, fr(b)]. It is
obvious that the optimal c fulfils c ∈ [0, fr(b)] so that it can be represented
as c = fr(a) for a unique a ∈ [0, b]. Define the function

Dp(x) = Bpp(fr(x)) = ‖Pfr − fr(x)‖qq

=
x�
0

[fr(x)− fr(u)]q du+
b�
x

[fr(u)− fr(x)]q du

+ (1− b)[fr(b)− fr(x)]q, x ∈ (0, b).

Its derivative is given by

D′p(x) = qf ′r(x)
{ x�

0

[fr(x)− fr(u)]q−1 du

−
b�
x

[fr(u)− fr(x)]q−1 du− (1− b)[fr(b)− fr(x)]q−1
}
.

Both q and f ′r(x) for x ∈ (0, b) are positive. Moreover, the first term in
braces is equal to 0 at 0, and it strictly increases in x. The sum of the
second and third terms is negative, strictly increasing and vanishing at b.
Therefore there exists a unique a ∈ (0, b) at which D′p changes sign from
minus to plus, and thus Dp attains its minimum. Equivalently, the point is
uniquely determined by equation (9).

Now we show that (10) is the unique distribution function that satisfies
both the moment conditions and provides equalities in (7) with the optimal
constant. Equalities in the Hölder inequality and in the moment conditions
hold if

G−1(x)− µ
σp

=
|Pfr(x)− fr(a)|q/p sgn{Pfr(x)− fr(a)}

‖Pfr − fr(a)‖q/pq

, x ∈ (0, 1).

This is a nondecreasing function which defines the distribution function (10).
Note that in case (D), it has an atom with mass 1− b at the right endpoint
of its support, and so the Moriguti inequality is attained as well. In case (C),
Pfr = fr, and the application of the Moriguti inequality is redundant.

In the particular case p = q = 2, the representation of the bounds
simplifies considerably. First of all, from

‖Pfr − c‖22 = ‖Pfr − 1‖22 + (c− 1)2
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we deduce that c = 1 is the optimal constant. This yields

B2
2 = ‖Pfr − 1‖22 = ‖Pfr‖22 − 1 =

b�
0

f2
r (u) du+ (1− b)f2

r (b)− 1.

The bound is attained by the distribution function

G(t) =





0 if t ≤ µ− σ2

B2
,

f−1
r

(
1 +

B2

σ2
(t− µ)

)
if µ− σ2

B2
≤ t < µ+

σ2

B2
[fr(b)− 1],

1 if t ≥ µ+
σ2

B2
[fr(b)− 1].

3.3. Case p =∞. In this set-up we obtain the upper bound

EXr − µ ≤
1�
0

[G−1(u)− µ][Pfr(u)− c] du(11)

≤ sup
u∈[0,1]

|G−1(u)− µ|
1�
0

|Pfr(u)− c| du = B∞(c)σ∞

with B∞(c) = ‖Pfr − c‖1 depending on the real c.

Theorem 3.4. Let b = 1 or b be the solution to (1), in cases (C) and
(D), respectively. Then

(12) sup
G

EXr − µ
σ∞

= B∞ =
{
fr(b)− 1 if b ≤ 1/2,
1− 2Fr(1/2) if b > 1/2.

The bound is attained by , e.g., the two-point distribution defined by

P (X = µ− σ∞) = min{b, 1/2}(13)

= 1− P
(
X = µ+ σ∞

min{b, 1/2}
1−min{b, 1/2}

)
.

Proof. First, we derive c by minimizing B∞(c) in (11). An argument
similar to that in the proof of Theorem 3.3 shows that the optimal c can be
written as c = fr(a) for some a ∈ [0, b]. In order to determine the optimal a,
we consider

D∞(x) =
1�
0

|Pfr(u)− fr(x)| du(14)

=
x�
0

[fr(x)− fr(u)] du+
b�
x

[fr(u)− fr(x)] du

+ (1− b)[fr(b)− fr(x)]



294 E. Cramer et al.

= (2x− 1)fr(x)− 2Fr(x) + Fr(b) + (1− b)fr(b)
= (2x− 1)fr(x)− 2Fr(x) + 1.

The last relation follows from (1). Furthermore

D′∞(x) = (2x− 1)f ′r(x), x ∈ (0, b).

Since f ′r(x) is positive for every x ∈ (0, b), the only zero of the derivative
is a = 1/2 subject to the condition that 1/2 < b. Otherwise, the minimum
is attained at the right endpoint of the domain, i.e., for a = b. Hence,
a = min{b, 1/2} minimizes (14) and provides the best bound in (11). If
1/2 ≤ b < 1 (in case (C), in particular), then

B∞ = D∞(1/2) = 1− 2Fr(1/2).

In case (D) with b < 1/2, we have

B∞ = D∞(b) = fr(b)− 1,

due to (1) again.
We now claim that the bound in (12) is attained by the distribution (13).

First we observe that EX = µ and ess sup |X − µ| = σ∞. Moreover, the
distribution function of X has a jump of height at least 1 − b at the right
endpoint, and so it provides equality in the Moriguti inequality (see (5)). If
b ≥ 1/2, then

EXr − µ =
1�
0

[G−1(u)− µ][Pfr(u)− fr(1/2)] du

= σ∞

1�
0

|Pfr(u)− fr(1/2)| du = D∞(1/2)σ∞ = B∞σ∞.

Otherwise

EXr − µ =
b�
0

[G−1(u)− µ][Pfr(u)− fr(b)] du

= σ∞

1�
0

|Pfr(u)− fr(b)| du = D∞(b)σ∞ = B∞σ∞.

This ends the proof.
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