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MEAN SQUARE ERROR OF THE ESTIMATOR OF THE
CONDITIONAL HAZARD FUNCTION

Abstract. This paper deals with a scalar response conditioned by a func-
tional random variable. The main goal is to estimate the conditional hazard
function. An asymptotic formula for the mean square error of this estimator
is calculated considering as usual the bias and variance.

1. Introduction. The estimated hazard rate, because of the variety of
its possible applications, is an important issue in statistics. This topic can
(and should) be approached from several angles depending on the complex-
ity of the problem: presence of censoring in the observed sample (common
for example in medical applications), presence of dependence between the
observed variables (common in seismic or econometric applications) or pres-
ence of explanatory variables. Many techniques have been studied in the
literature to deal with these situations but all deal only with random real
and multidimensional explanatory variables.

Now, we encounter more frequently functional data such as curves or
images. The data are modeled as realizations of a random variable taking
values in an abstract space of infinite dimension. Thus, estimating a hazard
rate in the presence of functional explanatory variable is a topical issue. In
this context, the first results were obtained by Ferraty et al. [4]. They studied
the almost complete convergence of a kernel estimator of the conditional
hazard function assuming i.i.d. observations and the case of observations
mixing for complete data and censored.
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The estimators that we define are based on the techniques of convolu-
tion kernel. The study of the hazard function and the conditional hazard
function is of obvious interest in many scientific fields (biology, medicine, re-
liability, seismology, econometrics, . . . ), and many authors have studied the
construction of nonparametric estimators of the hazard function and condi-
tional hazard function. One of the most common techniques for constructing
such estimators is to study the quotient of the density estimator (respectively
the conditional density) and an estimator of S (respectively the conditional
survival function). The article by Patil et al. [10] presented an overview of
estimation techniques.

Nonparametric methods are based on the idea of convolution kernel. Such
kernels are used with success in estimating both density functions and hazard
functions. A wide range of literature in this area is provided by the overviews
of Singpurwalla and Wong [13], Hassani et al. [7], Izenman [8], Gefeller and
Michels [6] and Pascu and Vaduva [9].

Ramsay and Silverman [11] and Ferraty et al. [4] recently developed meth-
ods of nonparametic estimation for functional random variables (i.e. with
values in an infinite-dimensional space).

The objective of this paper is to study a model in which a conditional
random explanatory variable X is not necessarily real or multidimensional
but only supposed to have values in an abstract seminormed space F .

As with any problem of nonparametric estimation, the dimension of the
space F plays an important role in the properties of concentration of the vari-
able X. Thus, when this dimension is not necessarily finite, the probability
functions defined by small balls

φx(h) = P (X ∈ B(x, h)) = P (X ∈ {x′ ∈ F , d(x, x′) < h})
play a crucial role in asymptotic formulas. The role of small ball probabilities
is widely presented in Chapter 13.2 of Ferraty and Vieu [5].

2. General notations and conditions. We consider a random pair
(X,Y ) where Y is valued in R and X is valued in some seminormed vector
space (F , d(· ; ·)), which may be of infinite dimension. We will say that X
is a functional random variable and we will use the abbreviation frv. For
a sample of independent pairs (Xi, Yi), each having the same distribution
as (X,Y ), our aim is to study mean square convergence of the estimator
of the conditional hazard function of a real random variable conditional on
one functional variable. Nonparametric estimation of the function is related
to the conditional probability distribution (cond-cdf ) of Y given X. For
x ∈ F , we assume that the regular version of the conditional probability of
Y given X exists, denoted by FX

Y , and has a bounded density with respect
to Lebesgue measure over R, denoted by fXY .
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In the following, (x, y) will be a fixed point in R×F ; Nx×Ny will denote
a fixed neighborhood of (x, y); S will be a fixed compact subset of R; and
we will use the notation B(x, h) = {x′ ∈ F | d(x′, x) < h}.

Our nonparametric models will be quite general in the sense that we will
just need a simple assumption on the marginal distribution of X. Set

(1) C2
B(F × R) =

{
ϕ : F × R→ R | ∀z ∈ Nx, ϕ(z, ·) ∈ C2(Ny) and(

ϕ(·, y), ∂
2ϕ(·, y)
∂y2

)
∈ C1

B(x)× C1
B(x)

}
,

where C1
B(x) is the set of those continuously Gateaux differentiable functions

on Nx (see Troutman [14] for this type of differentiability) for which the
derivative operator of order 1 at a point x is bounded on the unit ball B(0, 1)
of the functional space F . Given i.i.d. observations (X1, Y1), . . . , (Xn, Yn) of
(X,Y ), the kernel estimate of the conditional distribution FX

Y (x, y), denoted
F̂X
Y (x, y), is defined by

F̂X
Y (x, y) =

∑n
i=1K(h−1K ‖x−Xi‖)H(h−1H (y − Yi))∑n

i=1K(h−1K ‖x−Xi‖)
.

with the convention 0
0 = 0. The function K is a kernel, H is a cfd and

hK = hK,n (resp. hH = hH,n) is a sequence of positive real numbers. As an
estimator of f̂XY (x, y) we take a derivative of F̂X

Y (x, y), namely

f̂XY (x, y) =
h−1H

∑n
i=1K(h−1K ‖x−Xi‖)H ′(h−1H (y − Yi))∑n

i=1K(h−1K ‖x−Xi‖)
,

where H ′ is a kernel (it is the derivative of H). According to our notation
the conditional hazard function is given by

(2) ∀x ∈ F , ∀y ∈ R hXY (x, y) =
fXY (x, y)

1− FX
Y (x, y)

=
fXY (x, y)

SX
Y (x, y)

.

The main objective is to study the nonparametric estimator

ĥXY (x, y) =
f̂XY (x, y)

1− F̂X
Y (x, y)

of hXY (x, y) when the explanatory variable X is valued in a space of possibly
infinite dimension. We give precise asymptotic evaluations of the quadratic
error of this estimator.

3. Asymptotic properties. To establish the mean square convergence
of the estimator ĥXY (x, y) to hXY (x, y), we introduce the following assump-
tions:
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(H1) for all r > 0, the random variable Z = r−1(x − X) is absolutely
continuous with respect to the measure µ, its density w(r, x, v) is
strictly positive on B(0, 1) and can be written as

(3) w(r, x, v) = φ(r)g(x, v) + o(φ(r)) for all v ∈ B(0, 1),

where
• φ is an increasing function with values in R+,
• g is defined on F × F with values in R+ and

0 <
�

B(0,1)

g(x, v) dµ(v) <∞.

(H2) The kernel K has compact support and

0 < A3 < K(t) < A4 <∞,

(H3) H ′ is a bounded, integrable, positive, symmetric kernel such that

H(x) =

x�

−∞
H ′(t) dt,

�
H ′(t) dt = 1,

�
t2H ′(t) dt <∞,

(H4) lim
n→∞

hK = 0, lim
n→∞

hH = 0 and lim
n→∞

nhHφ(hK) =∞,

(H5) ∃τ <∞, fXY (x, y) ≤ τ, ∀(x, y) ∈ F × S,

(H6) ∃β > 0, FX
Y (x, y) ≤ 1− β, ∀(x, y) ∈ F × S.

We establish the following results.

Theorem 3.1. Under the hypotheses (H1)–(H6) and if fXY (x, y) ∈
C2
B(F × R) then

E[(f̂XY (x, y)− fXY (x, y))2] = B2
H(x, y)h4H +B2

K(x, y)h2K +
VHK(x, y)

nhHφ(hK)
(4)

+ o(h4H) + o(h2K) + o

(
1

nhHφ(hK)

)
with

BH(x, y) =
1

2hH

∂2fx(y)

∂y2

�
t2H ′(t) dt,

BK(x, y) =

	
B(0,1)K(‖v‖)Dxf

X
Y (x, y)[v]g(x, v) dµ(v)	

B(0,1)K(‖v‖)g(x, v) dµ(v)
,

VHK(x, y) =
fXY (x, y)

( 	
B(0,1)K

2(‖v‖)g(x, v) dµ(v)
) 	
H2(t) dt( 	

B(0,1)K(‖v‖)g(x, v) dµ(v)
)2 .
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Theorem 3.2. Under the hypotheses (H1)–(H6) and if FX
Y (x, y) ∈

C2
B(F × R) then

E[(F̂X
Y (x, y)− FX

Y (x, y))2] = B′2H(x, y)h4H +B′2K(x, y)h2K +
V ′HK(x, y)

nφ(hK)
(5)

+ o(h4H) + o(h2K) + o

(
1

nφ(hK)

)
with

B′H(x, y) =
1

2

∂2FX
Y (x, y)

∂y2

�
t2H(t) dt,

B′K(x, y) =

	
B(0,1)K(‖v‖)DxF

X
Y (x, y)[v]g(x, v) dµ(v)	

B(0,1)K(‖v‖)g(x, v) dµ(v)
,

V ′HK(x, y) =
FX
Y (x, y)

( 	
B(0,1)K

2(‖v‖)g(x, v) dµ(v)
) 	
H2(t) dt( 	

B(0,1)K(‖v‖)g(x, v) dµ(v)
)2 ,

where Dx means the derivative with respect to x.

Proof of Theorem 3.1. We have to calculate separately the bias and the
variance since

E[(f̂XY (x, y)− fXY (x, y))2] = [E(f̂XY (x, y))− fXY (x, y)]2 +Var[f̂XY (x, y)].

We define the quantities

Ki(x) = K(h−1K ‖x−Xi‖), H ′i(y) = H ′(h−1H (y − Yi)) for all i = 1, . . . , n

and we set

ĝN (x, y) =
1

nφ(hK)

n∑
i=1

Ki(x)H
′
i(y), f̂D(x) =

1

nφ(hK)

n∑
i=1

Ki(x)

and

f̂N (x, y) = ĝ
(1)
N (x, y) =

1

nhHφ(hK)

n∑
i=1

Ki(x)H
′
i(y)

where H ′ is the derivative of H.
By a straightforward calculation we obtain

f̂XY (x, y) =
f̂N (x, y)

Ef̂D(x)

[
1− f̂D(x)− Ef̂D(x)

Ef̂D(x)

]
+

(f̂D(x)− Ef̂D(x))2

(Ef̂D(x))2
f̂XY (x, y),

from which we deduce

Ef̂XY (x, y) =
Ef̂N (x, y)

Ef̂D(x)
− A1

(Ef̂D(x))2
+

A2

(Ef̂D(x))2
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with

A1 = Ef̂N (x, y)(f̂D(x)− Ef̂D(x)) = Cov(f̂N (x, y), f̂D(x)),

A2 = E(f̂D(x)− Ef̂D(x))2f̂XY (x, y).

We can write

f̂XY (x, y)− fXY (x, y) =

(
f̂N (x, y)

Ef̂D(x)
− fXY (x, y)

)
(6)

− (f̂N (x, y)− Ef̂N (x, y))(f̂D(x)− Ef̂D(x))
(Ef̂D(x))2

− (Ef̂N (x, y))(f̂D(x)− Ef̂D(x))
(Ef̂D(x))2

+
(f̂D(x)− Ef̂D(x))2

(Ef̂D(x))2
f̂XY (x, y),

which implies

E[f̂XY (x, y)]− fXY (x, y)

=
(
(Ef̂D(x))−1E(f̂N (x, y))− fXY (x, y)

)
− ((Ef̂D(x))−2Cov(f̂N (x, y), f̂D(x)))

+ (Ef̂D(x))−2E(f̂D(x)− Ef̂D(x))2f̂XY (x, y)

=
(
(Ef̂D(x))−1E(f̂N (x, y))− fXY (x, y)

)
− (Ef̂D(x))−2A1 + (Ef̂D(x))−2A2.

Now we need to write each of these terms and calculate three integrals
corresponding to them by a change of variable of type z = (x− u)/h.

Regarding the term A2, as the kernel H ′ is bounded and since K is
positive, we can bound f̂XY (x, y) by a constant C > 0, as f̂XY (x, y) ≤ C/hH ;
hence

(7) E[f̂XY (x, y)]− fXY (x, y)

=
(
(Ef̂D(x))

−1E(f̂N (x, y))−fXY (x, y)
)
−
(
(Ef̂D(x))−2Cov(f̂N (x, y)), f̂D(x)

)
+ (Ef̂D(x))−2Var(f̂D(x))O(h−1H ).

By results of Sarda and Vieu [12] and Bosq and Lecoutre [1] we obtain

Var[f̂XY (x, y)] =
Var[f̂N (x, y)]

(Ef̂D(x))2
− 2

[Ef̂N (x, y)]Cov[f̂N (x, y), f̂D(x)]

(Ef̂D(x))3
(8)

+Var(f̂D(x))
(Ef̂N (x, y))2

(Ef̂D(x))4
+ o

(
1

nhHφ(hK)

)
.

Finally, Theorem 3.1 is a consequence of the lemmas below.
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Lemma 3.1. Under the conditions of Theorem 3.1 we have

Ef̂N (x, y)

Ef̂D(x)
− fXY (x, y) = BH(x, y)h2H +BK(x, y)hK

+ o(h2H) + o(hK).

Lemma 3.2. Under the conditions of Theorem 3.1 we have

Var[f̂N (x, y)] =

	
B(0,1)K

2(‖v‖)g(x, v) dµ(v)
nhHφ(hK)

(
fXY (x, y)

�
H ′2(t) dt

)
+ o

(
1

nhHφ(hK)

)
.

Lemma 3.3. Under the conditions of Theorem 3.1 we have

Cov[f̂N (x, y), f̂D(x)] =
1

nφ(hK)
fXY (x, y)

�

B(0,1)

K2(‖v‖)g(x, v) dµ(v)

+ o

(
1

nφ(hK)

)
.

Lemma 3.4. Under the conditions of Theorem 3.1 we have

Var[f̂D(x)] =

	
B(0,1)K

2(‖v‖)g(x, v) dµ(v)
nφ(hK)

+ o

(
1

nφ(hK)

)
.

Proof of Lemma 3.1. By definition of f̂N (x, y) we have

Ef̂N (x, y) =
1

nhHφ(hK)

∞∑
n=1

E(Ki(x))H
′
i(y)(9)

=
1

hHφ(hK)

[
EK1(x)H

′
1

(
y − Yi
hH

)]
=

1

hHφ(hK)
E(K1(x)[E(H ′1(h−1H (y − Yi)/X))]).

To calculate E(H ′1(h
−1
H (y − Yi))/X), considering the change of variable t =

h−1H (y − z), we have

E(H ′1(h−1H (y − Yi))/X) =
�
H ′
(
y − z
hH

)
fx(z) dz

= hH
�
H ′(t)fx(y − hHt) dt

We can use the Taylor expansion of the function fXY :

fXY (x, y − hHt) = fXY (x, y)− hHt
∂fXY (x, y)

∂y
+
h2Ht

2

2

∂2fXY (x, y)

∂y2
+ o(h2H),
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which gives, under the assumption (H3),

E(H ′1/X) = fXY (x, y) +
h2Ht

2

2

∂2fXY (x, y)

∂y2

�
t2H ′(t) dt+ o(h2H).

We insert this in (9) to obtain

(10) Ef̂N (x, y) =
1

φ(hK)

[
E(K1(x)f

X
Y (X, y)) +

h2Ht
2

2

�
t2H ′(t) dt

E
(
K1(x)

∂2fXY (X, y)

∂y2

)]
+ o(h2H).

To simplify the writing, set

ψl(·, y) =
∂lfXY (x, y)

∂yl
, l ∈ {0, 2}.

The kernel K is assumed to have compact support, so for all l ∈ {0, 2}
we have

E(K1ψl(X, y)) = EK(h−1K ‖x−X‖) ψl(x− hK(h−1K (x−X)), y)

=
�

B(0,1)

K(‖v‖)ψl(x− hKv, y)w(hK , x, v) dµ(v).

The function ψl(·, y) is of class C1 in a neighborhood of x, so

ψl(x− hKv, y) = ψl(x, y)− hK
∂ψl(x, y)[v]

∂x
+ o(hK)

and we find that

E(K1ψl(X, y)) = ψl(x, y)
�

B(0,1)

K(‖v‖)w(hK , x, v) dµ(v)

− hK
�

B(0,1)

K(‖v‖)∂ψl(x, y)[v]

∂x
w(hK , x, v) dµ(v)

+ o(hK)
�

B(0,1)

K(‖v‖)w(hK , x, v) dµ(v).

Therefore

Ef̂N (x, y) =
1

hHφ(hK)

[
ψ0(x, y)

�

B(0,1)

K(‖v‖)w(hK , x, v) dµ(v)

− hK
�

B(0,1)

K(‖v‖)∂ψ0(x, y)[v]

∂x
w(hK , x, v) dµ(v)

+
h2H
2

�
t2H ′(t) dt

(
ψ2(x, y)

�

B(0,1)

K(‖v‖)w(hK , x, v) dµ(v)
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− hK
�

B(0,1)

K(‖v‖)∂ψ2(x, y)[v]

∂x
w(hK , x, v) dµ(v)

)]
+ o(h2H) + o(hK).

By (H1), we set w(hK , x, v) = φ(hK)g(x, v) + o(φ(hK)). Then

Ef̂N (x, y) =
1

hHφ(hK)
ψ0(x, y)

�

B(0,1)

K(‖v‖)w(hK , x, v) dµ(v)

− hK
�

B(0,1)

K(‖v‖)∂ψ0(x, y)[v]

∂x
g(x, v) dµ(v)

− hK
�

B(0,1)

K(‖v‖)∂ψ0(x, y)[v]

∂x

(
w(hK , x, v)

hHφ(hK)
− g(x, v)

)
dµ(v)

+
h2H
2

�
t2H ′(t) dt

[
1

φ(hK)
ψ2(x, y)

�

B(0,1)

K(‖v‖)w(hK , x, v) dµ(v)

− hK
�

B(0,1)

K(‖v‖)∂ψ2(x, y)[v]

∂x
g(x, v) dµ(v)

− hK
�

B(0,1)

K(‖v‖)∂ψ2(x, y)[v]

∂x

(
w(hK , x, v)

hHφ(hK)
− g(x, v)

)
dµ(v)

]
+ o(h2H) + o(hK).

Hence

Ef̂N (x, y) =
1

hHφ(hK)
ψ0(x, y)

�

B(0,1)

K(‖v‖)w(hK , x, v) dµ(v)

− hK
�

B(0,1)

K(‖v‖)∂ψ0(x, y)[v]

∂x
g(x, v) dµ(v)

+
h2H
2

�
t2H ′(t) dt

[
1

hHφ(hK)
ψ2(x, y)

�

B(0,1)

K(‖v‖)w(hK , x, v) dµ(v)
]

+ o(h2H) + o(hK).

On the other hand,

(11) Ef̂D(x) =
EK1

φ(hK)
=

1

φ(hK)

�

B(0,1)

K(‖v‖)w(hK , x, v) dµ(v).
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By substituting in the formula for EfN (x, y) it follows that

EfN (x, y) = ψ0(x, y)(Ef̂D(x))− hK
�

B(0,1)

K(‖v‖)∂ψ0(x, y)[v]

∂x
g(x, v) dµ(v)

+
h2H
2

�
t2H ′(t) dt [(Ef̂D(x))ψ2(x, y)] + o(h2H) + o(hK).

Using the hypothesis (H1), equation (11) can be expressed as

(12) Ef̂D(x) =
�

B(0,1)

K(‖v‖)g(x, v) dµ(v) + o(1).

Finally we arrive at

(13) (Ef̂D(x))−1E[f̂N (x, y)]− fXY (x, y)

= −hK

	
B(0,1)K(‖v‖)∂f

x(y)[v]
∂x g(x, v) dµ(v)	

B(0,1)K(‖v‖)h(x, v) dµ(v)

+
hH
2

∂2fx(y)[v]

∂y2

�
t2H ′(t) dt+ o(h2H) + o(h2K).

Proof of Lemma 3.2. By definition of f̂N (x, y) we have

Var(f̂N (x, y)) =
1

(nhHφ(hK))2

n∑
i=1

Var(Ki(x)H
′
i(y))

=
1

n(hHφ(hK))2
Var(K1(x)H

′
1(x))

=
1

n(hHφ(hK))2
(
E(K1(x)H

′
1(y))

2 − (E(K1(x)H
′
1(y)))

2
)

=
1

n(hHφ(hK))2
E(K1(x)H

′
1(y))

2 − n−1
(
(EK1(x)H

′
1(y))

hHφ(hK)

)2

.

By Lemma 3.1 and (12) we have

E(K1(x)H
′
1(y))

hHφ(hK)
= Ef̂N (x, y) = O(1),

and

Var(f̂N (x, y)) =
1

n(hHφ(hK))2
E(K1(x)H

′
1(y))

2 + o

(
1

nhHφ(hK)

)
.

Now we evaluate the quantity E(K1(x)H
′
1(y))

2. Indeed, the proof is sim-
ilar to the one used for the previous lemma: by conditioning on x and con-



Estimator of the conditional hazard function 415

sidering the usual change of variables (y − z)/hH = t we obtain

E(K1(x)H
′
1(y))

2 = E(K2
1 (x)E(H ′12(y)/X))

=
1

h2
E
(
K2

1 (x)
�
H ′2
(
y − z
hH

)
fx(z) dz

)
=

1

hH
E
(
K2

1 (x)
�
H ′

2
(t)fx(y − hHt) dt

)
.

By Taylor expansion of order 1 at y we show that for n large enough

fXY (a, y − hHt) = fXY (a, y) +O(hH) = fXY (a, y) + o(1).

Hence

E(K1(x)H
′
1(y))

2 = hH
�
H ′

2
(t) dt E(K2

1 (x)f
X
Y (X, y)) + o(hH).

In the same way and with the same techniques used in the above proof of
Lemma 3.1, we show that it suffices now to estimate the amount
E(K1(x)H

′
1(y))

2. Indeed, similar to the previous proof, conditioning on X
and considering the usual change of variable (y − z)/hH = t we find that

E(K2
1 (x)f

X
Y (X, y)) = EK2(h−1K ‖x−X‖) f(x− hK(h−1K (x−X)), y)

=
�

B(0,1)

K2(‖v‖)fXY (x− hKv, y)w(hK , x, v) dµ(v)

= φ(hK)fXY (x, y)
�

B(0,1)

K2(‖v‖)g(x, v) dµ(v) + o(φ(hK))

with ‖v‖ = h−1K ‖x−X‖; this allows us to conclude that

E(K1(x)H
′
1(y))

2

=

	
H ′2(t) dt

hH

(
φ(hK)fXY (x, y)

�

B(0,1)

K2(‖v‖)g(x, v) dµ(v)
)
+ o

(
φ(hK)

hH

)
.

The hypothesis (H3) implies that the kernel H is square summable, therefore

Var(f̂N (x, y))

=
1

nhHφ(hK)

[
fXY (x, y)

�
H ′2(t) dt

�

B(0,1)

K2(‖v‖)g(x, v) dµ(v)
]

+ o

(
1

nhHφ(hK)

)
.
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Proof of Lemma 3.3. By definition of f̂N (x, y) and f̂D(x) we obtain

Cov(f̂N (x, y), f̂D(x)) =
1

n(hHφ(hK))2
Cov(K1(x)H

′
1(y),K1(x))

=
1

n(hHφ(hK))2
(
EK2

1 (x)H
′
1(y)− EK1(x)H

′
1(y)EK1(x)

)
=

EK2
1 (x)H

′
1(y)

n(hHφ(hk))2
− EK1(x)H

′
1(y)

n(hHφ(hK))2
EK1(x)

n(hHφ(hK))2
.

The proof of this lemma is very similar to the one of Lemma 3.1. We just
replace H2

1 with H1, then using the fact that

E(K1(x)H1(y))

φ(hK)
= O(1) and

E(K1(x))

φ(hK)
= O(1)

we deduce that

(14) Cov(f̂N (x, y), f̂D(x))

=
1

nφ(hK)
(fXY (x, y))

�

B(0,1)

K2(‖v‖)g(x, v) dµ(v) + o

(
1

nφ(hK)

)
.

Proof of Lemma 3.4. By definition of f̂D(x) we have

Var(f̂D(x)) =
1

nφ(hK)2
Var(K1)(15)

=
EK2

1 (x)

nφ(hK)2
− n−1

(
EK1(x)

φ(hK)

)
=

	
B(0,1)K

2(‖v‖)g(x, v) dµ(v)
nφ(hK)

+ o

(
1

nφ(hK)

)
.

This allows us to complete the proof of Theorem 3.1.

Proof of Theorem 3.2. The calculation of the squared error of the condi-
tional distribution is with the same techniques used in the proof of Theorem
3.1.

We calculate two parts: the bias and the variance. The squared error of
the conditional distribution can be expressed as

E[(F̂X
Y (x, y)− FX

Y (x, y))2]

= [E(F̂X
Y (x, y))− FX

Y (x, y)]2 +Var[F̂X
Y (x, y)].

For i = 1, . . . , n, we consider the quantities

Ki(x) = K(h−1K ‖x−Xi‖),

Hi(y) = H(h−1H (y − Yi))



Estimator of the conditional hazard function 417

and define

ĝN (x, y) =
1

nφ(hK)

n∑
i=1

Ki(x)Hi(y),

f̂D(x) =
1

nφ(hK)

n∑
i=1

Ki(x).

Finally, Theorem 3.2 can be deduced from the following lemmas.

Lemma 3.5. Under the hypotheses (H1)–(H6) we have

ĝN (x, y)

Ef̂D(x)
− FX

Y (x, y) = B′H(x, y)h2H +B′K(x, y)hK + o(h2H) + o(hK).

Lemma 3.6. Under the hypotheses (H1)–(H6) we have

Var[ĝN (x, y)] =

	
B(0,1)K

2(‖v‖)g(x, v) dµ(v)
nφ(hK)

(
FX
Y (x, y)

�
H2(t) dt

)
+ o

(
1

nφ(hK)

)
.

Lemma 3.7. Under the hypotheses (H1)–(H6) we have

Cov[ĝN (x, y), f̂D(x)] =
1

nφ(hK)
FX
Y (x, y)

�

B(0,1)

K2(‖v‖)g(x, v) dµ(v)

+ o

(
1

nφ(hK)

)
.

Theorem 3.3. Under the hypotheses (H1)–(H6) and if FX
Y (x, y),

fXY (x, y) ∈ C2
B(F × R) then

MSE ĥXY (x, y) ≡ E[(ĥXY (x, y)− hXY (x, y))2]

≤ E[(f̂XY (x, y)− fXY (x, y))2] + E[(F̂X
Y (x, y)− FX

Y (x, y))2].

Proof of Theorem 3.3. This proof is based on the decomposition

(16) |ĥXY (x, y)− hXY (x, y)|

=
1

1−F̂X
Y (x, y)

[
(f̂XY (x, y)−fXY (x, y))+

fXY (x, y)

1−FX
Y (x, y)

(F̂X
Y (x, y)−FX

Y (x, y))

]
≤ 1

1− F̂X
Y (x, y)

[
(f̂XY (x, y)− fXY (x, y)) +

τ

β
(F̂X

Y (x, y)− FX
Y (x, y))

]
≤ (f̂XY (x, y)− fXY (x, y)) +

τ

β
(F̂X

Y (x, y)− FX
Y (x, y)).
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Therefore

E|ĥXY (x, y)− hXY (x, y)|2

≤ E
[
(f̂XY (x, y)− fXY (x, y)) +

τ

β
(F̂X

Y (x, y)− FX
Y (x, y))

]2
.

Now Theorem 3.3 can be deduced from Theorems 3.1 and 3.2.

4. Remarks and comments

Notes on the functional variable. The hypothesis (H1) on the func-
tional variable X can be divided into two parts:

(i) The first part is rarely used in nonparametric statistical functionals,
because it requires the introduction of a reference measurement of the func-
tional space. However, in this paper we impose this condition. It allows us to
achieve a natural generalization of the squared error obtained by Vieu [15]
in the vector case.

(ii) The second part (3) is a classic property in functional analysis. This
is a simple asymptotic separation of variables. This condition is designed to
be able to adapt traditional techniques of the case of different functionals,
even if the reference measure µ does not have the properties of the Lebesgue
measure, such as translation invariance and homogeneity.

Note that the hypothesis (H1) is used to describe the phenomenon of
concentration of the probability measure of the explanatory variable X, be-
cause

P(X ∈ B(x, r)) =
�

B(0,1)

w(r, x, v) dµ(v)

= φ(r)
�

B(0,1)

g(x, v) dµ(v) + o(φ(r)) > 0.

Note also that the first part of the hypothesis (H1) is satisfied when, for
example, X is a diffusion process satisfying the standard conditions (see
Dabo-Niang [2]). In the case of finite dimension, the hypothesis (H1) is sat-
isfied when the density of the explanatory variable X is of class C1 and
strictly positive. Indeed, the density of Z = r−1(x − X) is w(r, x, v) =
rpf(x − rv), where f is the density of X and p the dimension, therefore
w(r, x, v) = rpf(x) + o(rp).

Notes on the nonparametric model. In this paper, we choose a
differentiability condition, as our goal is to find an expression for the rate of
convergence that is explicit, asymptotically exact and keeps the usual form
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of the squared error (see Vieu [15]). However, if one assumes a Lipschitz
condition, for example the conditional density of the type

∀(y1, y2) ∈ Ny ×Ny,∀(x1, x2) ∈ Nx ×Nx,

|fx1(y1)− fx2(y2)| ≤ Ax((d(x1, x2)
2) + |y1 − y2|2)

which is less restrictive than the condition (1), we obtain a result for the
conditional distribution and conditional density respectively for example of
the type

E[(F̂X
Y (x, y)− FX

Y (x, y))2] = O(h4H + h4K) +O

(
1

nφ(hk)

)
,

E[(f̂XY (x, y)− fXY (x, y))2] = O(h4H + h4K) +O

(
1

nhHφ(hk)

)
.

But such an expression (implicit) for the rate of convergence will not allow
us to properly determine the smoothing parameter. In other words, our dif-
ferentiability condition is a good compromise to obtain an explicit expression
for the rate of convergence. Note that this condition is often taken in the
case of finite dimension.

Notes on the squared error. The “dimensionality” of the observations
(resp. model) is used in the expression of the rate of convergence of Theorems
3.1 and 3.2. We find the dimensionality of the model in such a way that the
dimensionality of the variable in the functional dispersion biases the prop-
erty of concentration of the probability measure of the functional variable
which is closely related to the topological structure of the functional space of
the explanatory variable. Our asymptotical results highlight the importance
of the concentration properties on small balls of the probability measure of
the underlying functional variable. This stresses the role of the semimetric.
A suitable choice of this parameter allows us to obtain an interesting solu-
tion to the problem of curse of dimensionality (see [3]). Another argument
has a dramatic effect in our estimation. This is the smoothing parameter hK
(resp. hH). The term of our rate of convergence decomposes into two main
parts: the bias part proportional to hK (resp. hH), and the dispersion part
inversely proportional to hK (resp. hH) (φ is an increasing function depend-
ing on hK). This makes it relatively easy to choose the parameter so as to
minimize the main part of this expression.
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