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SIMPLE EQUILIBRIA IN FINITE GAMES WITH
CONVEXITY PROPERTIES

Abstract. This review paper gives a characterization of non-coalitional
zero-sum and non-zero-sum games with finite strategy spaces and payoff
functions having some concavity or convexity properties. The characteriza-
tion is given in terms of the existence of two-point Nash equilibria, that is,
equilibria consisting of mixed strategies with spectra consisting of at most
two pure strategies. The structure of such simple equilibria is discussed in
various cases. In particular, many of the results discussed can be seen as
discrete counterparts of classical theorems about the existence of pure (or
“almost pure”) Nash equilibria in continuous concave (convex) games with
compact convex spaces of pure strategies. The paper provides many examples
illustrating the results presented and ends with four related open problems.

1. Introduction. Consider an n-person non-zero-sum game in normal
form

G = 〈N, {Xi}i∈N , {Fi}i∈N 〉,
where

(1) N = {1, . . . , n} is the set of players;
(2) for each i ∈ N , Xi is the space of the ith player’s pure strategies xi;
(3) for each vector x = (x1, . . . , xn) of the players’ pure strategies and

for each i, Fi(x) is the payoff function of player i when the players
use the strategies x1, . . . , xn, respectively.

The classical concept of solution for such games is pure Nash equilibrium.
It is defined as any strategy profile x∗ consisting of the players’ pure strate-
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gies, x∗ = (x∗1, . . . , x
∗
n) ∈

∏
i∈N Xi, satisfying Fi(x

∗) ≥ Fi(x
∗
1, . . . , x

∗
i−1, xi,

x∗i+1, . . . , x
∗
n) for each i ∈ N and any xi ∈ Xi. When all these inequalities

hold up to an ε > 0, we say that x∗ is an ε-pure Nash equilibrium. As this
kind of solution has a natural interpretation and is easy to implement, it
is very desirable in practical applications. Thus, a lot of research has been
devoted to the problem of existence of pure Nash equilibria. The most im-
portant result of this type was proved by Glicksberg (1952) and Debreu
(1952). (Recall that by definition, a real-valued function f on a convex set
X is quasi-concave when for each real c, the set {x : f(x) ≥ c} is con-
vex. Of course, every concave function is quasi-concave. When the converse
inequality holds, f is quasi-convex.)

Theorem 1A. Let Xi ⊂ Rk for i ∈ N be non-empty, convex and com-
pact. If all the functions Fi are continuous on

∏
i∈N Xi and quasi-concave

in xi, then the n-person non-zero-sum game G = 〈N, {Xi}i∈N , {Fi}i∈N 〉 has
a pure Nash equilibrium.

Some extensions of this result were given by Nikaido and Isoda (1955),
Mertens (1986), Sion (1958) and Fan (1952), where the existence of pure
Nash equilibria was shown under some weaker assumptions either about
continuity or convexity. Unfortunately, in the case of finite games (games
with finite strategy sets), the existence of a pure Nash equilibrium is not
guaranteed. In fact, it is easy to find an example of a game with two players,
each having two pure strategies, which has no pure Nash equilibrium (and
also no ε-pure Nash equilibria for ε small enough).

The standard way to deal with the lack of pure Nash equilibria is to
enrich the strategy sets by introducing so-called mixed strategies. A mixed
strategy of player i ∈ N in the game Γ is any probability distribution over
the space Xi. We can then extend the definitions of the payoff functions Fi

to this richer domain by defining them as expected values with respect to
the product distribution induced by the strategies of all the players. Thus,
we will treat the payoff functions Fi as defined also on the spaces of mixed
strategy profiles. A Nash equilibrium in mixed strategies will then be called
a mixed Nash equilibrium. It is known that any n-person game with all Xi

finite always has a mixed Nash equilibrium (Nash, 1950).
One of the main points of criticism against the concept of mixed Nash

equilibria has always been that such solutions are rather difficult to apply.
If a game is only played once, any realization of a mixed Nash equilibrium
is in fact a choice of pure strategies for the players, which may give payoffs
far from the assumed optimum. Also if the game is repeated a finite number
of times, the empirical distributions of pure strategies used by the players
may fail to be close to the ones prescribed by the strategies. It is however
important to notice that this problem becomes more visible as the supports of
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the equilibrium strategies become larger. Thus a number of papers consider
the so-called two-point Nash equilibria, that is, Nash equilibria of the form
µ∗ = (µ∗1, . . . , µ

∗
n), where for each i, µ∗i is a probability distribution with

spectrum consisting of at most two pure strategies of player i. The results
found in the literature concern only two-person games on the unit square
and two-person games with finite spaces of strategies. In the first group we
can list the papers of Bohnenblust et al. (1984), Gómez (1988) and Radzik
(1991b) for zero-sum games, and of Parthasarathy and Raghavan (1971) and
Radzik (1993) for non-zero-sum games. As the last paper contains the most
general results and is very closely related to the present one, we quote two
of its theorems.

Let G = 〈{1, 2}, {[0, 1], [0, 1]}, {F1, F2}〉 be a two-person non-zero-sum
game on the unit square, where the payoff functions F1(x, y) and F2(x, y)
for players 1 and 2 are assumed to be bounded and bounded from above
on [0, 1] × [0, 1], respectively. Throughout, we denote by δt the degenerate
probability distribution concentrated at t.

Theorem 1B. Let F1(x, y) be concave in x for each y. Then for any ε>0
the game G = 〈{1, 2}, {[0, 1], [0, 1]}, {F1, F2}〉 has an ε-Nash equilibrium of
the form (µ∗1, µ

∗
2) = (αδa+(1−α)δb, βδc+(1−β)δd) for some 0 ≤ α, β, a, b, c, d

≤ 1 with |a− b| < ε.

Theorem 1C. Let F1(x, y) be convex in x for each y. Then for any ε > 0
the game G = 〈{1, 2}, {[0, 1], [0, 1]}, {F1, F2}〉 has an ε-Nash equilibrium of
the form (µ∗1, µ

∗
2) = (αδ0 + (1−α)δ1, βδc + (1− β)δd) for some 0 ≤ α, β, c, d

≤ 1, where α is independent of ε.

As far as two-person games with finite spaces of strategies are concerned,
the most general results were obtained by Radzik (1991a, 2000) for the zero-
sum case, and by Połowczuk (2003, 2006) for the non-zero sum case. The
present paper is in a large part based on the results from these four articles.

More precisely, the above-mentioned papers, as well as the present one,
are mainly devoted to the study of finite concave/convex games Γ , that
is, n-person games G as defined above, with all the pure strategy spaces
Xi finite, under the additional basic assumption that for each i the payoff
function Fi is concave/convex in xi. The new notion of concavity/convexity
for functions with a finite domain is defined in a way very closely related
to the standard definition of concavity/convexity of functions on intervals.
It appears that such n-person finite games have very interesting properties.
Namely,

(a) the games Γ well approximate n-person continuous games on the
n-product of the unit interval [0, 1] with concave/convex payoff func-
tions;
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(b) there always exists a two-point Nash equilibrium in convex games Γ ;
(c) there always exists a two-adjoining Nash equilibrium in concave

games Γ , that is, an almost-pure Nash equilibrium where the strat-
egy of player i, for any i, is a probability distribution with at most
two-element spectrum, consisting of two adjoining pure strategies
from Xi.

The exact form of these results will be given later. Right now we only
note that (c) above can be seen as a discrete version of Glicksberg’s theorem
(Theorem 1A) and is very closely related to Theorem 1B. On the other
hand, one can view (b) as a discrete version of Theorem 1C extended to
n-person games. In this paper we not only discuss these problems, but in
many cases also give procedures to find these equilibria. Moreover, we give
many examples illustrating the results obtained and the properties discussed.

The organization of the paper is as follows: Some preliminaries are given
in Section 2. The generalization of convexity to functions with finite do-
mains is discussed in Section 3. Section 4 reviews the results about the
existence of pure equilibria in matrix/bimatrix games. In Section 5 we for-
mulate results on the existence of almost-pure (or two-point) Nash equilibria
in matrix/bimatrix games. In Section 6 we give extensions of these results to
n-person finite games. Section 7 contains the concluding remarks and four
related open problems.

2. Preliminary definitions. We will be discussing n-person non-zero-
sum finite games Γ , denoted by
(1) Γ = 〈N, {Ei}i∈N , {Hi}i∈N 〉 ,
where

(1) N = {1, . . . , n} is the set of players;
(2) for each i ∈ N , Ei = {1, . . . , ki} is a finite space of the ith player’s

pure strategies ei, with ki a natural number;
(3) for each vector e = (e1, . . . , en) of the players’ pure strategies and for

each i, Hi(e) is the payoff function of player i when the strategies e
are used.

For simplicity we set

E =
n∏

j=1

Ej , E−i =
i−1∏
j=1

Ej ×
n∏

j=i+1

Ej , e−i = (e1, . . . , ei−1, ei+1, . . . , en),

and
(e−i, t) = (e1, . . . , ei−1, t, ei+1, . . . , en).

We will also say that the game Γ is of size |E1| × · · · × |En|, writing briefly
Γ = Γk1×···×kn .
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We now give the definitions of three special types of strategies and equi-
libria determined by them. They play a basic role in the present paper.

Definition 1. A strategy µ∗ of player i in a finite game Γ described
by (1) is said to be a two-point strategy if it is of the form µ∗i = αδa+(1−α)δb
for some 0 ≤ α ≤ 1 and a, b ∈ Ei, 1 ≤ i ≤ n. If additionally b = a+ 1, then
µi is called a two-adjoining strategy. If a = 1 and b = ki, then µi is called
a two-marginal strategy. Nash equilibria consisting only of strategies of the
same type will be referred to by that type’s name.

Remark 1. In Sections 4–5 we will consider two-person finite games
with strategy spaces X1 = {1, . . . ,m} and X2 = {1, . . . , n} for two naturals
m and n, and with payoff functions F1 and F2. Let A = [aij ]m×n and B =
[bij ]m×n be m×n matrices such that aij = H1(i, j) and bij = H2(i, j) for all
i and j. We will call such games bimatrix games Γ (A,B). When B = −A,
a bimatrix game Γ (A,B) becomes a two-person zero-sum game Γ (A,−A)
and will be briefly denoted by Γ (A) and called a matrix game.

3. Convexity of functions defined over finite domains. In this
section we introduce and thoroughly discuss discrete counterparts of quasi-
concavity (or concavity) of functions. They play an essential role in our
subsequent considerations. Throughout this section, E is a finite set of the
form E =

∏n
j=1Ej with Ei = {1, . . . , ki}.

Definition 2. A function H on E is said to be concave (resp. quasi-
concave) in the ith variable if for j = 1, . . . , n there are strictly increasing se-
quences xj = (xj1, . . . , x

j
kj
) in [0, 1] with xj1 = 0 and xjkj = 1, and there exists

a continuous function F (x1, . . . , xn) on [0, 1]n, concave (resp. quasi-concave)
in xi, such that F (x1e1 , . . . , x

n
en) = H(e1, . . . , en) for all (e1, . . . , en) ∈ E.

Convexity (quasi-convexity) is defined analogously.

Remark 2. One could think that the above definition would be more
natural if the set [0, 1]n was replaced by conv(E1×· · ·×En) and the sequences
xj were taken constant of the form xj = (1, . . . , kj) for j = 1, . . . , n. However
this approach would be less general and lead to much smaller classes of con-
cave functions (as shown in Example 1 below). For quasi-concave functions,
both approaches lead to the same class.

Example 1. Let E1 = {1, 2, 3, 4} and E2 = {1, 2}. Define

H(k, l) =
8l − 12

k
.

It can be easily seen that if we take x1 = (0, 2/3, 8/9, 1), x2 = (0, 1) and
F (x1, x2) = (4− 3x1)(2x2 − 1), then

H(k, l) = F (x1k, x
2
l ) for (k, l) ∈ E1 × E2.



88 T. Radzik and P. Więcek

Thus, as F is linear in x1, H is both convex and concave in its first variable
according to Definition 2. If however x1 = (1, 2, 3, 4) and x2 = (1, 2), one
can easily see that there is no convex or concave function F (x1, x2) defined
on [1, 4] × [1, 2] and satisfying H(k, l) = F (x1k, x

2
l ) for all (k, l) ∈ E1 × E2.

Namely, by considering the values H(k, 1) and H(k, 2) for k ∈ E1 we find
that F (x1, 1) cannot be concave or convex in x1.

Now we give two new theorems which allow one to verify easily whether a
player’s payoff function in an n-person non-zero-sum finite game is concave,
convex, quasi-concave or quasi-convex.

Theorem 2A. A function H on E is concave (resp. convex) in the ith
variable if and only if for every natural u with 1 < u < ki there exists a
positive number Cu (resp. Du) such that for each e−i ∈ E−i,

H(e−i, u)−H(e−i, u− 1) ≥ Cu[H(e−i, u+ 1)−H(e−i, u)](2)
(resp. H(e−i, u)−H(e−i, u− 1) ≤ Du[H(e−i, u+ 1)−H(e−i, u)]).(3)

Theorem 2B. A function H on E is quasi-concave in the ith variable
if and only if for each e−i ∈ E−i there exists a natural l with 1 ≤ l ≤ ki such
that

(4) H(e−i, 1) ≤ · · · ≤ H(e−i, l) ≥ H(e−i, l + 1) ≥ · · · ≥ H(e−i, ki).

When all the inequalities in (4) are reversed, H is quasi-convex in the ith
variable.

Proof of Theorem 2A. Fix i ∈ N . Obviously, it suffices to consider the
case of H concave.

(⇐) Assume that for each 1 < u < ki the inequalities (2) hold, and
define C1 := 1. Now for j = 1, . . . , n we define strictly increasing sequences
xj = (xj1, . . . , x

j
kj
) in [0, 1] by

xju =
u− 1

kj − 1
for j 6= i and 1 ≤ u ≤ kj ,

and

xi1 = 0 and xiu =
u−1∑
k=1

Ck/

ki−1∑
k=1

Ck for u = 2, . . . , ki,

where C1 = 1 and Ck = 1/
∏k

u=2Cu for k ≥ 2. (Note that xj1 = 0 and
xjkj = 1 for 1 ≤ j ≤ n.)

Define Xj := {xj1, xj2, . . . , xjkj} for j = 1, . . . , n, and

Qi = X1 × · · · ×Xi−1 ×Xi+1 × · · · ×Xn.

Now, for every q ∈ Qi, let fq be the continuous function on [0, 1] defined by
the two conditions:
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(a) for u = 1, . . . , ki,
fq(x

i
u) = H(e−i, u) if q = (x1e1 , . . . , x

i−1
ei−1

, xi+1
ei+1

, . . . , xnen),

(b) fq is a linear on every interval [xiu, xiu+1], 1 ≤ u ≤ ki − 1.
Hence, by (2), for every q ∈ Qi and u = 2, . . . , ki − 1,

fq(x
i
u)− fq(xiu−1) ≥ Cu[fq(x

i
u+1)− fq(xiu)].

But one can easily check that the last inequality is equivalent to

(5)
fq(x

i
u)− fq(xiu−1)
xiu − xiu−1

≥ fq(x
i
u+1)− fq(xiu)
xiu+1 − xiu

.

Therefore, each fq, q ∈ Qi, is concave on every interval [xiu−1, xiu+1], u =
2, . . . , ki − 1. Consequently, it is continuous and concave on [0, 1].

Now take any x = (x1, . . . , xn) ∈ [0, 1]n. Since xj1 = 0 and xjkj = 1 for
all j, for every 1 ≤ j ≤ n there are 0 ≤ αj ≤ 1 and 1 ≤ sj ≤ kj − 1 such
that xj = αjx

j
sj + (1− αj)x

j
sj+1. Hence, setting

K(x−i) := {y−i ∈ [0, 1]n−1 | yj = xjsj or yj = xjsj+1 for j = 1, . . . , n, j 6= i},
one can easily conclude that x−i can be written as a convex combination

x−i =
∑

w∈K(x−i)

β
x−i
w w,

with the coefficients βx−i
w depending on w and continuous in x−i. (Here

y := (y1, . . . , yn).)
Now, for x = (x1, . . . , xn) ∈ [0, 1]n we define

F (x) =
∑

w∈K(x−i)

β
x−i
w fw(xi).

It is immediate that the function F is continuous on [0, 1]n and concave in
xi, and for all (e1, . . . , en) ∈ E we have F (x1e1 , . . . , x

n
en) = H(e1, . . . , en).

This ends the proof of (⇐).
(⇒) Fix i ∈ N and ei ∈ Ei, and let x′ = (x1e1 , . . . , x

n
en). Then, by the

concavity of F in the ith variable, for 1 < u < ki we have
F (x′−i, x

i
u)− F (x′−i, xiu−1)
xiu − xiu−1

≥ F (x′−i, x
i
u+1)− F (x′−i, xiu)
xiu+1 − xiu

.

But this is equivalent to

H(e−i, u)−H(e−i, u− 1) ≥ xiu − xiu−1
xiu+1 − xiu

[H(e−i, u+ 1)−H(e−i, u)].

Therefore (2) holds with
Cu =

xiu − xiu−1
xiu+1 − xiu

,

completing the proof.
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Proof of Theorem 2B. Without loss of generality we can assume that
i = 1. We will show that there is a function F defined on [0, 1]n with the
properties required by Definition 2 for i = 1.

(⇐) Assume that for each e−1 ∈ E−1 there is 1 ≤ l ≤ k1 such that
the inequalities (4) with i = 1 hold. Now for j = 1, . . . , n we define strictly
increasing sequences xj = (xj1, x

j
2, . . . , x

j
kj
) in [0, 1] by

xju =
u− 1

kj − 1
for 1 ≤ u ≤ kj .

Let Xj := {xj1, . . . , xjkj}, j = 1, . . . , n, and Ks := Xs×Xs+1×· · ·×Xn. For
every q2 ∈ K2, let f1q2 be the continuous function on [0, 1] defined by the two
conditions:

(a) f1q2(x
1
e1) = H(e−1, e1) for e1 ∈ E1 if q2 = (x2e2 , x

3
e3 , . . . , x

n
en),

(b) f1q2 is linear on every interval [x1u, x1u+1], 1 ≤ u ≤ k1 − 1.

Hence, because of (4) with i = 1, for each q2 ∈ K2 the function f1q2 is
continuous and quasi-concave on [0, 1]. Therefore the function G1 defined by
G1(x1, q

2) = f1q2(x1) is continuous on [0, 1]×K2, quasi-concave in x1 for each
q2 ∈ K2, and satisfiesG1(x

1
e1 , . . . , x

n
en) = H(e) for every e = (e1, . . . , en) ∈ E.

Assume now that for some 1 ≤ s < n there exists a continuous function
Gs(x1, . . . , xs, q

s+1) on [0, 1]s ×Ks+1 which is quasi-concave in x1 for each
(x2, . . . , xs, q

s+1) ∈ [0, 1]s−1 ×Ks+1 , and satisfies

(6) Gs(x
1
e1 , x

1
e1 , . . . , x

n
en) = H(e1, . . . , en) for every (e1, . . . , en) ∈ E.

We will construct a function Gs+1(x1, . . . , xs+1, q
s+2) on [0, 1]s+1×Ks+2.

Define ys+1 = (ys+1
1 , . . . , ys+1

ks+1−1), where

ys+1
u = xs+1

u +
1

2(ks+1 − 1)
for u = 1, . . . , ks+1 − 1.

Notice that

(7) 0 = xs+1
1 < ys+1

1 < xs+1
2 < ys+1

2 < · · · < xs+1
ks+1−1 < ys+1

ks+1−1 < xs+1
ks+1

= 1.

Let (x1, . . . , xs, xs+1, q
s+2) ∈ [0, 1]s+1×Ks+2. Since xs+1 ∈ [0, 1], (7) implies

that xs+1 ∈ [xs+1
u , ys+1

u ] or xs+1 ∈ [ys+1
u , xs+1

u+1] for some 1 ≤ u ≤ ks+1− 1. In
the former case, xs+1 = αxs+1x

s+1
u +(1−αxs+1)y

s+1
u for some 0 ≤ αxs+1 ≤ 1,

and we define

Gs+1(x1, . . . , xs, xs+1, q
s+2) = αxs+1Gs(x1, . . . , xs, x

s+1
u , qs+2).

In the latter case, xs+1 = βxs+1y
s+1
u +(1−βxs+1)x

s+1
u+1 for some 0 ≤ βxs+1 ≤ 1,

and we define

Gs+1(x1, . . . , xs, xs+1, q
s+2) = (1− βxs+1)Gs(x1, . . . , xs, x

s+1
u , qs+2).
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In this way the function Gs+1(x1, . . . , xs, xs+1, q
s+2) has been defined on

[0, 1]s+1 ×Ks+2, and one can easily see that it is continuous, quasi-concave
in x1 for each (x2, . . . , xs+1, q

s+2) ∈ [0, 1]s ×Ks+2 , and

(8) Gs+1(x
1
e1 , . . . , x

n
en) = H(e1, . . . , en) for every (e1, . . . , en) ∈ E.

Therefore, by induction, the function F defined by F (x1, . . . , xn) =
Gn(x1, . . . , xn) on [0, 1]n has the required properties, which completes the
proof of (⇐).

(⇒) Let e−1 ∈ E−1. Then inequalities (4) for i = 1 immediately follow
from the quasi-concavity of F (t, x2e2 , . . . , x

n
en) in t ∈ [0, 1] and its relation to

the function H(s, e−1) of s ∈ {1, . . . , k1}. This completes the proof of the
theorem.

3.1. Convexity properties of matrices. In Definitions 3–6 below, we
introduce several easily verifiable properties of matrices, which are basic for
our considerations in the next sections. Since every matrix can be seen as
a function of two variables defined on the product of two finite sets, Theo-
rems 2A and 2B (for n = 2) can be used to define the convexity properties
of matrices in terms of their rows and columns. We do this in the first two
definitions and later justify it in Proposition 1.

Definition 3. A matrix T = [tij ]m×n is row-concave (resp. column-
concave) if for each 1 < j < n (resp. 1 < i < m) there is a positive number
Cj (resp. Di) such that

tij − ti,j−1 ≥ Cj [ti,j+1 − tij ] for all i.(9)
(resp. tij − ti−1,j ≥ Di[ti+1,j − tij ] for all j.)(10)

When the inequalities in (9) and (10) are reversed, the matrix T is row-convex
or column-convex, respectively.

Definition 4. Amatrix T = [tij ]m×n is row-quasi-concave (resp. column-
quasi-concave) if for each 1 ≤ i ≤ m (resp. 1 ≤ j ≤ n), there exist 1 ≤ k ≤ n
(resp. 1 ≤ l ≤ m) such that

ti1 ≤ ti2 ≤ · · · ≤ tik ≥ ti,k+1 ≥ · · · ≥ tin,(11)
(resp. t1j ≤ t2j ≤ · · · ≤ tlj ≥ tl+1,j ≥ · · · ≥ tmj).(12)

When the inequalities in (11) and (12) are reversed, the matrix T is row-
quasi-convex or column-quasi-convex, respectively.

For T = [tij ]m×n, let HT be the function defined on K := {1, . . . ,m} ×
{1, . . . , n} by HT (i, j) = tij for (i, j) ∈ K.

Remark 3. The properties of the matrix T described in Definitions 3
and 4 are closely related to the concavity and quasi-concavity of the function
HT defined on the finite set K. We state this in Proposition 1 below. It
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suffices to formulate it only for row-(quasi-)concave matrices because of the
following obvious implications:

• a matrix W is row-(quasi-)convex iff −W is row-(quasi-)concave;
• a matrix W is column-(quasi-)concave iff W T is row-(quasi-)concave;
• a matrix W is column-(quasi-)convex iff −W T is row-(quasi-)concave.

Theorems 2A and 2B immediately imply

Proposition 1.

(i) A matrix T is row-concave (resp. column-concave) if and only if the
function HT (i, j) on K is concave in the variable j (resp. in the
variable i),

(ii) A matrix T is row-quasi-concave (resp. column-quasi-concave) if and
only if the function HT (i, j) on K is quasi-concave in j (resp. in i).

Remark 4. The verification of row-quasi-concavity of a matrix is trivial.
One can also easily check whether a matrix is concave: a simple algorithm
is given in Proposition 1 of Połowczuk et al. (2012).

The next two definitions describe some natural stronger versions of the
properties of matrices given in Definition 4.

Definition 5. A matrix T = [tij ]m×n is strongly row-quasi-concave
(resp. strongly column-quasi-concave) if for each 1 ≤ i ≤ m (resp. 1 ≤ j ≤ n),
there exist 1 ≤ k ≤ s ≤ n (resp. 1 ≤ l ≤ u ≤ m) such that

ti1 < ti2 < · · · < tik = ti,k+1 = · · · = tis > · · · > tin(13)
(resp. t1j < t2j < · · · < tlj = tl+1,j = · · · = tlu > · · · > tmj).(14)

When the inequalities in (13) and (14) are reversed, the matrix T is strongly
row-quasi-convex or strongly column-quasi-convex, respectively.

Definition 6. Amatrix T = [tij ]m×n is strictly row-quasi-concave (resp.
strictly column-quasi-concave) if for each 1 ≤ i ≤ m (resp. 1 ≤ j ≤ n), there
exist 1 ≤ k ≤ n (resp. 1 ≤ l ≤ m) such that

ti1 < ti2 < · · · < tik > · · · > tin(15)
(resp. t1j < t2j < · · · < tlj > · · · > tmj).(16)

When the inequalities in (15) and (16) are reversed, the matrix T is strictly
row-quasi-convex or strictly column-quasi-convex, respectively.

The properties of matrices described in Definitions 3 and 5 are also related
to each other, as shown in the next proposition.

Proposition 2. If a matrix T is row-concave (resp. column-concave)
then it is also strongly row-quasi-concave (resp. strongly column-quasi-con-
cave). An analogous statement holds for convexity.
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Proof. It suffices to show that (9) implies (13). But this can be easily
derived by considering separately the sides of the inequalities in (9) with
positive, negative and zero values. The details are omitted.

We end this section by quoting a theorem that gives a correspondence
between the “quasi-convexity-concavity” of a matrix and of a function of two
variables on the unit square with an analogous property. This result comes
from Radzik (2000) and is implied by Theorems 3.1 and 3.2, Definition 3.1
and Remark 3.2 given there. It completes the results of Theorems 2A and
2B in the case of two-person zero-sum finite games.

Theorem 3. A matrix T = [tij ]m×n is row-(quasi-)convex and column-
(quasi-)concave if and only if there exists a continuous function F (x, y) on
the unit square, (quasi-)convex in y for each x and (quasi-)concave in x for
each y, and if there are strictly increasing sequences {xi}mi=1 and {yj}nj=1 in
[0, 1] with x1 = y1 = 0 and xm = yn = 1 such that F (xi, yj) = tij for all i
and j.

4. Pure equilibria in two-person games

4.1. Saddle points in matrix games. Below we recall six results on
the existence of Nash equilibria in pure strategies for two-person zero-sum
matrix games, together with several examples illustrating them. Four of these
results concern matrix games with matrices having convexity properties de-
scribed in the previous section. They provide necessary and sufficient condi-
tions for the existence of pure equilibria in such games.

We start by quoting two classical results on the existence of a saddle point
of payoff matrices. They belong to Shapley (1964) (see also Parthasarathy
and Raghavan (1971, Theorems 3.2.1 and 3.2.3)). For a payoff matrix A =
[aij ], a saddle point of A is defined as any pair (i, j) such that aij is minimal
in the ith row and maximal in the jth column of A. If we denote by Γ (A)
the zero-sum two-person matrix game Γ (A,−A), we immediately see that a
pair (i, j) is a saddle point of A if and only if it is a pure Nash equilibrium
in Γ (A).

Theorem 4A. Assume that every 2 × 2 submatrix of A has a saddle
point. Then A also has a saddle point.

Theorem 4B. Assume that 2 ≤ p ≤ m and 2 ≤ q ≤ n. Let A be an
m× n matrix none of whose rows and none of whose columns contains two
equal elements. If every p× q submatrix of A has a saddle point, then A also
has a saddle point.

Now we quote four theorems of Radzik (1991a) on the existence of saddle
points in matrix games with convexity properties. To formulate them, some
notation is needed.
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For W = [wrs]m×n, let W
ij
kl , 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ l ≤ n, be the

submatrix

(17) W ij
kl :=


wij wi,j+1 . . . wi,l

wi+1,j wi+1,j+1 . . . wi+1,l

...
...

...
wkj wk,j+1 . . . wkl

 .

Theorem 5A. Let A be a row-quasi-convex and column-quasi-concave
m × n matrix. Then the game Γ (A) has a saddle point if and only if every
submatrix Aij

kl, 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n, has a saddle point.

Theorem 5B. Let A be a strongly row-quasi-convex and strongly column-
quasi-concave m× n matrix. Then the game Γ (A) has a saddle point if and
only if all the 2 × 2 submatrices Aij

i+1,j+1, 3 × 2 submatrices Aij
i+2,j+1, and

2× 3 submatrices Aij
i+1,j+2 have saddle points.

Theorem 5C. Let A be a strongly row-quasi-convex and strongly column-
quasi-concave m × n matrix. Assume that 3 ≤ p ≤ m and 3 ≤ q ≤ n.
Then the game Γ (A) has a saddle point if and only if every p× q submatrix
Aij

i+p−1,j+q−1 has a saddle point.

Theorem 5D. Let A be a strictly row-quasi-convex and strictly column-
quasi-concave matrix. Then the game Γ (A) has a saddle point if and only if
every 2× 2 submatrix Aij

i+1,j+1 has a saddle point.

Remark 5. Theorems 5A–5C remain true under the assumption that
A is only row-convex and column-concave. This immediately follows from
Proposition 2 and Definitions 3–5.

Remark 6. In Theorem 5A, “every submatrix Aij
kl” cannot be weakened

to “every proper submatrix Aij
kl”. Similarly, strong quasi-concavity in Theo-

rem 5B cannot be replaced by quasi-concavity. Finally, strict quasi-concavity
in Theorem 5D cannot be replaced by strong quasi-concavity. All this is dis-
cussed in Example 2.

Also as far as Theorem 5C is concerned, its assumption cannot be weak-
ened by removing “strongly”. To see this, it suffices to consider the matrix
B of Example 2 below which is row-quasi-convex and column-quasi-concave.
All its relevant 3× 3 submatrices have saddle points, but the entire matrix
C does not.
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Example 2. Consider the following three matrices:

A =

[
3 2 1

1 2 3

]
, B =


3 3 1 1

3 1 1 3

3 1 1 3

1 1 3 3

 , C =

−2 −2 −2 3

−1 −1 1 2

3 2 1 0

 .
It is easily seen that A is row-quasi-convex and column-quasi-concave, and
all its proper submatrices Aij

kl mentioned in Theorem 5B have saddle points.
However, there is no saddle point in A.

Further, B is row-quasi-convex and column-quasi-concave, but not
strongly row-quasi-convex or strongly column-quasi-concave. Moreover, all
of its 2 × 2, 3 × 2 and 2 × 3 submatrices mentioned in Theorem 5B have
saddle points. But B has no saddle points.

Similarly, C is strongly row-quasi-convex and strongly column-quasi-
concave but not strictly row-quasi-convex or strictly column-quasi-concave.
Moreover, one can easily check that all its 2 × 2 submatrices mentioned in
Theorem 5B have saddle points. But C has no saddle points.

Now we give several counterexamples showing that no direct generaliza-
tion of Theorems 4A–4B and 5A–5D to non-zero-sum two-person games is
possible.

Let Γ (A,B) be a bimatrix game, where A = [ars]m×n and B = [brs]m×n.
By the subgame Γ ij

kl of Γ (A,B), where 1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n,
we mean the game Γ (Aij

kl, B
ij
kl).

Example 3. Assume that

A =

3 2 1

1 3 2

2 1 3

 , B =

2 3 1

1 2 3

3 1 2

 .
All the 2 × 2 subgames of Γ (A,B) have pure Nash equilibria here, but the
entire game Γ (A,B) does not. So Theorem 4A is not true in the non-zero-sum
case. However, after strengthening the assumptions it appears to be true (see
Theorem 6A in the next section).

The next example shows that Theorem 4B cannot be extended to the
non-zero-sum case either.

Example 4. Let

A =


4 6 10 13

2 7 11 14

1 8 12 15

3 5 9 16

 , B =


2 3 4 1

5 6 7 8

9 10 11 12

16 14 13 15

 .
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Let p = 2 and q = 4. All the p × q subgames of Γ (A,B) have pure Nash
equilibria, but the entire game does not.

Example 5. Consider the strictly quasi-concave game Γ (A,B) with

A =

3 1 1

2 2 2

1 1 3

 , B =

3 2 1

1 2 3

3 2 1

 .
Here (1, 1) is a pure Nash equilibrium for Γ (A,B), but the 2 × 2 subgame
Γ 22
33 and the 2×3 subgame Γ 21

33 do not have pure Nash equilibria. Hence, the
⇒ part in Theorems 5A–5D cannot be generalized to non-zero-sum bimatrix
games.

Example 6. In the case of zero-sum games Γ (A) considered in Theorem
5B, it is enough to assume that all 2× 2, 2× 3 and 3× 2 subgames of Γ (A)
have pure Nash equilibria (see⇐ of Theorem 5B), and then the entire game
has a solution of the same type. But consider the two-person non-zero-sum
game Γ (A,B) with A strongly column-quasi-concave and B strongly row-
quasi-concave, where

A =


4 1 1 1

3 1 1 2

2 1 1 3

1 1 1 4

 , B =


1 2 3 4

4 3 2 1

1 2 3 4

4 3 2 1

 .
Note that all the 2× 2, 3× 2 and 2× 3 subgames have pure Nash equilibria
but the entire game does not. So the ⇐ part of Theorem 5B does not hold
in the non-zero-sum case. This means that some more conditions are needed
to get a non-zero-sum counterpart of Theorem 5B. For this, see Theorem 6B
in the next section.

Example 7. Consider the game Γ (A,B) with the following strictly
column-quasi-concave matrix A and strictly row-quasi-concave matrix B:

A =


1 4 1 4

2 3 2 3

3 2 3 2

4 1 4 1

 , B =


4 3 2 1

1 2 3 4

4 3 2 1

1 2 3 4

 .
In this game, all the 3× 3 subgames Γ ij

i+2,j+2 have pure Nash equilibria, but
the entire game does not. Moreover, all the 3×k and k×3 subgames have pure
Nash equilibria, for k ≥ 3. Therefore, also the⇐ part of Theorem 5C cannot
be directly generalized to the non-zero-sum case, even if we strengthen the
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assumptions to strict quasi-concavity. The case of such games Γ (A,B) is
discussed in Theorem 6C and in Corollaries 1 and 2 in the next section.

4.2. Pure Nash equilibria in bimatrix games. Below we give five
results of Połowczuk (2003) about the existence of pure Nash equilibria in
bimatrix games with payoff matrices having convexity properties defined
in Section 3.1. Such bimatrix games will be considered in the form Γ :=
Γ (A,B), with payoff matrices A and B of size m × n, m,n ≥ 2. These
results complete the results of Theorems 4A–5D to the non-zero-sum case.
Our first result is related to Theorem 4A.

Theorem 6A. Let A and B be strongly column-quasi-concave and
strongly row-quasi-concave m × n matrices, respectively. Assume that every
2 × 2 subgame of the game Γ (obtained by removing m − 2 rows and n − 2
columns from A and B, the same for A and B) has a pure Nash equilibrium.
Then Γ has a pure Nash equilibrium as well.

Theorem 5B has the following counterpart in terms of bimatrix games.

Theorem 6B. Let A and B be strongly column-quasi-concave and
strongly row-quasi-concave m × n matrices, respectively. If all the 2 × l
subgames Γ ij

i+1,j+l−1 and all the k × 2 subgames Γ ij
i+k−1,j+1 (1 ≤ i < m,

1 ≤ j < n, k = 2, . . . ,m, l = 2, . . . , n) have pure Nash equilibria, then Γ
also has a pure Nash equilibrium.

The next theorem deals with strictly quasi-concave bimatrix games. It
says that if such a game can be divided into two subgames having pure Nash
equilibria, then it also has a pure Nash equilibrium.

Theorem 6C. Let A and B be strictly column-quasi-concave and strictly
row-quasi-concave m× n matrices, respectively. Assume that one of the fol-
lowing conditions holds:

(i) there exists k, 1 < k < m, such that both subgames Γ1 = Γ 11
kn and

Γ2 = Γ k1
mn have pure Nash equilibria;

(ii) there exists l, 1 < l < n, such that both subgames Γ1 = Γ 11
ml and

Γ2 = Γ 1l
mn have pure Nash equilibria.

Then Γ also has a pure Nash equilibrium.

Theorem 6C has two interesting corollaries. The first one can be seen as
a counterpart of Theorem 5D for two-person non-zero-sum games.

Corollary 1. Let A and B be strictly column-quasi-concave and strictly
row-quasi-concave m× n matrices, respectively. If all the 2× 2 subgames of
the form Γ ij

i+1,j+1 have pure Nash equilibria, then Γ also has a pure Nash
equilibrium.
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Corollary 2. Let A and B be strictly column-quasi-concave and strictly
row-quasi-concave m × n matrices, respectively. If all the m × 2 subgames
Γ 1j
m,j+1 or all the 2 × n subgames Γ i1

i+1,n have pure Nash equilibria, then Γ
also has a pure Nash equilibrium.

Now we give two examples describing other consequences of Theorem 6C.

Example 8. Let A and B be strictly column-quasi-concave and strictly
row-quasi-concave matrices, respectively, both of size (2k+1)×n (the number
of pure strategies of player 1 is odd). From Theorem 6C one can easily
conclude that if all the 3 × n subgames Γ 2i+1,1

2i+3,n for i = 0, 1, . . . , k − 1 have
pure Nash equilibria, then also Γ has a pure Nash equilibrium. Namely, by
Theorem 6C, the game Γ 11

5n has such a solution, because it occurs in the
games Γ 11

3n and Γ 31
5n . Then, by repeating this argument, we conclude that all

the games Γ 11
7n , . . . , Γ

11
2k+1,n = Γ have pure Nash equilibria as well.

Example 9. Let A and B be strictly column-quasi-concave and strictly
row-quasi-concave matrices, respectively, both of size (2k + 1)× (2l + 1). If
all the 3×3 subgames Γ 2i+1,2j+1

2i+3,2j+3 for i = 0, 1, . . . , k−1 and j = 0, 1, . . . , l−1
have pure Nash equilibria, then Γ also has a pure Nash equilibrium. This can
be easily justified with the help of Theorem 6C, as in the previous example.

In the next example we show that the results of this section, concerning
bimatrix games (Theorems 6A–6C), cannot be extended to n-person games
with n > 2.

Example 10. Consider the three-person non-zero-sum game Γ with
three pure strategies X = {0, 1, 2} for each player and with the payoff func-
tions Ki(x1, x2, x3), i = 1, 2, 3, defined on X3 as indicated in the figure:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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•

•

•

•

(3, 1, 3) (3, 2, 3) (1, 3, 1)

(3, 2, 2) (3, 3, 2) (1, 1, 2)

(3, 1, 1) (1, 2, 1) (1, 3, 1)

(2, 1, 1) (2, 2, 1) (2, 3, 3)

(2, 1, 2) (2, 3, 2) (2, 2, 2)

(2, 3, 3) (2, 2, 1) (2, 1, 1)

(1, 1, 1) (1, 2, 1) (3, 3, 1)

(1, 1, 2) (1, 2, 2) (3, 3, 2)

(1, 3, 3) (3, 2, 3) (3, 1, 3)

��
Z

Y

X
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Player 1 chooses one of his three pure strategies x1 ∈ X along line X,
players 2 and 3 choose x2 ∈ X and x3 ∈ X along lines Y and Z, respectively.
The triples represent the payoffs for each pure strategy combination. It is
easily verifiable that the function Ki(x1, x2, x3) is strictly concave in xi (i =
1, 2, 3) and all the 2× 2× 2 subgames have pure Nash equilibria. Similarly,
there are pure Nash equilibria in all the subgames of size 2×2×3 or 2×3×2
or 3× 2× 2. But the entire game does not have such a solution.

5. Two-point equilibria in two-person games

5.1. Two-point Nash equilibria in matrix games. We present here
three results (Theorems 7A–7C) of Radzik (2000) that complete Theorems
5A–5D. They show the existence of Nash equilibria in two-point strategies in
two-person zero-sum games with payoff matrices having convexity properties.
The first theorem, concerning matrix games with row-convex and column-
concave matrices, provides a full characterization of optimal strategies and a
simple search procedure. Also a discussion of various relationships between
the results is given.

Theorem 7A. Let A = [aij ]m×n be row-convex and column-concave.
Then for the matrix game Γ = Γ (A) and its value v∗ = val(Γ (A)), one of
the following four cases must occur:

Case 1: There exists a saddle point (s, r) in A. Then (µ∗, ν∗) = (δs, δr)
is a pair of respective pure optimal strategies for players 1 and 2 in Γ .

Case 2: There exists a 2 × 2 submatrix Asr
s+1,r+1 without saddle points.

Then v∗ = val(Γ (Asr
s+1,r+1)) and the optimal strategies for players 1 and 2

in Γ (Asr
s+1,r+1) are also optimal in Γ (A), and are of the form µ∗ = λδs +

(1− λ)δs+1 and ν∗ = γδr + (1− γ)δr+1 for some 0 < λ, γ < 1.

Case 3: Cases 1 and 2 do not hold and there is a 2×3 submatrix Asr
s+1,r+2

without saddle points. Then v∗ = val(Γ (Asr
s+1,r+2)),

(18) Asr
s+1,r+2 =

[
asr v∗ as,r+2

as+1,r v∗ as+1,r+2

]
,

and the optimal strategies for players 1 and 2 in Γ (Asr
s+1,r+2) are µ

∗ = λδs+
(1 − λ)δs+1 and ν∗ = δr+1 for some 0 < λ < 1, and they remain optimal
in Γ (A).

Case 4: Cases 1 and 2 do not hold and there is a 3×2 submatrix Asr
s+2,r+1

of A without saddle points. Then v∗ = val(Γ (Asr
s+2,r+1)),

(19) Asr
s+2,r+1 =

asr as,r+1

v∗ v∗

vs+2,r vs+2,r+1

 ,
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and the optimal strategies for players 1 and 2 in Γ (Asr
s+2,r+1) are µ

∗ = δs+1

and ν∗ = γδr + (1 − γ)δr+1 for some 0 < γ < 1, and they remain optimal
in Γ (A).

Corollary 3. Let A = [aij ]m×n be a row-convex and column-concave
matrix such that all the 2× 2 submatrices Aij

i+1,j+1 have saddle points. Then
one of the players has a pure optimal strategy in Γ (A). If additionally there
is exactly one minimal element in each row of A, and exactly one maximal
element in each column of A, then both players have pure optimal strategies
in Γ (A).

Proof. The first part is an immediate consequence of Theorem 7A since
its Case 2 cannot happen. On the other hand, if there were a submatrix
Asr

s+1,r+2 of the form (18), then we could use column-concavity of A, Propo-
sition 2 and (14) to show that v∗ is the maximal element in its column. But
this would contradict the assumption that there is exactly one maximal el-
ement in each column. So Case 3, and analogously Case 4, of Theorem 7A
cannot hold, and the corollary follows.

Remark 7. In view of Theorem 3, Theorem 7A can be viewed as a
discrete zero-sum counterpart of the stronger version (without “quasi”) of
the result of Debreu and Glicksberg (a pure Nash equilibrium in Theorem
1A corresponds to a Nash equilibrium in two-adjoining strategies for a matrix
game in Theorem 7A). Hence, in view of the assumptions of Theorem 1A,
one could expect that Theorem 7A should also hold for all matrices that
are column-quasi-concave and row-quasi-convex. However, a counterexample
is given in Example 11 below, where the support of the unique optimal
strategy for a player may consist of two non-adjoining points. Moreover,
in Example 12 we give another example of a matrix game with the same
property that has unique optimal strategies with supports consisting of three
neighboring points each. In view of Theorem 1A, these facts seem rather
surprising.

Example 11. Consider the two-person zero-sum matrix game with pay-
off matrix

A =

[
1 1 1 0

0 1 1 1

]
.

Obviously, this matrix is row-quasi-convex and column-quasi-concave (but
not row-convex or column-concave). One can easily check that the strategies
µ∗ = (1/2)δ1 + (1/2)δ2 and ν∗ = (1/2)δ1 + (1/2)δ4 are the unique optimal
strategies in this game. Hence, the optimal strategy of player 2 is not two-
adjoining, in contrast to Theorem 7A.
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Example 12. Consider the two-person zero-sum matrix game with pay-
off matrix

A =

4 3 1

1 2 3

0 1 4

 ,
which is row-quasi-convex and column-quasi-concave (but not row-convex
or column-concave). It is not difficult to check that the strategies µ∗ =
(1/2)δ1+(1/4)δ2+(1/4)δ3 and ν∗ = (1/4)δ1+(1/4)δ2+(1/2)δ3 are the unique
optimal strategies for the players in this game. So, the only equilibrium
consists of the two players’ optimal strategies in the form of a three-point
strategy each.

Now we present two theorems that can be viewed as discrete counterparts
of Theorems 1B and 1C. They show that the structure of ε-optimal strategies
for infinite games is inherited (at least in the zero-sum case) by all their finite
subgames. The first theorem corresponds to Theorem 1B.

We shall need the following notation: for A = [aij ], we put

Âij
kl =

[
aij ail

akj akl

]
.

Theorem 7B. Let A = [aij ]m×n be a column-concave matrix, and let
v∗, µ∗ and ν∗ be the value of the matrix game Γ = Γ (A) and the optimal
strategies for players 1 and 2, respectively. Then one of the following three
cases must occur:

Case 1: There exists a saddle point (s, r) in A. Then the pair (µ∗, ν∗) =
(δs, δr) of strategies is optimal in Γ (A) and v∗ = asr.

Case 2: For some 1 ≤ i < m, there exists a 2 × n submatrix Ai1
i+1,n

without saddle points. Then v∗ = val(Ai1
i+1,n), and there are optimal strate-

gies (µ∗, ν∗) in Γ (Ai1
i+1,n) of the form µ∗ = λδi + (1 − λ)δi+1 and ν∗ =

γδs + (1− γ)δr for some 0 < λ < 1, 0 ≤ γ ≤ 1 and 1 ≤ s < r ≤ n, and they
are also optimal in Γ (A).

Case 3: Cases 1 and 2 do not hold. Then there exists a submatrix Âi−1,s
i+1,r

without saddle points, with ais = air = v, where v = min1≤j≤n aij. Moreover,
v∗ = ais, µ∗ = δi and ν∗ = γδs + (1− γ)δr for some 0 < γ < 1, where ν∗ is
also an optimal strategy for player 2 in Γ (Âi−1,s

i+1,r).

The last Theorem 7C is a discrete zero-sum counterpart of Theorem 1C.
To formulate it we need additional notation (also used in the next section).
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For C = [cij ]m×n, we write

C1
m =

[
c11 c12 · · · c1n

cm1 cm2 · · · cmn

]
.

Theorem 7C. Let A = [aij ]m×n be column-convex. Then one of the
following two cases must occur:

Case 1: There exists a saddle point (s, r) in the submatrix A1
m. Then

the pair of strategies (µ∗, ν∗) = (δs, δr) is optimal in Γ (A) and v∗ = asr.

Case 2: A1
m does not have a saddle point. Then v∗ = val(Γ (A1

m)) is
the value of Γ (A), there are optimal strategies (µ∗, ν∗) in Γ (A1

m) of the form
µ∗ = λδ1+(1−λ)δm and ν∗ = γδs+(1−γ)δr for some 0 < λ < 1, 0 ≤ γ ≤ 1
and 1 ≤ s < r ≤ n, and they are also optimal in Γ (A).

Theorems 1B and 1C suggest that the last two theorems can be directly
generalized to bimatrix games. This is discussed below.

5.2. Two-point Nash equilibria in bimatrix games. In this subsec-
tion we formulate four theorems (Theorems 8A–8C) about the existence of
Nash equilibria in two-point strategies in bimatrix games, proved inPołowczuk
(2006). They provide a full characterization of such equilibria and and a simple
search procedure. Moreover, they complete Theorems 5A–7C.

The first result generalizes Theorem 7A to non-zero-sum games. It may
also be seen as a discrete counterpart of Theorem 1A for the two-person case
(considered with the concavity condition on payoff functions). To formulate
it, we need to introduce some notation.

Let A = [aij ] and B = [bij ] be fixed matrices of the same size m × n,
m,n ≥ 2.

The game Γ1(A1, B1) is said to be a subgame of Γ (A,B) if the matrices
A1 and B1 can be obtained by removing some rows and (or) columns from
A and B (the same for A and B).

Now let Γ ij
kl = Γ (Aij

kl, B
ij
kl), 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ l ≤ n, where Aij

kl and
Bij

kl are matrices of the form (17), corresponding to A and B, respectively.
Obviously, each Γ ij

kl is a subgame of Γ (A,B).
Further, define

λijkl = min(bijkl, b
i,j+1
k,l+1), λijkl = max(bijkl, b

i,j+1
k,l+1),(20)

γijkl = min(aijkl, a
i+1,j
k+1,l), γijkl = max(aijkl, a

i+1,j
k+1,l),(21)
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where

bijkl =
bkl − bkj

bkl − bkj + bij − bil
,(22)

aijkl =
ail − akl

ail − akl + akj − aij
.(23)

Now we are ready to formulate the first theorem.

Theorem 8A. Let A and B be m × n matrices such that A is column-
concave and B is row-concave. Then for the game Γ = Γ (A,B) one of the
following four cases must occur:

Case 1: There exists a pure Nash equilibrium (s, r) in Γ .

Case 2: There exists a 2× 2 subgame Γ sr
s+1,r+1 without pure Nash equi-

libria. Then there is a Nash equilibrium in Γ sr
s+1,r+1 of the form µ∗ = λδs +

(1−λ)δs+1 and ν∗ = γδr +(1− γ)δr+1, with λ = bsrs+1,r+1 and γ = asrs+1,r+1,
which is also a Nash equilibrium in Γ .

Case 3: For some k ≥ 3 there is a k × 2 subgame Γ sr
s+k−1,r+1 without

pure Nash equilibrium, which satisfies

(24) blr = bl,r+1 whenever s < l < s+ k − 1.

Then if s < l < s+k−1 and γl−1,rl,r+1 ≤ γ ≤ γ
l−1,r
l,r+1 , there is a Nash equilibrium

in Γ sr
s+k−1,r+1 of the form µ∗ = δl and ν∗ = γδr + (1− γ)δr+1, which is also

a Nash equilibrium in Γ .

Case 4: For some k ≥ 3 there is a 2 × k subgame Γ sr
s+1,r+k−1 without

pure Nash equilibrium, for which

(25) asl = as+1,l whenever r < l < r + k − 1.

Then if r < l < r+k−1 and λs,l−1s+1,l ≤ λ ≤ λ
s,l−1
s+1,l, there is a Nash equilibrium

in Γ sr
s+1,r+k−1 of the form µ∗ = λδs + (1− λ)δs+1 and ν∗ = δl, which is also

a Nash equilibrium in Γ .

Remark 8. A zero-sum version of Theorem 8A was proved in Radzik
(2000, Theorem 4.3). However, for zero-sum games it is enough to consider
only 2× 3 and 3× 2 subgames in Cases 3 and 4.

The second theorem generalizes Theorem 7B to non-zero-sum finite games.
It can also be seen as a discrete counterpart of Theorem 1B given in the
previous section.

Theorem 8B. Let A and B be m × n matrices, and let A be column-
concave. Then for the game Γ = Γ (A,B) one of the following three cases
must occur:

Case 1: There exists a pure Nash equilibrium (s, r) in Γ .
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Case 2: For some 1 ≤ s < m with there exists a 2 × n subgame Γ s1
s+1,n

without pure Nash equilibria. Then there is a Nash equilibrium in Γ s1
s+1,n of

the form µ∗ = λδs+(1−λ)δs+1 and ν∗ = γδr+(1−γ)δu for some 0 < λ < 1,
0 ≤ γ ≤ 1 and 1 ≤ r < u ≤ n, which is also a Nash equilibrium in Γ .

Case 3: For some 1 < l < m and 1 ≤ r < u ≤ n there exists a 3 × 2
subgame of Γ of the form

Γ ′ = Γ


al−1,r al−1,u

alr alu

al+1,r al+1,u


bl−1,r bl−1,u

blr blu

bl+1,r bl+1,u




satisfying

(26) blr = blu ≥ blj for all 1 ≤ j ≤ n
and

(27) (a)

{
al−1,r < alr < al+1,r

al−1,u > alu > al+1,u
or (b)

{
al−1,r > alr > al+1,r

al−1,u < alu < al+1,u.

Then, for γl−1,rlu ≤ γ ≤ γl−1,rlu , the game Γ ′ has a mixed Nash equilibrium
(µ∗, ν∗) of the form µ∗ = δl and ν∗ = γδr + (1− γ)δu, which is also a Nash
equilibrium in Γ .

The next theorem generalizes Theorem 7C to finite non-zero-sum games.
It can also be seen as a discrete counterpart of Theorem 1C. Here, for a
game Γ (A,B)m×n, we define Γ 1

m = Γ (A1
m, B

1
m) (see the notation introduced

before Theorem 7C).

Theorem 8C. Let A and B be two m × n matrices, with A column-
convex. Then for the game Γ = Γ (A,B) one of the following three cases
must occur:

Case 1: There exists a pure Nash equilibrium (s, r) in the subgame Γ 1
m.

Then the pair (µ∗, ν∗) = (δs, δr) of strategies is also a pure Nash equilibrium
in Γ .

Case 2: The game Γ 1
m does not have a pure Nash equilibrium. Then

there is a Nash equilibrium in Γ 1
m of the form µ∗ = λδ1 + (1 − λ)δm and

ν∗ = γδs + (1 − γ)δr for some 0 < λ < 1, 0 ≤ γ ≤ 1 and 1 ≤ s < r ≤ n,
which is also a Nash equilibrium in Γ .

Our last result is a modification of Theorem 8A where “concavity” is
replaced by “convexity”.
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Theorem 8D. Let A and B be two m×n matrices such that A is column-
concave and B is row-concave, and let

Γ ′′ = Γ

([
a11 a1n

am1 amn

][
b11 b1n

bm1 bmn

])
.

Then for the game Γ = Γ (A,B) one of the following two cases must occur:

Case 1: There exists a pure Nash equilibrium (s, r) in the subgame Γ ′′.
Then the pair (µ∗, ν∗) = (δs, δr) of strategies is also a pure Nash equilibrium
in Γ .

Case 2: The game Γ ′′ does not have a pure Nash equilibrium. Then there
is a Nash equilibrium in Γ ′′ of the form (µ∗, ν∗), where µ∗ = λδ1+(1−λ)δm
and ν∗ = γδ1 + (1− γ)δn, with λ = b11mn and γ = a11mn, which is also a Nash
equilibrium in Γ .

Remark 9. Bimatrix games Γ (A,B) with payoff matrices A and B of
size m ×∞ are discussed in Połowczuk et al. (2012). The assumptions on
the payoff matrices made there are the same as in Theorems 8A–8D, and
the results obtained are similar.

6. Two-point Nash equilibria in n-person finite games. In this
section we quote five results, Theorems 9A–9C and 10A and 10B (proved
in Połowczuk et al. (2007)), about the structure of Nash equilibria in finite
n-person games, with the additional basic assumption that the payoff func-
tions of the players are concave or convex in their variables. We show here
the existence of two-point Nash equilibria and give their characterizations.

TheGlicksberg theorem (Theorem 1A) says that continuous quasi-concave
games always have pure Nash equilibria. This strongly suggests that any
n-person finite game with payoff functions quasi-concave in each variable
should have two-adjoining Nash equilibria. However, this turns out to be false.

Example 13. Consider a two-person non-zero-sum game with the payoff
functions H1 and H2 described by the n× n matrices (n ≥ 3)

A =



0 1 0 . . . 0 0

0 0 1 0 0
...

...
. . .

...
0 0 0 1 0

0 0 0 . . . 0 1

1 0 0 . . . 0 0


, B =



1 0 . . . 0 0 0

0 1 0 0 0
...

. . .
...

...
0 0 1 0 0

0 0 . . . 0 1 0

0 0 . . . 0 0 1


.

Obviously H1 and H2 are quasi-concave (but not concave) in their variables.
However, the only Nash equilibrium in this game consists of the following
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mixed strategies:

µ∗ =
1

n
δ1 + · · ·+

1

n
δn and ν∗ =

1

n
δ1 + · · ·+

1

n
δn.

Sketch of the proof. By the Nash Theorem there are µ∗1 = α1δ1+· · ·+αnδn
and µ∗2 = β1δ1 + · · · + βnδn which form an equilibrium in the above game.
We will prove that α1 = · · · = αn = β1 = · · · = βn = 1/n. The proof is in
two steps.

Step 1. Suppose supp(µ∗1) = supp(µ∗2) = {1, . . . , n}. Then it is well
known that F1(1, µ

∗
2) = F1(2, µ

∗
2) = · · ·= F1(n, µ

∗
2) and F2(µ

∗
1, 1) = F2(µ

∗
1, 2)

= · · · = F2(µ
∗
1, n), which is equivalent to β1 = · · · = βn = 1/n.

Step 2. Suppose that there exists i such that αi = 0. Then it is easy
to deduce that βi = 0, since otherwise µ∗2 would not maximize the utility
of player 2. Similarly we can show that βi = 0 implies αi−1 = 0 or αn = 0
if i > 1 or i = 1, respectively. Repeating this procedure, we finally get
α1 = · · · = αn = β1 = · · · = βn = 0, which is a contradiction, since µ∗1 and
µ∗2 are probability distributions. When we start with some βi = 0, the result
will be the same.

The example discussed above shows that the direct discrete counterpart
of the Glicksberg theorem (Theorem 1A) would be false. However, the sit-
uation changes when “quasi-concavity” is replaced by “concavity”. We study
this case in some of the theorems below.

Let Γ be a finite n-person game of the form (1). We begin with two
theorems about games with properties of “partial” concavity or convexity,
respectively.

Theorem 9A. Let 1 ≤ s ≤ n. If for i = 1, . . . , s the payoff function
Hi is concave in the variable ei then there exists a mixed Nash equilibrium
(µ∗1, . . . , µ

∗
n) in the game Γ such that µ∗1, . . . , µ

∗
s are two-adjoining strategies.

Theorem 9B. Let 1 ≤ s ≤ n. If for i = 1, . . . , s the payoff function Hi

is convex in ei then there exists a mixed Nash equilibrium (µ∗1, . . . , µ
∗
n) in the

game Γ such that µ∗1, . . . , µ
∗
s are two-marginal strategies.

The next theorem combines in some sense the results of two previous
ones.

Theorem 9C. Let 1 ≤ s ≤ n. Assume that for i = 1, . . . , s the payoff
function Hi is concave in ei and for j = s+1, . . . , n the payoff function Hj is
convex in ej. Then there exists a two-point Nash equilibrium (µ∗1, . . . , µ

∗
n) in

the game Γ such that µ∗1, . . . , µ
∗
s are two-adjoining strategies and µ∗s+1, . . . , µ

∗
n

are two-marginal strategies.

We end this section with two immediate but important corollaries of
Theorems 9A and 9B. The first of them can be seen as a discrete counterpart
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of the stronger version of Glicksberg’s Theorem (with “concavity” instead of
“quasi-concavity” in Theorem 1A). It also generalizes the results of Theorems
7A and 8A. The second of them generalizes Theorem 8D.

Theorem 10A. If for i = 1, . . . , n the payoff function Hi is concave
in the variable ei then there exists a two-adjoining Nash equilibrium in the
game Γ .

Theorem 10B. If for i = 1, . . . , n the payoff function Hi is convex in ei
then there exists a two-marginal Nash equilibrium in the game Γ .

Remark 10. An interesting open problem is to find a simple procedure
giving the Nash equilibrium described in Theorem 10A or in Theorem 9C,
and similar to the ones described in Theorems 8A–8D in Połowczuk (2003).

Remark 11. Another question is whether Theorems 10A and 9C remain
true when convexity of payoff functions is replaced by quasi-convexity. It
appears that this is not true, as shown in Example 14 below. Example 13
given earlier shows that a similar weakening of the assumptions of Theorems
10A and 9C, from concavity to quasi-concavity, is not possible.

Example 14. Consider a two-person non-zero-sum game with the payoff
functions F1 and F2 described by

A =


1 1 7 2

1 4 6 1

1 6 4 1

2 7 1 1

 , B =


7 6 4 1

7 6 4 1

1 4 6 7

1 4 6 7

 .
One can easily see that this game is quasi-convex. However, the only Nash
equilibrium in this game consists of the mixed strategies: µ∗ = 1

2δ2 +
1
2δ3

and ν∗ = 1
2δ2 +

1
2δ3. Justification of this fact is left to the reader.

7. Conclusions and open problems. We have presented a thorough
review of the known results about the existence and form of Nash equilibria in
n-person finite games with payoff functions having some concavity/convexity
properties. It turns out that the most important results about the existence
of pure Nash equilibria in games with compact convex strategy sets and
concave/convex payoff functions have their counterparts in this case, yet the
assumptions often have to be strengthened. In these theorems, instead of
the existence of pure Nash equilibria, the existence of equilibria in mixed
strategies where each of the players uses only two of his pure strategies is
proved. We have also shown that in case of 2-person finite games, the two-
point equilibria existing according to those results can be found using some
simple search procedures. However, there are essential questions which still
remain open.
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Problem 1. Let n ≥ 3. Are there “simple” algorithms allowing one
to find two-point Nash equilibria in n-person finite games determined in
Theorems 9A–9C?

Problem2. Are there intermediate properties of payoff functions, weaker
than concavity and stronger than quasi-concavity, that guarantee the exis-
tence of two-point equilibria in finite games with such rewards?

Problem 3. For a natural s, let Γ (s) be an n-person non-zero-sum
finite game of the form G = 〈N, {Ei}i∈N , {Hi}i∈N 〉, where for i ∈ N the
strategy spaces Ei are {1, . . . , li}s and the payoff function Hi is concave in
its ith variable. (Here the concavity is defined by the clear generalization
of Definition 2.) The results of the previous section show that in the case
s = 1, the game Γ (1) always has a mixed Nash equilibrium in two-adjoining
strategies. The question is whether also in the game Γ (s) with s > 1, there is
a mixed Nash equilibrium with supports of the players’ strategies, consisting
only of “small” sets of adjoining pure strategies. Note that Γ (s) can be seen
as a discrete counterpart of the game considered in Theorem 1A where quasi-
concavity is replaced by concavity.

Problem 4. Are there any essential generalizations of Theorems 1B and
1C with the strategy spaces [0, 1] replaced by [0, 1]k, where k > 1? No results
are known here, even under continuity of the payoff functions.
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