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ON RISK MINIMIZING STRATEGIES FOR
DEFAULT-FREE BOND PORTFOLIO IMMUNIZATION

Abstract. This paper presents new strategies for bond portfolio immu-
nization which combine the time-honored duration with the M-Absolute
measure defined by Nawalkha and Chambers (1996). The innovation con-
sists in considering an average shock in a fixed time period as a random
variable with mean µ or, alternatively, with normal distribution with mean
µ and variance σ2. Additionally, an extension to arbitrage free models of
polynomial shocks is provided. Moreover, the Fisher and Weil model, the
M-Absolute strategy and a new one are compared empirically with respect
to financial liquidity.

Introduction. Management of interest rate risk, the control of changes
in the value of a stream of future cash flows as a result of changes in inter-
est rates are important issues for an investor. Therefore many academic re-
searchers have examined the immunization problem for a bond portfolio (see
Nawalkha and Chambers, 1999). They have proposed multiple-risk measure
models (e.g. Fong and Vasicek, 1984, Balbás and Ibáñez, 1998) or single-
risk measure models (e.g. Nawalkha and Chambers, 1996, Kałuszka and
Kondratiuk-Janyska, 2004). We propose new strategies for bond portfolio
immunization. One is called the duration-dispersion strategy (DD strategy
for short) and combines the time-honored duration with the remarkable risk
measure M-Absolute defined by Nawalkha and Chambers (1996). The other
is named the modified DD strategy and includes, additionally, M-Squared of
Fong and Vasicek (1984). We consider a wider set of shocks than examined
by Fong and Vasicek (1984) and Nawalkha and Chambers (1996). A new
class includes all parallel movements. Considering an average shock in a fixed
time period as a random variable with mean µ or with normal distribution
with mean µ and variance σ2 is our innovation. Moreover, we generalize ar-
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bitrage free models of polynomial shocks. In order to empirically investigate
a new model, we use the McCulloch and Kwon (1993) term structure data
over the observation period 1951 through 1986. Following an empirical test
applied by Nawalkha and Chambers (1996), we examine the immunization
performance of the Fisher and Weil strategy, the M-Absolute model and the
DD strategy. Finally, a numerical comparison of the strategies is provided
with respect to financial liquidity.

New strategy for portfolio immunization. In the pioneering work
of Fong and Vasicek (1984) an interest risk measure, called M-Squared, was
introduced which, if minimized with respect to bond portfolio proportions,
would produce a duration-matching portfolio that minimizes the deviation
of the portfolio return from the promised return. Compared to the classical
theory of immunization their approach was completely new because they
estimated a lower bound on the change in the end-of-horizon value of a bond
portfolio as a result of the effect of an arbitrary interest change on a portfolio
immunized against a parallel shift. Notice that the Fong–Vasicek strategy
immunizes the value of portfolio against both small and large parallel shifts.
But in practice large shocks seldom occur, therefore hedging against them
does not seem to be the best strategy. See also the critique of Bierwag et al.
(1993).

Nawalkha and Chambers (1996) modified the Fong and Vasicek approach
to develop a single-risk measure immunization model, M-Absolute. They
gave an example showing that their strategy is better than Fisher and Weil’s.
Shocks were bounded functions. However, this implies that parallel move-
ments cannot be too big. On the other hand, one should not exclude this
situation in theoretical considerations because it may happen in practice.
Moreover, if the level of an average shock converges to an upper border of
a band, then its volatility around the average level is decreasing. Knowing
these limitations of existing interest rates behaviour models, we propose
a stochastic approach. Earlier, Merton (1974), Vasicek (1977), Cox et al.
(1979) and others discussed different stochastic models of term structures.
For example Cox et al. (1979) assumed that the instantaneous compound-
ing risk-free interest rate as a state of the market for default-free bonds is
Markov with evolution governed by a stochastic differential equation. We
simplify it by making only two assumptions about the shock process. First,
an average change in the instantaneous forward rate in a fixed time pe-
riod is assumed to be a random variable with mean µ. The other condi-
tion concerns the deviation size of rate changes around the average shock.
Following Nawalkha and Chambers (1996), we require its movement to be
within a band of width λ. The parameter λ can represent a volatility mea-
sure.



Default-free bond portfolio immunization 261

Denote by [0, T ] the time interval with t = 0 the present moment, and
let H be the investor planning horizon, 0 < H < T . Let Ct be the cash flow
from a bond portfolio at time t ≤ T (t = t1, . . . , tN ). We exclude the short
sale, i.e. Ct ≥ 0 for all t. The percentage change in the expected terminal
value of the bond portfolio caused by an instantaneous change in the forward
rates can be written as

∆IH
IH

=
∑

t

C
(H)
t exp

(H�
t

∆i(s) ds
)
− 1,

where the sum is taken over all values of t (t = t1, . . . , tN ) and

• C(H)
t = (Ct/IH) exp( � Ht i(s) ds),

• IH is the reinvested terminal value of the bond portfolio at t = H if
forward rates equal future spot rates,
• i(t) is the current instantaneous forward rate,
• ∆i(s) is a change in the instantaneous forward rate.

We will make the following assumptions:

(i) T−1 � T0 ∆i(s) ds is a random variable with mean µ.

(ii) |∆i(t)− T−1 � T0 ∆i(s) ds| ≤ λ for all t ≥ 0, where λ ∈ [0,∞).

Under conditions (i)–(ii), the class of shocks in the instantaneous forward
rate includes all parallel shifts, which is not the case under the Nawalkha
and Chambers assumption (1996). On the other hand, what differs Fong and
Vasicek’s M-Square model (1984) from our proposition is that large values
of an average shock are rather unlikely.

Proposition 1. A lower bound on the expected value of the change in
the terminal value of a bond portfolio is given by

E
(
∆IH
IH

)
≥ exp(µG− λMA)− 1,(1)

where

• G = H −D is the duration gap,
• D =

∑
t tC

(H)
t is the Fisher–Weil duration of portfolio,

• MA =
∑

t |H − t|C
(H)
t is the M-Absolute of Nawalkha and Chambers.

Proof. Put δ = T−1 � T0 ∆i(s)ds. Recall that

∆IH
IH

=
∑

t

C
(H)
t exp

(H�
t

∆i(s) ds
)
− 1(2)

=
∑

t

C
(H)
t exp

(
δ(H − t) +

H�
t

(∆i(s)− δ) ds
)
− 1.
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From assumption (ii) it follows that ∆i(s)− δ ≥ −λ for t ≤ H, thus
H�
t

(∆i(s)− δ) ds ≥ −λ(H − t) for t ≤ H.(3)

If t > H then ∆i(s)− δ ≤ λ. Consequently,
H�
t

(∆i(s)− δ) ds = −
t�
H

(∆i(s)− δ) ds ≥ −λ(t−H) for t > H.(4)

From (3) and (4) we get
H�
t

(∆i(s)− δ) ds ≥ −λ|H − t| for t ≥ 0.(5)

Combining (2) and (5) yields

∆IH
IH
≥
∑

t

C
(H)
t exp(δ(H − t)− λ|H − t|)− 1.(6)

By the Jensen inequality and assumption (i) we have

E
(
∆IH
IH

)
≥
∑

t

C
(H)
t E exp(δ(H − t)− λ|H − t|)− 1(7)

≥
∑

t

C
(H)
t exp((H − t)Eδ − λ|H − t|)− 1

=
∑

t

C
(H)
t exp((H − t)µ− λ|H − t|)− 1.

The sequence C(H)
t1 , . . . , C

(H)
tN

defines a probability distribution on [0, T ] be-

cause C(H)
t ≥ 0 and

∑
tC

(H)
t = 1. Applying the Jensen inequality again, we

obtain

E
(
∆IH
IH

)
≥ exp(µG− λMA)− 1,

which completes the proof.

As a corollary of Proposition 1 we get the following DD strategy :

find a portfolio which maximizes µG− λMA.(8)

Remark 1. If µ is an unknown parameter then

inf
µ

E
(
∆IH
IH

)
≥ exp(−λMA)− 1

provided G = 0. Therefore an investor should apply the strategy which
consists in

finding a portfolio which minimizes MA subject to D = H.(9)
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In many theoretical considerations it is assumed that shock is a Gaus-
sian random process. If empirical studies confirm that an average shock has
normal distribution with mean µ and variance σ2, strategy (8) can be easily
modified by replacing assumption (i) with

(i∗) T−1 � T0 ∆i(s) ds is a Gaussian random variable with mean µ and
variance σ2 ≥ 0 (if σ2 = 0, the average change is not random). Both
the mean and variance may depend on T .

Proposition 2. Let assumptions (i∗)–(ii) hold. Then a lower bound on
the expected value of the change in the terminal value of a bond portfolio is
given by

E
(
∆IH
IH

)
≥ exp

(
µG+

1
2
σ2M2 − λMA

)
− 1,(10)

where

• M2 =
∑

t (H − t)2C
(H)
t is the M-Square of Fong and Vasicek ,

• G and MA are defined in Proposition 1.

Proof. Analysis similar to that in the proof of Proposition 1 gives (6).
Recall that from assumption (i∗) it follows that the random variable δ
has Gaussian distribution with mean µ and variance σ2 so E exp(δa) =
exp

(
µa+ σ2a2/2

)
for every a ∈ R. In consequence,

E
(
∆IH
IH

)
≥
∑

t

C
(H)
t exp

(
µ(H − t) +

1
2
σ2(H − t)2 − λ|H − t|

)
− 1.

The rest of the proof runs as before. Since C(H)
t ≥ 0 and

∑
tC

(H)
t = 1, the

sequence C(H)
t1 , . . . , C

(H)
tN

defines a probability distribution on [0, T ]. From
this and the Jensen inequality we get

E
(
∆IH
IH

)
≥ exp

(
µG+

1
2
σ2M2 − λMA

)
− 1,

as desired.

As a consequence of Proposition 2 we obtain the modified DD strategy :

find a portfolio which maximizes µG+
1
2
σ2M2 − λMA.(11)

Remark 2. If µ is an unknown parameter then an investor should

find a duration-matching portfolio which maximizes
1
2
σ2M2 − λMA.(12)

Observe that if σ = 0 then the immunization strategy is to

choose a portfolio which minimizes MA subject to D = H.
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A solution to the above problem is a bullet portfolio. On the other hand, if
λ = 0 then we obtain the strategy:

choose a portfolio which maximizes M 2 subject to D = H.

It is obvious that a barbell portfolio has the maximum M 2 (Zaremba, 1998,
Zaremba and Smoleński, 2000). The above strategy differs from the Fong and
Vasicek approach (1984) because they proposed to minimize M 2 among all
duration-matching portfolios. Our result is closer to the traditional approach
based on a Taylor series expansion of the end-of-period value around H with
respect to a flat perturbation of interest rate.

Arbitrage free generalized polynomial models. In the previous
section we have expanded an unknown shock in the instantaneous forward
rate into a series but only the first term has been modeled as a random
variable. The rest is estimated by λ. The first term of the series measures
the average shock. We have decided to focus on it because during the 1980s
duration explained 80% to 90% of the return variance for government bonds
(see e.g. Ilmanen, 1992). This means that parallel movements have signifi-
cant role in shock behaviour. Now we generalize this approach, that is, we
take into account further terms of the series. It is clear that the correspond-
ing results are more precise but on the other hand the model becomes more
complicated.

Let a1(t), . . . , ad(t) be known functions. Define the class of shocks:

S =
{
∆i : ∆i(t) =

d∑

k=1

δkak(t), 0 ≤ t ≤ T, for some reals δ1, . . . , δd

}
(13)

(see e.g. Rządkowski and Zaremba, 2000). Special cases of (13) are:

(a) the polynomial model

∆i(t) =
d∑

k=1

δkt
k−1(14)

(see Chambers et al., 1988, Prisman and Shores, 1988, Crack and
Nawalkha, 2000),

(b) the multiple shocks model

∆i(t) =
d∑

k=1

δkIk(t),(15)

where Ik(t) = 1 for t ∈ [τk−1, τk), and Ik(t) = 0 otherwise, with
0 = τ0 < τ1 < · · · < τd = T (see Reitano, 1991),
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(c) Khang’s (1979) model

∆i(t) = δ
ln(1 + αt)

αt
with a positive real α,(16)

(d) the spline model (see e.g. De La Grandville, 2002).

We now introduce the class of shocks:

S∗ =
{
∆i : ∆i(t) =

d∑

k=1

δkak(t) + ε(t), 0 ≤ t ≤ T
}
.(17)

Our assumptions are as follows:

(iii) (δ1, . . . , δd) is a random vector with the vector of expected values
(µ1, . . . , µd).

(iv) |ε(t)| ≤ λ for all t ≥ 0.

Proposition 3. Under assumptions (iii)–(iv), we have

E
(
∆IH
IH

)
≥ exp

( d∑

i=1

µiGi − λMA
)
− 1,(18)

where

• Gi =
∑

t C
(H)
t � Ht ai(s) ds is the ith duration gap for i = 1, . . . , d,

• MA is defined in Proposition 1.

Proof. The proof is similar to that of Proposition 1. Clearly

∆IH
IH

=
∑

t

C
(H)
t exp

( d∑

j=1

δj

H�
t

aj(s) ds+
H�
t

(
∆i(s)−

d∑

j=1

δjaj(s)
)
ds
)
− 1.

By assumption (iv),

∆IH
IH
≥
∑

t

C
(H)
t exp

( d∑

j=1

δj

H�
t

aj(s) ds− λ|H − t|
)
− 1.

Applying the Jensen inequality, we get

E
(
∆IH
IH

)
≥
∑

t

C
(H)
t E exp

( d∑

j=1

δj

H�
t

aj(s) ds− λ|H − t|
)
− 1

≥
∑

t

C
(H)
t exp

(
E

d∑

j=1

δj

H�
t

aj(s) ds− λ|H − t|
)
− 1

≥ exp
( d∑

i=1

µiGi − λMA
)
− 1,

as desired.
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To have a theorem analogous to the one of the previous section, we need
the following assumption:

(iii∗) (δ1, . . . , δd) is a random vector with multidimensional Gaussian dis-
tribution, with expected values (µ1, . . . , µd) and covariance matrix
Σ = (σij).

Proposition 4. Under assumptions (iii∗)–(iv), we have

E
(
∆IH
IH

)
≥ exp

( d∑

i=1

µiGi +
1
2

d∑

i,j=1

σijM
2
ij − λMA

)
− 1,(19)

where

• Gi =
∑

t C
(H)
t � Ht ai(s) ds is the ith duration gap for i = 1, . . . , d,

• M2
ij =

∑
tC

(H)
t � Ht ai(s) ds � Ht aj(u) du is the (i, j)th modified Fong–

Vasicek measure,
• MA is the M-Absolute of Nawalkha–Chambers.

Proof. The proof is similar to that of Proposition 3. We apply the for-
mula E exp(b1X1 + · · · + bdXd) = exp

(
µbT + 1

2bΣb
T
)

with b = (b1, . . . , bd)
provided (X1, . . . ,Xd) has multidimensional Gaussian distribution with ex-
pected value µ = (µ1, . . . , µd) and covariance matrix Σ = (σij).

Proposition 4 yields the following immunization strategy:

find a portfolio which maximizes
d∑

i=1

µiGi +
1
2

d∑

i,j=1

σijM
2
ij − λMA.(20)

The strategy defined by (20) is an extension of (11). It is easy to implement
because it leads to a linear programming problem with linear restrictions.

Example 1. Consider the polynomial model of Chambers et al. (1988).
The well known limitation of this model is that there cannot exist portfolios
without short position unless d = 1. Notice that a solution of problem
(20) always exists and one can easily calculate the duration gaps and risk
measures. In the polynomial model, ai(t) = ti−1 for i = 1, . . . , d, so the ith
duration gap is given by

Gi =
1
i

(H i −Di) for i = 1, . . . , d,

where Di =
∑

tC
(H)
t ti is the ith order Fisher–Weil duration of portfolio.

Elementary algebra leads to

M2
ij =

1
ij

(H i+j −H iDj −HjDi +Di+j) for all i, j.
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Taking µ1 = · · · = µd = 0 in Proposition 4 we get the strategy:

find a portfolio which maximizes
1
2

d∑

i,j=1

σijM
2
ij − λMA.

Putting d = 1 we obtain M 2
11 = H2−2HD+D2 = M2 and the immunization

strategy reduces to that in (11) with µ = 0.

Empirical test. We apply the McCulloch and Kwon (1993) interest
rate data. This data set has been used before for empirical studies on bond
immunization by Nawalkha and Chambers (1996), Nawalkha et al. (2003)
and Christiansen (2003) among others. Following a testing methodology pro-
posed by Nawalkha and Chambers (1996), the immunization performance of
duration, M-Absolute and a linear combination of duration and M-Absolute
is empirically examined. Thus 31 annual coupon bonds are constructed at
the end of each year, with 7 different maturities (1, 2, 3, . . . , 7) and 5 differ-
ent coupon values (6, 8, 10, 12, 14 percent) for each maturity. Coupon bond
prices are simulated using zero-coupon yields. The investor planning period
is equal to 4. For December 31, 1951, three bond portfolios are constructed
according to the Fisher and Weil duration strategy, the M-Absolute strat-
egy and the strategy given by (8) and rebalanced on December 31 of each of
the next three years (1952, 1953, 1954) when annual coupons are received.
At the end of the four-year horizon (December 31, 1955), the returns of
these portfolios are compared with the return on a hypothetical four-year
zero-coupon bond (computed at the beginning of the planning horizon).
The difference between the actual values and the target value is defined as
deviation in the interest rate risk hedging performance. The immunization
procedure is repeated for the next four-year periods: 1951–55, 1952–56, . . . ,
1982–86.

Alternative models. We select a unique bond portfolio corresponding to
the strategy (8) by solving an equivalent problem:

(21) maximize µ
( J∑

i=1

nipi
I0

Di −H
)
− λ

J∑

i=1

nipi
I0

MA
i

subject to
J∑

i=1

nipi = I0, ni ≥ 0 for all i = 1, . . . , J,

where J = 31 is the number of bonds in the portfolio, I0 is the initial
investment amount, pi is the price of the ith bond, ni stands for the number
of ith bonds held, and Di, MA

i are the duration and the M-Absolute of the
ith bond, respectively. The portfolio solutions using the M-Absolute strategy
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are found from the model:

(22) minimize
J∑

i=1

nipi
I0

MA
i

subject to
J∑

i=1

nipi = I0, ni ≥ 0 for all i = 1, . . . , J.

The traditional Fisher and Weil duration strategy is tested in the form:

(23) minimize
J∑

i=1

(pini)2 subject to
J∑

i=1

nipi
I0

Di = H,

J∑

i=1

nipi = I0.

The solutions of (21), (22) and (23) are found using Microsoft Excel 2000
Solver.

The results. To decide which strategy is the best, a wide range of mar-
ket simulations should be conducted. Our objective is to show that the
DD strategy may be implemented just as (22) and (23). We present a likely
scenario that is one from thousands. Hence, we observe that the DD strat-
egy is not neutral with respect to the market parameters such as µ, λ. As
it is widely known that interest rate volatility differs significantly in the
1950s and 1960s from the 1970s and 1980s, it is reasonable to divide these
32 four-year overlapping periods into two groups: 1951–1970 and 1967–
1986. The deviations of actual portfolio values from target value for three
hedging strategies (21), (22) and (23) in these two periods are reported
in Table 1.

Due to the sum of absolute deviations and sum of negative deviations for
each period in this situation, the DD strategy is better than the traditional
duration strategy but worse than the M-Absolute model. However, in reality,
an investor puts money in the bank account if the return of his portfolio
is greater than a liability, otherwise he borrows it to pay it off. Therefore
we propose a new criterion to assess hedging strategies. Applying (21), (22)
and (23) we analyze balances of three accounts, taking the beginning and
end of investment to be 1955 and T , respectively. We give the values at the
end of a fixed period of time (T = 1962, 1970, 1978, 1986) in Figures 1–4.

It is assumed that the interest rate of savings is equal to i ranging from
0% to 8% on [1955, T ], whereas the interest rate of loans is equal to i+ 3%.
This numerical study illustrates the behaviour of three strategies under fixed
conditions. The M-Absolute strategy significantly outperforms the Fisher
and Weil model but is occasionally slightly outperformed by the DD strat-
egy. Moreover, we use the McCulloch and Kwon (1993) interest rate data
to calculate the balance of account from 1955 to 1986. We consider the ac-
count where the initial capital is equal to the deviation of actual portfolio
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Table 1. Deviations of actual values from target values for two observation periods 1951–
70 and 1967–86 in alternative models

Sample Target Duration M-Absolute DD
period value strategy strategy strategy

1951–55 1.09055 −0.00615 −0.00112 −0.00252
1952–56 1.09825 −0.00642 −0.00147 −0.00188
1953–57 1.08898 0.00089 0.00071 0.00251
1954–58 1.08676 0.00743 0.00243 0.00331
1955–59 1.12183 −0.00752 0.00143 0.00002
1956–60 1.15984 0.01216 −0.00094 0.00160
1957–61 1.11918 0.00445 0.00381 0.00408
1958–62 1.16193 −0.00151 −0.00037 −0.00407
1959–63 1.21327 −0.00896 −0.00620 −0.00665
1960–64 1.14129 −0.00234 −0.00061 −0,00145
1961–65 1.16077 −0.00459 −0.00131 −0.00052
1962–66 1.14747 0.00252 0.00199 0.00260
1963–67 1.17473 0.00354 0.00173 0.00375
1964–68 1.17746 0.00208 0.00419 0.00464
1965–69 1.22336 −0.00678 0.00233 0.00501
1966–70 1.21808 0.02245 0.00678 0.00950

Sum of absolute deviations 0.09979 0.03743 0.05411
Sum of negative deviations −0.04427 −0.01202 −0.01709

1967–71 1.26319 0.01709 0.00440 0.00525
1968–72 1.29600 −0.00680 0.00095 −0.00678
1969–73 1.37537 −0.02751 −0.01178 −0,01440
1970–74 1.26587 −0.00348 −0.00219 −0.00042
1971–75 1.23560 0.02415 0.00313 0.00450
1972–76 1.27476 0.01369 0.00242 0.00289
1973–77 1.30567 −0.01146 0.00034 −0.00291
1974–78 1.33434 −0.03743 −0.00368 −0.00768
1975–79 1.33771 −0.01697 −0.00390 0.00144
1976–80 1.26592 0.00421 0.01115 0.01828
1977–81 1.34291 0.02042 0.01448 0.02245
1978–82 1.43838 0.02970 0.01670 0.02541
1979–83 1.49900 0.01704 0.01494 0.01471
1980–84 1.62671 0.01764 −0.00117 −0.01401
1981–85 1.73090 −0.01827 −0.02611 −0.02804
1982–86 1.50212 −0.01478 −0.00424 −0.01136

Sum of absolute deviations 0.28064 0.12158 0.18053
Sum of negative deviations −0.14534 −0.05307 −0.08560

value from target value in 1955. Then we check if this amount is positive
or negative in order to multiply it by 1 + it or 1 + it + 3%, respectively,
where it is the annual interest rate taken from the McCulloch and Kwon
(1993) term structure at time t. This accumulated value is added to the next
deviation which accounts for the balance at the end of 1956. The procedure
is repeated by the end of 1986. The result is presented in Figure 5.
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Fig. 1. Period 1955–1962

Fig. 2. Period 1955–1970

Fig. 3. Period 1955–1978

An interesting discovery is that by testing strategy (11) the results are
very close to those for (8). Therefore we omit them.

Acknowledgements. The authors wish to express their thanks to
Prof. L. Gajek and Prof. A. Weron for several helpful comments and sug-



Default-free bond portfolio immunization 271

Fig. 4. Period 1955–1986

Fig. 5. Period 1955–1986
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