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COVARIANCE STRUCTURE OF WIDE-SENSEMARKOV PROCESSES OF ORDER k ≥ 1

Abstrat. A notion of a wide-sense Markov proess {Xt} of order k ≥ 1,
{Xt} ∼ WM(k), is introdued as a diret generalization of Doob's notion ofwide-sense Markov proess (of order k = 1 in our terminology). A base forinvestigation of the ovariane struture of {Xt} is the k-dimensional pro-ess {xt = (Xt−k+1, . . . , Xt)}. The ovariane struture of {Xt} ∼ WM(k)is onsidered in the general ase and in the periodi ase. In the generalase it is shown that {Xt} ∼ WM(k) i� {xt} is a k-dimensional WM(1)proess and i� the ovariane funtion of {xt} has the triangular prop-erty. Moreover, an analogue of Borisov's theorem is proved for {xt}. Inthe periodi ase, with period d > 1, it is shown that Gladyshev's pro-ess {Yt = (X(t−1)d+1, . . . , Xtd)} is a d-dimensional AR(p) proess with
p = ⌈k/d⌉.1. Introdution. The paper deals with a haraterization of the stru-ture of the ovariane funtion of the periodi and nonperiodi Markovproesses in the wide sense of order k ≥ 1. A real-valued proess {Xt, t ∈ Z}
≡ {Xt}, in a disrete time t ∈ Z = {. . . ,−1, 0, 1, . . .} with EX2

t < ∞,is alled a Markov proess in the wide sense of order k ≥ 1, brie�y a
WM(k) proess, if the best linear predition of the proess at time u > t,based on the past up to time t, denoted here by Ê(Xu | Xs, s ≤ t), is,with probability one, equal to the best linear predition of the value Xubased on the vetor (Xt, Xt−1, . . . , Xt−k+1), i.e. Ê(Xu | Xs, s ≤ t)

P.1
=

Ê(Xu |Xt, Xt−1, . . . , Xt−k+1). The best linear predition is meant in thesense of the minimum-mean-square-error predition. This is a generaliza-2000 Mathematis Subjet Classi�ation: Primary 60J05; Seondary 60G12, 60G10,62M10.Key words and phrases: Markov proess in the wide sense of order k, periodiallyorrelated proesses, ovariane haraterization, seond order proesses.[129℄



130 A. Kasprzyk and W. Szzotkation of the notion of a WM(1) proess introdued by J. Doob in [4, p. 233℄,whih he alled a Markov proess in the wide sense. Doob onsidered thoseproesses in disrete time as well as in ontinuous time, both omplex andreal valued. Here, presenting the results on WM(1) proesses as well as on-sidering WM(k) proesses, we restrit our attention to real WM(k) proessesin disrete time. The ovariane funtion for suh a proess is denoted by
γ(s, t) = cov(Xs, Xt). It is worth mentioning that the lass of stationary
WM(1) proesses equals the lass of autoregression proesses of order one,i.e. AR(1). Similarly, the lass of stationary WM(k) proesses equals AR(k).In the ase of wide-sense Markov proesses of order k = 1 this follows from[4℄ and for any k it follows from our Corollary 1. Below we onsider thoseproesses in the nonstationary ase.Doob showed (see [4, p. 234℄) that {Xt} is a WM(1) proess i� thefuntion R(t, s) := γ(s, t)/γ(s, s), s ≤ t, has the triangular property, i.e.

R(s, u) = R(s, t)R(t, u) for s ≤ t ≤ u.(1)Relation (1) an be rewritten as γ(s, u)γ(t, t) = γ(s, t)γ(t, u) for s ≤ t ≤ u,whih an also be rewritten as γ(s, u) = γ(s, t)γ−1(t, t)γ(t, u), if γ(t, t) > 0.Iteration of the last equality gives
γ(s, u) = γ(s, s + 1)

γ(s + 1, s + 2)

γ(s + 1, s + 1)
· · ·

γ(u − 1, u)

γ(u − 1, u − 1)
,(2)whih means that the ovariane funtion γ(s, u) is determined by the values

0 < σ2
t := γ(t, t) and bt := γ(t − 1, t) whih satisfy b2

t ≤ σ2
t−1σ

2
t .Another haraterization of ovariane funtions for WM(1) proesseswas given by I. S. Borisov in [3℄. He showed that a funtion f(s, t) is theovariane funtion of a WM(1) proess i�

f(s, t) = G(min(s, t))H(max(s, t)),(3)where the funtions G and H are determined uniquely up to a multipliativeonstant and the ratio G/H is a positive and nondereasing funtion.An interesting ase of nonstationary proesses is when the ovarianefuntion is periodi. A proess {Xt} is alled periodially orrelated withperiod d ≥ 1, brie�y PC(d), if γ(s, t) = γ(s + d, t + d) for all s, t and d isthe smallest number with that property. Gladyshev showed (see [5℄) that, if
{Xt} is PC(d), then the d-dimensional proess {Yt, t ∈ Z} ≡ {Yt} de�nedas Yt = (Xdt−d+1, Xdt−d+2, . . . , Xdt), t ∈ Z, is stationary. In the ase when
{Xt} is a WM(k) and PC(d) proess we say that {Xt} is a WM(k)PC(d)proess. The struture of ovariane funtions for WM(1)PC(d) proesseswas haraterized by A. R. Nematollahi and A. R. Soltani in [8℄. In thatase the ovariane funtion γ(s, t) is determined by 2d numbers σ2

t and
bt, 1 ≤ t ≤ d (see [8, Theorem 3.2℄).



Wide-sense Markov proesses 131In this paper we study the struture of ovariane funtions of WM(k)proesses and WM(k)PC(d) proesses. For that it is natural to onsider themultivariate proess {xt, t ∈ Z} ≡ {xt}, de�ned as
xt := (x

(1)
t , . . . , x

(k)
t )T ≡ (Xt−k+1, Xt−k+2, . . . , Xt)

T , t ∈ Z,i.e. x
(i)
t = Xt−k+i, where (·)T denotes the transposition of a vetor. This sug-gests onsidering multivariate wide-sense Markov proesses. A proess {Zt =

(Z
(1)
t , . . . , Z

(k)
t )T , t ∈ Z} ≡ {Zt}, where Zt are random vetors in R

k, is alleda multivariate wide-sense Markov proess of order m, brie�y an MWM(m)proess, if the best linear predition Ê(Zu |Zs, s ≤ t) is, with probability one,equal to the best linear predition Ê(Zu |Zt, Zt−1, . . . , Zt−m+1). Proessesof that type were onsidered by F. J. Beutler [2℄ and V. Mandrekar [6℄ for
m = 1. They obtained some results similar to the ase of WM(1) proesses.For example, an analogue of the triangular property (1) for the ovarianefuntion of those proesses is given in [2℄.In this paper we study the struture of ovariane funtions of WM(k)proesses {Xt} via studying the struture of ovariane funtions of the
MWM(1) proesses {xt}. The main results are given in Setion 3. First, weshow that {Xt} is a WM(k) proess i� {xt} is a MWM(1) proess. Nextwe show that the ovariane funtion of the {xt} proess, denoted here by
Γ (s, u), satis�es an analogue of the triangular property (1) (it an also beobtained from Beutler's results in [2℄). Moreover it satis�es an analogue ofthe reursive relation (2) and an analogue of (3). Finally, we haraterize thestruture of ovariane funtions of those proesses in the periodi ase. Suha funtion is spei�ed by d vetors in R

k and d ovariane matries satisfyingsome onditions. It turns out that the notion of WM(k)PC(d) proessesis related to the notion of periodi autoregressive proesses onsidered byM. Pagano in [7℄.2. Preliminaries. In this setion we give the main de�nitions, notationand auxiliary results. For a proess {Xt} we assume that EX2
t < ∞ and

EXt = 0, where the last assumption is only for simpliity of notation. For anysuh {Xt} we onsider the k-dimensional proess {xt = (x
(1)
t , . . . , x

(k)
t )T},where x

(i)
t = Xt−k+i, 1 ≤ i ≤ k. The expetation of a random vetor ismeant here as the vetor of the expetations of its oordinates. Analogouslywe understand the onditional expetation and the best linear preditionof a random vetor based on some random vetor. Namely, for the randomvetor xt we de�ne

Ê(xu |xs, s ≤ t)

:= (Ê(x(1)
u |xs, s ≤ t), Ê(x(2)

u |xs, s ≤ t), . . . , Ê(x(k)
u |xs, s ≤ t))T .



132 A. Kasprzyk and W. SzzotkaHere Ê(x
(i)
u |xs, s≤t) is the best linear predition of x

(i)
u based on (xs, s≤t).It is equivalent to the best linear predition of x

(i)
u on Xt, Xt−1, . . . . In asimilar way we mean de�ne the best linear predition of xu on xt, denotedby x̂u,t := Ê(xu |xt) := (Ê(x

(1)
u |xt), . . . , Ê(x

(k)
u |xt))

T .In the set of nonsingular k × k matries we use the operation ∗ de�nedby A∗ := (A−1)T . Of ourse A∗ = (AT )−1. Furthermore (AB)∗ = A∗B∗and (B−1AT )T = AB∗. We use the notation A � 0 to mean that A is aovariane matrix, i.e. a symmetri and nonnegative de�nite matrix, while
A � B denotes that A − B � 0. It is well known that if A � 0, then

MAMT � 0(4)for any m × k matrix M, m ∈ N.Furthermore for t ≤ u we de�ne
Γ (t, u) := cov(xt, xu) ≡ Extx

T
u ≡ (ExuxT

t )T ,

Γ (u, t) := Γ (t, u)T , Γt := Γ (t, t),

R̃(t, u) := Γ−1
t Γ (t, u) if det(Γt) 6= 0,and

Γ (t, u)

=




γ(t − k + 1, u − k + 1) γ(t − k + 1, u − k + 2) . . . γ(t − k + 1, u)

γ(t − k + 2, u − k + 1) γ(t − k + 2, u − k + 2) . . . γ(t − k + 2, u)

· · · · · · · · · . . .

γ(t, u − k + 1) γ(t, u − k + 2) . . . γ(t, u)




≡




Γ (t, u)1

Γ (t, u)2

. . .

Γ (t, u)k




where Γ (t, u)i denotes the ith row of the matrix Γ (t, u), 1 ≤ i ≤ k. Hene
Γ (t, u)i = cov(x

(i)
t , xu) = Ex

(i)
t xT

u

= [γ(t − k + i, u − k + 1),γ(t − k + i, u−k + 2), . . . , γ(t−k + i, u)].Adapting the well known results on predition (see for example [1℄) to ournotation we give the form of the preditions
Ê(x(i)

u |xt) ≡ Ê(Xu−k+i |Xt, Xt−1, . . . , Xt−k+1),and Ê(xu |xt) ≡ x̂u,t.Proposition 1. For t < u,
x̂u,t ≡ Ê(xu |xt) = Φ(u, t)xt,(5)



Wide-sense Markov proesses 133where
Ê(x(i)

u |xt) = Φ(u, t)ixt, 1 ≤ i ≤ k,(6)and
Φ(u, t)i = [φ(u, t)i,1, . . . , φ(u, t)i,k]is the ith row of the matrix Φ(u, t) de�ned for t ≤ u as the solution of theequation

ΓtΦ
T (u, t) = Γ (t, u).(7) Equation (7) gives

ΦT (u, t) = Γ−1
t Γ (t, u) ≡ R̃(t, u).(8)Below we assume that detΓ (s, u) 6= 0 for all s, u.Corollary 1. Every stationary WM(k) proess is autoregressive of or-der k , i.e. AR(k).Proof. Putting u = t + 1, i = k and using (6) we obtain

Xt+1 = x̂t+1,t + εt+1 =
k∑

j=1

φ(t + 1, t)k,jXt+1−k+j + εt+1,where {εt} is a white noise with mean zero and εt+1 is unorrelated with
Xs, s ≤ t. By stationarity and (7) it follows that φ(t + 1, t)k,j = φk−j+1,
j = 1, . . . , k, are independent of t, {εt} is stationary, so

Xt+1 =

k∑

j=1

φjXt+1−j + εt+1,whih �nishes the proof of the orollary.Remark 1. Corollary 1 also follows from Theorem 5 below with d = 1.3. Main results3.1. Autoovariane struture for MWM(1) proesses {xt}Theorem 1. The following statements are equivalent :(i) {Xt} is a WM(k) proess ;(ii) {xt} is an MWM(1) proess ;(iii) for any t ≤ u the random vetor xu−x̂u,t is orthogonal to all randomvetors xs, s ≤ t, i.e.
Exs(xu − x̂u,t)

T = 0 for s ≤ t;(9) (iv) for any s ≤ t ≤ u,̃
R(s, u) = R̃(s, t)R̃(t, u).(10)



134 A. Kasprzyk and W. SzzotkaProof. To prove the impliation (i)⇒(ii) observe that
Ê(x(i)

u |xs, s ≤ t) = Ê(Xu−k+i |Xs, s ≤ t)

= Ê(Xu−k+i |Xt, . . . , Xt−k+1) = Ê(x(i)
u |xt),where the last equality is a onsequene of the Markov property in the ase

u − k + i > t, while for u − k + i ≤ t, x
(i)
u is σ(xt, . . . , xt−k+1)-measurable.This proves that {xt} is an MWM(1) proess.To prove (ii)⇒(i) observe that

Ê(Xu |Xs, s ≤ t) = Ê(x(k)
u |xs, s ≤ t) = Ê(x(k)

u |xt)

= Ê(Xu |Xt, Xt−1, . . . , Xt−k+1),whih means that {Xt} is a WM(k) proess.To prove (ii)⇒(iii) notie that (ii) implies
xu − x̂u,t

P.1
= xu − Ê(xu |xs, s ≤ t).By the well known properties of predition it follows that the random vetorson the right hand side of the above equality are orthogonal to all xs, s ≤ t.Therefore the random vetors on the left hand side are orthogonal to all xs,

s ≤ t. This gives (iii).To prove (iii)⇒(ii) observe that (iii) implies
Ê((xu − x̂u,t) |xs, s ≤ t) = 0 and Ê((xu − x̂u,t) |xt) = 0.(11)Sine Ê(x̂u,t |xs, s ≤ t) = Ê(x̂u,t |xt) = x̂u,t, from (11) we get

Ê(xu |xs, s ≤ t) = Ê(x̂u,t |xt) = x̂u,t,whih proves (ii).To prove (iii)⇒(iv) notie that from (iii), i.e. from the orthogonality ofthe random vetors xu − x̂u,t to xs for s ≤ t, we get
Γ (s, u) = Exsx

T
u = Exsx̂

T
u,t = Exs(Φ(u, t)xt)

T = Exsx
T
t ΦT (u, t)

= Γ (s, t)ΦT (u, t).Hene
Γ−1

s Γ (s, u) = Γ−1
s Γ (s, t)ΦT (u, t),whih by the de�nition of R̃(s, u) and by the equality ΦT (u, t) = R̃(t, u),given in (8), give equality (10) in (iv).To prove (iv)⇒(iii) observe that (9) is equivalent to the equality Γ (s, u) =

Γ (s, t)ΦT (u, t), whih an be rewritten as
0 = Γ (s, u)−Γ (s, t)ΦT (u, t) = Exs(xu−Φ(u, t)xt)

T = Exs(xu− x̂u,t)
T = 0,and that in turn implies (iii). This �nishes the proof of the theorem.



Wide-sense Markov proesses 135Theorem 2 (Struture of Γ (s, t) and Φ(t, s)). Let {Xt} be a WM(k)proess. Then the matries Γ (s, t), Φ(t, s) and Φt := Φ(t, t − 1) satisfy thereurrent relation
Γ (s, t + 1) = Γ (s, t) · ΦT

t+1 for s ≤ t,(12)whih has the solution
Γ (s, t) = ΓsΦ

T
s+1 · · ·Φ

T
t for any s ≤ t.(13)Furthermore the matries Φ(t, s) are as follows: Φ(t, t) is the identity matrix ,

Φ(t + 1, t) ≡ Φt+1(14)
=




0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . .

. . . . . . . .

0 0 0 . . . 0 1

φt+1,1 φt+1,2 φt+1,3 . . . φt+1,k−1 φt+1,k




where
φt+1,j = φ(t + 1, t)k,j, 1 ≤ j ≤ k,and the ith row of Φ(t + j, t), 1 ≤ i ≤ k − j, is
Φ(t + j, t)i = [0, . . . , 0︸ ︷︷ ︸

j+i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
k−j−i

].

Proof. Sine {Xt} is WM(k), by Theorem 1 the random vetor xt+1 −
x̂t+1,t is orthogonal to all xs, s ≤ t. Hene and by equality (5) for u = t + 1we get

0 = Exs(xt+1 − x̂t+1,t)
T = Exsx

T
t+1 − Exsx̂

T
t+1,t

= Γ (s, t + 1) − Exs(Φ(t + 1, t)xt)
T

= Γ (s, t + 1) − Exsx
T
t ΦT (t + 1, t) = Γ (s, t + 1) − Γ (s, t)ΦT (t + 1, t),whih proves (12).Equality (13) an be obtained by iteration of (12).The form of the matrix Φ(t + 1, t), given in (14), follows from (5) andProposition 1, i.e. from the equality

x̂t+1,t = Φ(t + 1, t)xt.(15)Indeed, the right hand side of (15) equals
(16) Φ(t + 1, t)xt = Φ(t + 1, t) · [Xt−k+1, Xt−k+2, . . . , Xt]

T

= [Xt−k+2, Xt−k+3, . . . , Xt, φt+1,1Xt−k+1+ φt+1,2Xt−k+2+ · · · +φt+1,kXt]
T

= [Xt−k+2, Xt−k+3, . . . , Xt, Φ(t + 1, t)kxt]
T .



136 A. Kasprzyk and W. SzzotkaTo �nd the left hand side of (15), notie that for 1 ≤ i ≤ k − 1,

x̂
(i)
t+1 = Ê(x

(i)
t+1 |xt) = Ê(Xt+1−k+i |Xt, . . . , Xt−k+1) = Xt+1−k+i,(17)while for i = k,

x̂
(k)
t+1 = Ê(x

(k)
t+1 |xt) = Ê(Xt+1 |Xt, . . . , Xt−k+1) = Φ(t + 1, t)kxt.(18)Altogether this proves that Φ(t + 1, t) is of the form (14). This �nishes theproof of Theorem 2.From the relation ΦT (u, t) = R̃(t, u) for t ≤ u and from the triangularproperty for R̃(t, u), given in (10), we get the following relation:

Φ(t + h + 1, t) = Φ(t + h + 1, t + h)Φ(t + h, t), h ≥ 0.(19)This in turn and the form of Φ(t + 1, t), given in (14), imply the followingorollary.Corollary 2. The following relations hold :
Φ(t + h + 1, t)i = Φ(t + h, t)i+1 for 1 ≤ i ≤ k − 1,(20)
Φ(t + h + 1, t)k = Φ(t + h + 1, t + h)kΦ(t + h, t),(21)
Φ(t + h + 1, t)i = Φ(t + h + 1 − j, t)i+j for 1 ≤ j ≤ k − i.(22)Theorem 3. A funtion {f(s, u), s, u ∈ Z} is the autoovariane fun-tion of an MWM(1) proess {xt} i� there exist k×k matries Gt, Ht, t ∈ Z,suh that
f(s, u) = GsHu and f(u, s) = (f(s, u))T for s ≤ u,(23)
H∗

t Gt � 0 and H∗
t+1Gt+1 − H∗

t Gt � 0 for all t ∈ Z.(24)Proof. To prove neessity we show that if {xt} is an MWM(1) proesswith autoovariane funtion Γ (t, u) = Extx
T
u for t ≤ u, then there exist

k × k matries Gt, Ht, t ∈ Z, whih satisfy onditions (23)�(24). To thisend, �x t0 and de�ne
Gt = Γ (t, t0)Γ

−1/2
t0 1(t ≤ t0) + ΓtΓ

−1(t0, t)Γ
1/2
t0 1(t > t0),

Ht = Γ
1/2
t0 Γ−1(t, t0)Γt1(t ≤ t0) + Γ

−1/2
t0 Γ (t0, t)1(t > t0),where 1(A) denotes the indiator of A. Notie that equality (10) in Theorem1 is equivalent to Γ (s, u) = Γ (s, t)Γ−1

t Γ (t, u) for s ≤ t ≤ u. We use thatequality to show (23), whih we verify below separately in three ases. For
t0 ≤ s ≤ u we have
Γ (s, u)=ΓsΓ

−1(t0, s)Γ (t0, u) = (ΓsΓ
−1(t0, s)Γ

1/2
t0 )(Γ

−1/2
t0 Γ (t0, u))=GsHu.For s ≤ t0 ≤ u we have

Γ (s, u) = Γ (s, t0)Γ
−1
t0

Γ (t0, u) = (Γ (s, t0)Γ
−1/2
t0

)(Γ
−1/2
t0

Γ (t0, u)) = GsHu.



Wide-sense Markov proesses 137For s ≤ u ≤ t0 we have
Γ (s, u) = Γ (s, t0)Γ

−1(u, t0)Γu = (Γ (s, t0)Γ
−1/2
t0 )(Γ

1/2
t0 Γ−1(u, t0)Γu)

= GsHu.Hene the matries Gt and Ht satisfy (23).Sine Γt � 0 implies Γ−1
t � 0, we have

H∗
t Gt = GT

t (GT
t )−1(HT

t )−1Gt = GT
t (HT

t GT
t )−1Gt = GT

t Γ−1
t Gt � 0,whih proves the �rst relation in (24), i.e.

H∗
t Gt = GT

t Γ−1
t Gt � 0.(25)To show the seond relation in (24) notie that

(xt+1 − Φt+1xt)(xt+1 − Φt+1xt)
T

= xt+1x
T
t+1 − xt+1x

T
t ΦT

t+1 − Φt+1xtx
T
t+1 + Φt+1xtx

T
t ΦT

t+1.Hene the ovariane matrix of the random vetor xt+1 − Φt+1xt equals
Γt+1 − Γ T (t, t + 1)ΦT

t+1 − Φt+1Γ (t, t + 1) + Φt+1ΓtΦ
T
t+1,whih by putting ΦT

t+1 = Γ−1
t Γ (t, t + 1) has the form

Γt+1 − Γ T (t, t + 1)Γ−1
t Γ (t, t + 1) − Γ T (t, t + 1)(Γ−1

t )T Γ (t, t + 1)

+ Γ T (t, t + 1)(Γ−1
t )T ΓtΓ

−1
t Γ (t, t + 1)

= Γt+1 − Γ T (t, t + 1)Γ−1
t Γ (t, t + 1).Using (23) and the fat that the above is a ovariane matrix we get

A := Gt+1Ht+1 − (GtHt+1)
T (GtHt)

−1GtHt+1 � 0.Hene using (25) we get
0 � H∗

t+1AH−1
t+1 = H∗

t+1Gt+1 − H∗
t Gt,whih gives the seond relation in (24). This �nishes the proof of the nees-sity.Now assume that the funtion f(s, u) is de�ned by (23) and the matries

Gt, Ht, t ∈ Z, satisfy (24). We show that f(s, u) has the triangular propertyand is nonnegative de�nite. Indeed, for s ≤ t ≤ u we have
f(s, u) = GsHu = GsHtH

−1
t G−1

t GtHu = f(s, t)(f(t, t))−1f(t, u),whih means that f(s, u) has the triangular property, i.e. satis�es (10).To prove the nonnegative de�niteness of f we use the following notation:
At := Gkt, Bt := Hkt, sN := (zT

1 , . . . , zT
n )T , where zt := (z(t−1)k+1, . . . , ztk)

T ,while f̃i,j := f(ki, kj) and SN := (f̃i,j , 1 ≤ i, j ≤ N). We will show that
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SN � 0 for all positive integers N. Notie that

sT
NSNsN =

N∑

i,j=1

z
T
i f̃i,jzj =

∑

1≤j≤i≤N

z
T
i (f̃j,i)

T
zj +

∑

1≤i<j≤N

z
T
i f̃i,jzj

=
∑

1≤j≤i≤N

z
T
i BT

i AT
j zj +

∑

1≤i<j≤N

z
T
i AiBjzj

=
N∑

j=1

N∑

i=j

z
T
i BT

i AT
j zj +

N−1∑

i=1

N∑

j=i+1

z
T
i AiBjzj

=

N−1∑

j=1

N∑

i=j

z
T
i BT

i AT
j zj +

N−1∑

j=1

N∑

i=j+1

z
T
j AjBizi + z

T
NBT

NAT
NzN .Setting

Mj =

N∑

i=j

z
T
i Bi for 1 ≤ j ≤ Nand using the relations

(zT
j AjBizi)

T = z
T
i BT

i AT
j zj ,

(AjBj)
T = AjBj , AT

j = B∗
j AjBj , (B∗

j Aj)
T = B∗

j Aj ,we get
sT
NSNsN =

N−1∑

j=1

MjA
T
j zj +

(N−1∑

j=1

N∑

i=j+1

z
T
j AjBizi

)T
+ MNAT

NzN

=
N−1∑

j=1

MjA
T
j zj +

N−1∑

j=1

( N∑

i=j+1

z
T
i BT

i

)
AT

j zj + MNAT
NzN

=
N−1∑

j=1

MjA
T
j zj +

N−1∑

j=1

Mj+1A
T
j zj + MNAT

NzN

=
N−1∑

j=1

MjB
∗
j AjBjzj +

N−1∑

j=1

Mj+1B
∗
j AjBjzj + MNB∗

NANBNzN .But
MjB

∗
j AjBjzj = MjB

∗
j Aj

( N∑

i=j

Bizi −
N∑

i=j+1

Bizi

)

= MjB
∗
j AjM

T
j − MjB

∗
j AjM

T
j+1

= MjB
∗
j AjM

T
j − Mj+1A

T
j (B∗

j )T MT
j

= MjB
∗
j AjM

T
j − Mj+1B

∗
j AjM

T
j .
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Mj+1B

∗
j AjBjzj = Mj+1B

∗
j Aj

( N∑

i=j

Bizi −
N∑

i=j+1

Bizi

)

= Mj+1B
∗
j AjM

T
j − Mj+1B

∗
j AjM

T
j+1.Hene

sT
NSNsN = M1B

∗
1A1M

T
1 +

N−1∑

j=2

MjB
∗
j AjM

T
j

−
N−1∑

j=1

Mj+1B
∗
j AjM

T
j+1 + MNB∗

NANMT
N

= M1B
∗
1A1M

T
1 +

N−2∑

j=1

Mj+1B
∗
j+1Aj+1M

T
j+1

+MNB∗
NANMT

N −
N−1∑

j=1

Mj+1B
∗
j AjM

T
j+1

= M1B
∗
1A1M

T
1 +

N−1∑

j=1

Mj+1(B
∗
j+1Aj+1 − B∗

j Aj)M
T
j+1 ≥ 0.Thus f(s, n) is nonnegative de�nite, whih �nishes the proof of the theo-rem.Corollary 3 (Constrution of autoovariane funtions for WM(k) pro-esses). Let {ϕt+1 = (ϕt+1,1, . . . , ϕt+1,k), t ∈ Z} be a sequene of vetors in

R
k suh that ϕt+1,1 6= 0, let {Φt+1, t ∈ Z} be the sequene of k × k matriesde�ned by

Φt+1 :=




0 1 0 . . . 0 0

0 0 1 . . . 0 0

. . . . . . . .

. . . . . . . .

0 0 0 . . . 0 1

ϕt+1,1 ϕt+1,2 ϕt+1,3 . . . ϕt+1,k−1 ϕt+1,k




(26)
and let {Γt, t ∈ Z} be a sequene of k × k matries suh that

Φ−1
t+1Γt+1(Φ

−1
t+1)

T − Γt � 0 for all integers t.(27)Then the sequene of matries {Γ (s, t)} de�ned by
Γ (s, t) := ΓsΦ

T
s+1Φ

T
s+2 · · ·Φ

T
t for s ≤ t



140 A. Kasprzyk and W. Szzotkaand Γ (t, s) := (Γ (s, t))T is the autoovariane funtion for some MWM(1)proess {xt}.Proof. For t ≥ 0 de�ne Ht := ΦT
0 ΦT

1 · · ·ΦT
t and H−t := ΦT

0 ΦT
−1 · · ·Φ

T
−t,while Gt := ΓtH

−1
t for all t. We show that Ht and Gt satisfy the onditionsin (24) of Theorem 3. In the proof we use (4). First notie that for t ≥ 0,

H∗
t Gt = ((ΦT

0 ΦT
1 · · ·ΦT

t )−1)T Γt(Φ
T
0 ΦT

1 · · ·ΦT
t )−1.Hene and by (4) we get H∗

t Gt � 0. In a similar way we show that H∗
t Gt � 0for t ≤ 0.Now notie that for t ≥ 0 we have

H∗
t+1Gt+1 − H∗

t Gt

= ((ΦT
0 ΦT

1 · · ·ΦT
t )−1)T (Φ−1

t+1Γt+1(Φ
−1
t+1)

T − Γt)(Φ
T
0 ΦT

1 · · ·ΦT
t )−1.By (27) and (4) it follows that H∗

t+1Gt+1 − H∗
t Gt � 0 for t ≥ 0. In asimilar way we show that the last inequality holds for t ≤ 0. Therefore usingTheorem 3 we get the assertion of the orollary.3.2. Covariane struture for MWM(1)PC(d) proesses. A proess {Xt}is said to be periodially orrelated with period d ≥ 1 if its autoovarianefuntion γ(t, s) is periodi with period d, i.e. γ(t + d, s + d) = γ(t, s) for all

t, s, and d is the smallest suh value. Then
Γ (t + d, u + d) = Γ (t, u) and Φ(t + d, u + d) = Φ(t, u).(28)Hene we get the following lemma.Lemma 1. If {Xt} is a WM(k) proess with period d, then

Γt+d = Γt, Γ (t, t + nd) = Γt(Φ
T
t+1Φ

T
t+2 · · ·Φ

T
t+d)

n,(29)and for 1 ≤ i ≤ d,
Γ (t, t + nd + i) = Γt(Φ

T
t+1Φ

T
t+2 · · ·Φ

T
t+d)

n(ΦT
t+1Φ

T
t+2 · · ·Φ

T
t+i).(30)Theorem 4. The autoovariane funtion of a WM(k)PC(d) proess

{xt} is determined by d ovariane matries Γt and d vetors ϕt+1 =
(ϕt+1,1, . . . , ϕt+1,k) suh that ϕt+1,1 6= 0 with 0 ≤ t ≤ d − 1 and satisfy-ing (27).Immediately from the de�nition of the proess {xt} and the Glady-shev proess {Yt}, assoiated with {Xt}, where Yt = (Yt,1, . . . , Yt,d)

T =
(Xdt−d+1, Xdt−d+2, . . . , Xdt)

T , we get some relations between these proesses.To state them, we de�ne an ℓ × r matrix Aℓ,r = (ai,j), for r > ℓ, as follows:
ai,i+r−ℓ = 1 and ai,j = 0 for other i, j. The �rst r − ℓ olumns of Aℓ,r arezero vetors.



Wide-sense Markov proesses 141Remark 2. If {Xt} is a WM(k)PC(d) proess, then
Yt = xdt for k = d,

xdt = Ak,dYt for k < d,

Yt = Ad,kxdt for k > d.To give the struture of the Gladyshev proess {Yt} assoiated with a
WM(k)PC(d) proess {Xt} we de�ne some matries formed from the ma-tries Φ(u, t). Reall that for u > t, Φ(u, t) is a k × k matrix suh that
x̂u,t = Φ(u, t)xt, i.e. it satis�es the equation ΓtΦ

T (u, t) = Γ (t, u) (see Propo-sition 1, formula (7)). Furthermore Φ(u, t)i denotes the ith row of Φ(u, t),and φ(u, t)k,k is the last entry in the last row of Φ(u, t). For simpliity weset θu,t = φ(u, t)k,k.Let F be the d × d matrix
F =




1 0 0 .

θ2,1 1 0 . . .

θ3,1 θ3,2 1 0 . .

. . . . . .

. . . . . 0

θd,1 θd,2 . . θd,d−1 1




.

In ase k < d, we de�ne a d × d matrix Φ̃(d, 0) whose ith row is
Φ̃(d, 0)i = [0, . . . , 0︸ ︷︷ ︸

d−k

, φ(d, 0)i,1, . . . , φ(d, 0)i,k], 1 ≤ i ≤ d.

In ase k > d, with k = (p − 1)d + r, 0 < r < d, we de�ne d × d matries
Ψ1, . . . , Ψp formed from the k × k matrix Φ(d, 0) in the following way. The
ith row of Ψj , denoted by Ψj,i, equals

Ψj,i = [φ(d, 0)i,k−jd+1, φ(d, 0)i,k−jd+2, . . . , φ(d, 0)i,k−(j−1)d] for j < p,and
Ψp,i = [0, . . . , 0︸ ︷︷ ︸

k−r

, φ(d, 0)i,1, . . . , φ(d, 0)i,k−(p−1)].

If {Xt} is a WM(k)PC(d) proess then Ê(Xt |xt−1) = Φ(t, t−1)kxt−1. Hene
Xt = Φ(t, t− 1)kxt−1 + εt, where {εt} is a white noise suh that εt is unor-related with Xs, s < t, and Eεt = 0, Eε2

i = σ2
i for 1 ≤ i ≤ d.Theorem 5. Let {Xt} be a WM(k)PC(d) proess. Then the stationaryproess {Yt} is a d-dimensional AR(1) proess in the ases (a) k = d and(b) k < d, while it is a d-dimensional AR(p) proess in the ase () k > d,



142 A. Kasprzyk and W. Szzotkawhere p = ⌈k/d⌉ (i.e. k = (p − 1)d + r, 0 ≤ r < d). Moreover
Yt = Φ(d, 0)Yt−1 + et for k = d,

Yt = Φ̃(d, 0)Yt−1 + et for k < d,and
Yt = Ψ1Yt−1 + Ψ2Yt−2 + · · · + ΨpYt−p + et for k > d,with k = (p − 1)d + r, 0 < r < d or k = pd. Here {et = (et,1, . . . , et,d)

T ,
t ∈ Z}, in all ases , is a d-dimensional white noise with mean vetor Eet

= 0, ovariane matrix Eete
T
t = Ce and suh that et is unorrelated with Ysfor s < t, and Ce = F diag(σ2

1, . . . , σ
2
d)F

T , where σ2
i is the variane of εi,

1 ≤ i ≤ d.Proof. Case k = d. Sine {Yt} is stationary and xdt = Yt, it follows that
{xdt, t ∈ Z} is stationary. Sine {Xt} is a WM(d) proess, {xt} is a WM(1)proess, whih in turn implies that

Ê(xd(t+1) |xds, s ≤ t) = Ê(xd(t+1) |xdt) = Φ(d(t + 1), dt)xdt = Φ(d, 0)xdt,where the last equality follows by periodiity of Φ(u, t). Hene {xdt, t ∈ Z}is a d-dimensional AR(1) proess, i.e. Yt = Φ(d, 0)Yt−1 + et, where {et} isa white noise suh that et is unorrelated with Ys, s < t. The form of theovariane matrix of et will be given later. The proof in the ase k < d issimilar.Case k > d. Notie that
Ê(Yt,i |Ys, s < t) = Ê(Yt,i |xd(t−1), xd(t−2), . . .) = Ê(Yt,i |xd(t−1)),where the last equality follows from the fat that {xt} is a (k-dimensional)

MWM(1) proess. But from Proposition 1 and periodiity of Φ(u, t) we get
Ê(Yt,i |xd(t−1)) = Φ(dt, d(t − 1))sxd(t−1) = Φ(d, 0)sxd(t−1),where Φ(d, 0)s is the sth row of the k × k matrix Φ(d, 0) and s = k − d + i.Now notie that

Φ(d, 0)sxd(t−1) =
k∑

j=1

φ(d, 0)s,jXd(t−1)−k+j

= Ψ1,iYt−1 + Ψ2,iYt−2 + . . . + Ψp−1,iYt−(p−1) + Ψp,iYt−p + et,i.This proves the asserted autoregressive struture of {Yt} in ase k > d.To �nd the ovariane matrix for et de�ne (0, . . . , 0︸ ︷︷ ︸
k−1

, 1)T = a and notiethat
X1 = Φ(1, 0)kx0 + ε1,

X2 = Φ(2, 1)kx1 + ε2 = Φ(2, 1)k(Φ(1, 0)x0 + aε1) + ε2

= Φ(2, 0)kx0 + Φ(2, 1)kaε1 + ε2 = Φ(2, 0)kx0 + θ2,1ε1 + ε2,



Wide-sense Markov proesses 143where in the last equalities we used the triangular property Φ(2, 1)Φ(1, 0) =
Φ(2, 0). Using the above idea we an write the following relations:

Xn = Φ(n, n − 1)kxn−1 + εn

= Φ(n, n − 1)k(Φ(n − 1, n − 2)xn−2 + aεn−1) + εn

= Φ(n, n − 1)kΦ(n − 1, n − 2)xn−2 + Φ(n, n − 1)kaεn−1 + εn

= Φ(n, n − 2)kxn−2 + θn,n−1εn−1 + εn.Finally, we get
Xn = Φ(n, 0)kx0 +

n∑

j=1

θn,jεj , n = 1, . . . , d,where {εt} is a white noise suh that Eεh = 0, Eε2
h = σ2

h, 1 ≤ h ≤ d, and
εt is unorrelated with Xs, s < t. Hene e0,n =

∑n
j=1 θn,jεj for n = 1, . . . , d.Sine e0 = (e0,1, . . . , e0,d)

T , it follows that Ee0e
T
0 = F diag(σ2

1, . . . , σ
2
d)F,whih �nishes the proof of the theorem.
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