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Abstrat. The aim of this paper is to set di�erent lower bounds onthe hange of the expeted net ash �ow value at time H > 0 in generalterm struture models, referring to the studies of Fong and Vasi£ek (1984),Nawalkha and Chambers (1996), and Balbás and Ibáñez (1998) among oth-ers. New immunization strategies are derived with new risk measures: gen-eralized duration and generalized M -absolute of Nawalkha and Chambers,and exponential risk measure. Furthermore, examples of spei� one-fatorHJM models are provided and the problem of immunization is disussed.1. Introdution. Bondholders are subjet to interest risk aused byhanges in interest rates. Therefore the problem of bond investment im-munization against interest risk is an important issue for bond portfoliomanagers and researhers. This problem has persisted in the literature sineMaaulay's de�nition of duration (1938), and it was shown independentlyby Samuelson (1945) and Redington (1952) that if the Maaulay durationsof assets and liabilities are equal, the portfolio is proteted against a lo-al parallel hange in the yield urve. Fisher and Weil (1971) formalize thetraditional theory of immunization de�ning the onditions under whih thevalue of an investment in a bond portfolio is hedged against any parallelshifts in the forward rates. The main result of this theory is that immuniza-tion is ahieved if the Fisher�Weil duration of the portfolio is equal to thelength of the investment horizon (see Rz¡dkowski and Zaremba, 2000). Un-fortunately, this traditional approah has serious limitations sine it implies2000 Mathematis Subjet Classi�ation: 62P20, 91B28.Key words and phrases: asset-liability portfolio, immunization, duration, M -absolute,one-fator HJM models. [145℄



146 A. Kondratiuk-Janyska and M. Kaªuszkaarbitrage opportunity inonsistent with the rules of modern �nane theory.To overome it, the pioneer work of Fong and Vasi£ek (1984) indiates anew diretion in studying immunization. They propose to determine a lowerbound of the hanges in a portfolio value whih lead to a risk ontrollingstrategy. Nawalkha and Chambers (1996), Balbás and Ibáñez (1998), Balbáset al. (2002), Nawalkha et al. (2003) and Kaªuszka and Kondratiuk-Janyska(2004) follow their approah by immunizing a single liability. However, inreality investors have to deal with multiple liabilities (see Hürlimann, 2002)under multiple shoks in the term struture of interest rates (TSIR for short).Moreover, there is a demand for researh onsidering portfolio immunizationunder stohasti duration in the ase of a stream of liability out�ows, asover the last deade one of the ornerstones of interest risk management ismodeling the stohasti behavior of interest rates. Aga (2002) investigatesempirially lassial and stohasti durations but does not disuss any port-folio value in onnetion e.g. with a stohasti duration. To our knowledgethe �rst to study the lower bounds of the net present portfolio value underthe above onditions was Gajek (2005) (see also Gajek and Ostaszewski,2004). He onsidered the hedging problem at time 0 under random hangesof the basi TSIR orresponding to e.g. a supermartingale-like shift fatorsstruture for an insurane ompany. The derived lower bounds inlude assetand liability durations as a risk measure.We do not generalize Gajek's (2005) novel results but inspired by thisartile we fous on immunizing multiple liabilities, formulating the prob-lem from a di�erent standpoint (see also Kondratiuk-Janyska and Kaªuszka,2006), namely of proteted �xed inome asset in�ows (bonds) and randomliability out�ows. The aim of this paper is to set di�erent lower bounds onthe hange of the expeted net ash �ow value (di�erene between asset andliability stream) at time H > 0 whih is alled a rebalaned time in gen-eral term struture models. New immunization strategies are derived withnew risk measures like generalized durations (Proposition 3) or generalized
M -absolute of Nawalkha and Chambers (Proposition 1) and a ompletelynew risk measure (Proposition 2).The remainder of this paper is organized as follows. Setion 2 de�nes ageneralized duration measure and presents examples of stohasti and poly-nomial durations as partiular ases. Setion 3 gives the notation and as-sumptions. Setions 4 presents immunization strategies based on single-riskmeasure or multiple-risk measure models. Setion 5 provides examples ofspei� one-fator HJM models and disusses the problem of immunization.2. Generalized duration measures. Duration is unquestionably themost widely used risk measure with a long history. We introdue a general-ized duration with respet to a �xed funtion γ = γ(t), where partiular γ



Generalized duration measures 147funtions yield well-known durations from di�erent models of interest ratebehavior, either deterministi or stohasti. De�ne
(1) DA(γ) =

T\
0

t\
0

γ(s) ds dA(t),

where A(t) is an aumulated value of assets desribed preisely in thenext setion. In the ase γ(t) ≡ 1, we get the lassial duration. When
γ(t) = tk, k ≥ 1, we obtain higher order duration risk measures derivedfrom polynomial models; see e.g. Chambers et al. (1988), Prisman and Shores(1988), Rz¡dkowski and Zaremba (2000). On the other hand, generalized du-rations appear in stohasti models of instantaneous forward rate behaviorwith appropriate γ funtions. The most popular arbitrage-free model for de-sribing the term struture is the Heath, Jarrow and Morton (1992) model.This is a very general and popular approah due to its �exibility with respetto the number of random fators used and di�erent volatility strutures thatan be assumed for di�erent maturity forward rates. When there is one soureof randomness, a multi-fator HJM model beomes a one-fator model. Mostof the available short rate models are spei� ases of one-fator HJM mod-els. Given that short rate models are relatively simple ompared to theirmulti-fator ounterparts and that about 90% of the variation in the yieldurve an be explained by only one fator (see Litterman and Sheinkman,1991), we fous on one-fator HJM models, where the evolution of the in-stantaneous forward rate on [0, T ] is spei�ed by the following stohastiproess:

df(t, T ) = α(t, T, ω)dt + σ(t, T, ω)dWt,where t ≤ T , α(t, T, ω) is the instantaneous forward rate drift funtion,
σ(t, T, ω) is the instantaneous forward rate volatility funtion and Wt is theBrownian motion on a probability spae (Ω,F , P) equipped with a �ltration
F = (Ft)0≤t≤T . Au and Thurston (1995) and Munk (1999) derive the dura-tion measures of ertain ontinuous time one-fator HJMmodels generalizingthe previous result of Cox, Ingersoll and Ross (1979). Denote by P (t, m) thetime-t prie of a zero-oupon bond maturing at time m and paying one unit
(t ≤ m ≤ T ). Write B(t, T ) for the time-t prie of a bond portfolio withoupons C1, . . . , Cn at dates t1, . . . , tn, where t ≤ ti ≤ T for i = 1, . . . , n. Ina lassial approah, duration is a measure of the proportional perentagein a bond's prie due to shifts in the term struture. Basing on it, Au andThurston (1995) use the de�nition of duration at time t whih is a speialase of (1),

DHJM = −∂B(t, T )

∂f(t, t)

/

B(t, T ),



148 A. Kondratiuk-Janyska and M. Kaªuszkawhih yields
DHJM =

∑n
i=1 CiP (t, ti)

Tti
t

σ(t, s, ω) ds

σ(t, t, ω)

/

n
∑

i=1

CiP (t, ti).Some examples are given below for di�erent volatility funtions in one-fatorHJM models:
• Constant volatility σ(t, T, ω) = σ (Merton, 1973; Ho-Lee, 1986),

DHJM =

∑n
i=1 Ci(ti − t)P (t, ti)
∑n

i=1 CiP (t, ti)
.

• Exponentially deaying volatility σ(t, T, ω)=σe−b(T−t) (Vasi£ek, 1977),
DHJM =

∑n
i=1 CiP (t, ti)(1 − e−b(ti−t))

b
∑n

i=1 CiP (t, ti)
.

• Constant deay volatility σ(t, T, ω) = σ
1+T−t

(Au and Thurston, 1995),
DHJM =

∑n
i=1 CiP (t, ti) ln(1 + ti − t)

∑n
i=1 CiP (t, ti)

.

• Constant maturity σ(t, T, ω) = σ
1+T

(Au and Thurston, 1995),
DHJM =

∑n
i=1 CiP (t, ti) ln

(

1+ti
1+t

)

∑n
i=1 CiP (t, ti)

.

• Stohasti volatility (Cox, Ingersoll and Ross, 1985),
T\
t

σ(t, s, ω)ds =
2σ

√

f(t, t) sinh(γ(T − t))

2γ cosh(γ(T − t)) + b sinh(γ(T − t))
,

σ(t, t, ω) = σ
√

f(t, t),

DHJM =

n
∑

i=1

2CiP (t, ti) sinh(γ(ti − t))

2γ cosh(γ(ti − t)) + b sinh(γ(ti − t))

/

n
∑

i=1

CiP (t, ti),

where 2γ =
√

b2 + 2σ2 and b, σ > 0, sinh(x) = ex−e−x

2 , cosh(x) = ex+e−x

2 .Although a lass of duration measures for the HJM interest rate modelhas been onstruted (Cox, Ingersoll and Ross, 1979; Au and Thurston, 1995;Munk, 1999), there are no studies determining the lower bound of the hangein a bond portfolio value in this model. Therefore, the aim of this paper is tointrodue arbitrage-free models setting di�erent lower bounds on the hangeof the expeted net ash �ow value (di�erene between asset and liabilitystream) where a generalized duration is an immunization measure.



Generalized duration measures 1493. Preliminary notations. Denote by [0, T ] the time interval with t=0the present moment, and let H be an investor planning horizon, 0<H <T ,when the portfolio is rebalaned. The portfolio onsists of bond in�ows
At ≥ 0 ourring at �xed time t ≤ T (t = t1, . . . , td) to over multipleliabilities Lt due at dates t ≤ T (t = t1, . . . , td), where td = T . This is a typ-ial situation e.g. when an insurane ompany has to disharge its randomliabilities and invests the money by aquiring an immunized bond portfolio.Denote the set of available bonds by A. Generally, this is an arbitrary subsetof [0,∞)d that might be nononvex sine we do not assume that the marketis omplete and bonds are in�nitely divisible. Additionally, we assume thatliabilities are nonnegative random variables. Consequently, Nt = At − Lt isthe net ash �ow at time t. Let f(t, s) be an instantaneous forward rate overthe time interval [t, s]; investing 1 at time t in a zero oupon-bond we get
exp(

Ts
t
f(t, u) du) at time s. The set of instantaneous forward rates {f(t, s) :

0 < t ≤ s} determines a random term struture of interest rates. Hene
• at = At exp(

TH
t

f(0, u)du) is the time-H value of At,
• lt = Lt exp(

TH
t

f(0, u)du) is the time-H value of Lt,
• nt = at − lt is the time-H value of net worth,
• A(t) =

∑

s≤t as is an aumulated value of assets,
• L(t) =

∑

s≤t ls is an aumulated value of liabilities,
• N(t) = A(t) − L(t),
• V (0) = E

∑

t nt = EN(T ) is the time-H average value of the portfolioof asset and liability �ows if forward rates equal future spot rates.A deision problem for an investor is to design a stream of bonds toover the stream of liabilities. If among available bonds there are suh that
Nt = 0 for all t, then the portfolio is immunized. In reality, the market isinomplete, whih exludes an ideal adjustment of assets to liabilities. Aninvestor onstruting a bond portfolio meets two kinds of risks: reinvestmentand prie. The �rst one is onneted with the way of reinvesting ouponspaid before the investment horizon. The other appears by priing bondsbefore their expiry dates. Sine the portfolio value at time H depends on thereinvestment strategy, we require the following open-loop strategy:(a) If t < H then the value of Nt at time H is equal to

Nt exp
(

H\
t

f(t, s) ds
)

.

That means that if Nt = At − Lt > 0 for 0 < t < H, the investorpurhases (H− t)-year strip bonds. Otherwise, he sells short (H− t)-year strip bonds.



150 A. Kondratiuk-Janyska and M. Kaªuszka(b) If t > H, the value of Nt at H equals
Nt exp

(

−
t\
H

f(H, s) ds
)

= Nt exp
(

H\
t

f(H, s) ds
)

,whih means that at time H the portfolio pried aording to theTSIR is sold by the investor.As a onsequene, the value of the net ash �ow at H equals
∑

t

Nt exp
(

H\
t

f(t ∧ H, s) ds
)

=
∑

t

nt exp(k(t)),where(2) k(t) =

H\
t

[f(t ∧ H, s) − f(0, s)] dsis a shok in the instantaneous forward rate and a ∧ b = min(a, b). Fromthe investor's standpoint, the average time-H value of Nt under the senario(a)�(b) is given by(3) V (k) = E

(

T\
0

exp(k(t)) dN(t)
)

.The lassial immunization problem is to �nd a portfolio suh that V (k) ≥
V (0) for all k ∈ K, where K stands for a feasible lass of shoks. Our aim isto �nd a lower bound on infk∈K V (k) whih depends only on bond portfolioproportions. Next, we selet at t = 0 a portfolio among available bonds onthe market suh that this lower bound is maximal.4. Risk measure modelsM-absolute as a risk measure. The linear ash �ow dispersion measure,alled the M -absolute, de�ned by Nawalkha and Chambers (1996),

MNCh =

TT
0 |t − H| dA(t)TT

0 dA(t)
,is an immunization risk measure designed to build immunized bond portfoliosin the ase of a single liability. In the ase of multiple liabilities, we de�nethe generalized M-absolute by

M =

T\
0

|A(t) − A(T ) + E(L(T ) − L(t))| dt.It is easily seen that M = A(T )MNCh in the ase of a single nonrandomliability at time H.



Generalized duration measures 151The following assumptions will be needed throughout the paper:A1. A random variable lt is independent of the TSIR for every t > 0.A2. (Eek(t))′ is ontinuous on [0, T ].De�ne the generalized durations of assets and liabilities
DA(γ) =

T\
0

t\
0

γ(s) ds dA(t), DL(γ) = E

T\
0

t\
0

γ(s) ds dL(t),respetively, where γ = γ(t) is a �xed funtion.Proposition 1. Under assumptions A1�A2, a lower bound on the post-shifts hange in the value of the net ash �ow at H is given by(4) inf
k∈K1

V (k) − V (0) ≥ −kM + DA(γ) − DL(γ),where K1 = {k(·) : |(Eek(t))′ − γ(t)| ≤ k for all t ∈ [0, T ]}, k being anonnegative number.Proof. From assumption A1, we get
V (k) =

∑

t

E[nte
k(t)] =

T\
0

Eek(t) dEN(t)

= Eek(T )
EN(T ) −

T\
0

EN(t)(Eek(t))′ dt

=

T\
0

(EN(T ) − EN(t))(Eek(t))′ dt + EN(T )

=

T\
0

(EN(T ) − EN(t))((Eek(t))′ − γ(t)) dt

+

T\
0

γ(t)(EN(T ) − EN(t)) dt + EN(T ).Sine EN(T ) = V (0), for all k(·) ∈ K1 we have
V (k) − V (0) ≥ −k

T\
0

|EN(t) − EN(T )| dt +

t\
0

γ(s) ds (EN(T ) − EN(t))
∣

∣

∣

T

0

+

T\
0

t\
0

γ(s) ds dEN(t),as desired.



152 A. Kondratiuk-Janyska and M. KaªuszkaAs a orollary of Proposition 1 we get the following immunization strat-egy:
min

(At)∈A

T\
0

|A(T ) − A(t) + E(L(t) − L(T ))| dtsubjet to DA(γ) − DL(γ) = d,where d is a �xed nonnegative value of a duration gap.
Example 1. Suppose that three kinds of zero-oupon bonds are avail-able on the market. The fae value of the bond at the maturity date t = 1, 2, 4is Bt and the investor is to disharge �xed liabilities Pt at t = 3, 5. Take

T = 5 and let the planning horizon be H = 3. The time-3 value of Bt and
Pt is denoted by bt and pt, respetively. Consider the situation when theexpenditure-inome plan is suh that N(5) = 0, γ(t) ≡ γ and d is a non-negative real number. Denoting by xt the amount of purhased t-year bondunits, the immunization problem should be solved aording to the model:

min
(xt)

T\
0

∣

∣

∣

∑

s≤t

(xsbs − ps)
∣

∣

∣
dt(5)

subjet to ∑

t

xtbt =
∑

t

pt, γ
∑

t

t(xtbt − pt) = d,

bt ≥ 0 for t = 1, 2, 4.Solving problem (5) we obtain
x1 = 0, x2 =

1

2b2

(

p3 − p5 −
d

γ

)

, x4 =
1

2b4

(

p3 + 3p5 +
d

γ

)

under the ondition p3 ≥ p5+d/γ. If p3 < p5+d/γ, then the set of onstraintsis empty. If we take γ(t) = γt, we get
x1 = 0, x2 =

1

b2

(

7

12
p3 +

3

4
p5 −

1

6

d

γ

)

, x4 =
1

b4

(

5

12
p3 +

1

4
p5 +

1

6

d

γ

)

when p3 ≥ 2
7

d
γ
− 9

7p5. Otherwise, the set of onstraints is empty.Exponential risk measure. In this subsetion we present a lower boundon the hange of the expeted net ash �ow value based on an exponentialrisk measure. Let us introdue an entropy funtion
H(f) =

T\
0

f(t) ln f(t) dt −
T\
0

f(t) dt ln
(

T\
0

f(t) dt
)

.



Generalized duration measures 153Proposition 2. Let assumptions A1�A2 hold. Then
inf

k∈K2

V (k) − V (0) ≥ −k1 − k2 ln
(

T\
0

e|E(N(T )−N(t))| dt
)(6)

+DA(γ) − DL(γ),where K2 = {k(·) : H(|(Eek(·))′ − γ(·)|) ≤ k1,
TT
0 |(Eek(t))′ − γ(t)| dt ≤ k2},and k1 and k2 are nonnegative numbers.Proof. By the proof of Proposition 1 we get

V (k) − V (0) =

T\
0

E(N(T ) − N(t))(Eek(t))′ dt

≥ −
T\
0

|E(N(T ) − N(t))| |(Eek(t))′ − γ(t)| dt

+

T\
0

γ(t)(E(N(T ) − N(t))) dt.Applying the Young inequality we obtain
V (k) − V (0) ≥ −H(|(Eek(·))′ − γ(·)|)

−
T\
0

|(Eek(t))′ − γ(t)| dt ln
(

T\
0

e|E(N(T )−N(t))| dt
)

+

T\
0

γ(t)(EN(T ) − EN(t)) dt,whih ompletes the proof of (6).Inequality (6) implies the following immunization problem:�nd a portfolio whih minimizes TT0 exp |E(N(T ) − N(t))| dt(7) subjet to DA(γ) − DL(γ) = d,where d is a �xed nonnegative value of a duration gap.
Example 2. Under the assumptions as in Example 1 in the ase γ(t)

≡ γ, strategy (7) leads to the following optimization problem:
min
(xt)

T\
0

exp
∣

∣

∣

∑

s≤t

(xsbs − ps)
∣

∣

∣
dt(8)

subjet to ∑

t

xtbt =
∑

t

pt, γ
∑

t

t(xtbt − pt) = d,

bt ≥ 0 for t = 1, 2, 4.



154 A. Kondratiuk-Janyska and M. KaªuszkaSolving problem (8) we obtain the same results as in the previous example,i.e. x1 = 0, x2 = 1
2b2

(p3 − p5 − d/γ), x4 = 1
2b4

(p3 + 3p5 + d/γ) under theondition p3 ≥ p5 + d/γ. If p3 < p5 + d/γ, then the set of onstraints isempty.Generalized duration as a risk measure. An appropriate strategy wouldbe to hold a portfolio of assets whose shedule of ash �ow overs the patternof liabilities under a onstant TSIR. Thus, it is worth onsidering immuniza-tion among portfolios satisfying a weak version of the Axiom of Solveny(Gajek, 2005):(9) A0 = {A(·) : A(t) ≥ E(N(T ) + L(t)) for all t ∈ [0, T ]}.Proposition 3. Under assumptions A1�A2 and for all A(·) ∈ A0,
inf

k∈K3

V (k) − V (0) ≥ DA(γ) − DL(γ),(10)where K3 = {k(·) : (Eek(t))′ ≤ γ(t) for all t ∈ [0, T ]}.Proof. By the proof of Proposition 1 we get
V (k) − V (0) =

T\
0

(EN(T ) − EN(t))(Eek(t))′ dt

≥
T\
0

(EN(T ) − EN(t))γ(t) dt,whih ompletes the proof.As a onsequene of Proposition 3 we obtain the strategy:�nd a portfolio whih maximizes DA(γ) − DL(γ)subjet to A(t) ≥ E(N(T ) + L(t)) for all t ∈ [0, T ].5. Nonstandard seletion of γ funtions in stohasti models.To apply Propositions 1�3 we need a γ funtion. Obviously, one may take
γ(t) = 1 or γ(t) = 2t for 0 ≤ t ≤ T , whih gives the well-known traditionalduration or onvexity, respetively. But suh a hoie is justi�ed only if weannot model the TSIR beause of the lak of data or an unexpeted event.In the ase when we use stohasti models of the TSIR, the main questionis what a shok onerns. We will say that a shok appears when a model isinorretly �tted to the reality or when the assumed model parameters di�erfrom real ones. Aording to the above remark we require in Proposition 1this deviation to be within a band of width k. Hene and by the de�nitionof K1 we onlude that1. If k = 0, then a model is perfetly �tted and (Eek(t))′ = γ(t) for

0 ≤ t ≤ T .



Generalized duration measures 1552. If k > 0, the model under the assumed parameters is unadjusted and
k measures the deviation of γ(·) from the unknown real (Eek(·))′.Therefore we propose to take γ suh that

(Eek(t))′ = γ(t) for 0 ≤ t ≤ T.In partiular, in the HJM model we have the following examples where
(Eek(t))′ is not a onstant funtion. In the Merton model, where f(t, t) =
r0 + at + σW ∗

t , and r0, a, σ are positive onstants, we have
(Eek(t))′

=



















σ2

2 (2(t−H)2−2t(t−H)−t2) exp
(

σ2

6 ((t−H)3+3t(t−H)2+H3−t3)
)for t ≤ H,

σ2

2 ((t−H)2+2H(t−H)−t2) exp
(

σ2

6 ((t−H)3+3H(t−H)2+H3−t3)
)for t > H.In the Vasi£ek model desribed by df(t, t) = (a − bf(t, t))dt + σdW ∗

t where
a, b, σ are positive onstants, we get
(Eek(t))′

=











































σ2

2b2
(−3e−b(H−t) + 2e−2b(H−t) − e−b(H+t) + 2e−bt)

×exp
(

σ2

2b3
(−3e−b(H−t)+e−2b(H−t)+e−b(H+t)+2(e−bH−e−bt)−e−2bH+2)

)for t ≤ H,
σ2

2b2
(−e−b(t−H) − e−b(H+t) + 2e−bt)

× exp
(

σ2

2b3
(e−b(t−H) + e−b(H+t) + 2(e−bH − e−bt) − e−2bH − 1)

)for t > H.In the above models W ∗ is a one-dimensional standard Brownian motionunder the spot martingale measure P
∗. This is our suggestion of a γ seletiondi�erent from standard funtions derived in stohasti models (see Au andThurston, 1995; Munk, 1999). The omparison of their e�etiveness demandsa huge empirial researh, whih exeeds the sope of this paper.
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