
APPLICATIONES MATHEMATICAE
28,3 (2001), pp. 271–279

Roman Sadowy (Opole)

ON RISK SENSITIVE CONTROL
OF REGULAR STEP MARKOV PROCESSES

Abstract. Risk-sensitive control problem of regular step Markov pro-
cesses is considered, firstly when the control parameters are changed at shift
times and then in the general case.

1. Introduction. Let E be a locally compact separable metric space,
endowed with the Borel σ-algebra E , and U be a compact metric space with
the Borel σ-algebra U .

Given a stochastic kernel P a(x,B) which is a function defined for (x, a) ∈
E × U and B ∈ E such that (i) for each (x, a) ∈ E × U ,B 7→ P a(x,B) is
a probability measure on E , and (ii) for each B ∈ E , (x, a) 7→ P a(x,B) is a
measurable function on E × U , and a function γ : E × U → R+, consider
the following control problem. Suppose that there is a sequence of random
moments, decision times, (Tn) such that T0 = 0, Tn < Tn+1 and Tn →∞ as
n→∞. Initially, at time 0 we choose a control parameter a0 ∈ U , which is
fixed in the interval [T0, T1). At time Tn we choose another control parameter
an ∈ U , which is fixed in the interval [Tn, Tn+1). This way we construct our
control strategy ā = (at), where at = an for Tn ≤ t < Tn+1.

The state process (xt) corresponding to the control strategy ā starts
from a point x0 ∈ E and remains there for an exponentially distributed
time σ0 with parameter γ(x0, at). Then it is shifted to a new position x1
according to the transition law P aσ0 (x0, ·). At x1 it remains a time σ1 which
is exponentially distributed with parameter γ(x1, at), t ≥ σ0, conditionally
independent, given x1, of σ0. Then it is shifted to x2 according to P aσ1 (x1, ·),
and the procedure is repeated recursively.

Define τ0 := 0, and τn := τn−1 + σn−1Θτn−1, n = 1, 2, . . . , where Θ is a
shift operator. Then for t ≥ 0 we have xt = xn for τn ≤ t < τn+1.
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To describe evolution of the controlled process X = (xt) under the con-
trol stategy ā = (at) we have to construct a probability space (Ω,F , P ā)
and the corresponding filtration Ft. For a detailed construction we refer the
reader to [1].

Let f : E × U → R be a continuous bounded function. Our aim is to
minimize the following long run average cost functional:

(1.1) Jx(ā) =
1
β

lim sup
t→∞

1
t

lnEāx
{

exp
(
β

t�
0

f(xs, as) ds
)}
,

where β > 0 is a constant and E ā
x denotes the expected value under the

control stategy ā, given x0 = x, which means that the process (xt) starts
from the point x ∈ E.

Denote by C(E) (resp. B(E)) the space of continuous bounded (resp.
bounded) real-valued functions on E endowed with the uniform norm ‖ · ‖.

The following assumptions will be needed throughout the paper:

(A1) The mapping E × U 3 (x, a) 7→ P af(x) = � E f(y)P a(x, dy) is con-
tinuous for every f ∈ C(E).

(A2) The function (x, a) 7→ γ(x, a) is continuous and there are constants
D > d > 0 such that d ≤ γ(x, a) ≤ D for all x ∈ E and a ∈ U .

(A3) β <
d

2‖f‖ .

The main results of the paper are formulated in the next two sections.
In Section 2 we consider the case when the control parameters are changed
at shift times only. We show the existence of a solution to the corresponding
Bellman equation and the existence of an optimal strategy.

Section 3 establishes the relation between optimal control strategies with
changes of control parameters at shift times and changes at arbitrary random
moments.

2. Control at shift times. In this section we consider the control
model with the restriction that the control parameters are changed at shift
times only. Namely, in this case we choose the control parameters an at
times Tn = τn, n = 0, 1, . . . , and consequently let at = an for τn ≤ t < τn+1.
We denote this strategy by â.

Consider the equation

(2.1) eω(x) = inf
a∈U

Eax

{
exp
(τ�

0

β[f(xs, as)− λ] ds+ ω(xτ )
)}
,

where τ is exponentially distributed with parameter γ(x, a). The next propo-
sition establishes the relationship between equation (2.1) and the optimal
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value of the functional (1.1). Moreover, this proposition provides information
about an optimal strategy.

Proposition 2.1. If there exist a function ω ∈ C(E) and a constant λ
such that equation (2.1) is satisfied then under assumptions (A1), (A2),

λ = inf
â
Jx(â) = Jx(u(xt))

where u : E → U is a Borel function for which the inf in (2.1) is attained.

Proof. Define

eω1(x,a) := Eax

{
exp
(τ�

0

β[f(xs, as)− λ] ds+ ω(xτ )
)}
.

Note that under assumptions (A1), (A2) and ω ∈ C(E) the function ω1(x, a)
is continuous and bounded. Furthermore

eω(x) = inf
a∈U

eω1(x,a).

Moreover, we have

eω1(x,a) ≤ Eax
{

exp
(τ∧t�

0

β[f(xs, as)− λ] ds
)

[eω(xτ )χ{τ≤t} + χ{τ>t}e
ω1(xt,at)]

}
.

By induction we obtain

eω1(x,a) ≤ E(an)
x

{
exp
(τn∧t�

0

β[f(xs, as)− λ] ds
)

×
[
χ{τn≤t}e

ω(xτn+1) +
n−1∑

i=0

χ{τi≤t}χ{τi+1>t}e
ω1(xt,at)

]}
.

Note that under assumption (A2) we have τn →∞ as n→∞. Thus letting
n→∞ we obtain

eω1(x,a) ≤ Eâx
{

exp
(t�

0

β[f(xs, as)− λ] ds+ ω1(xt, at)
)}

and

λβ ≤ 1
t

lnEāx
{

exp
(t�

0

βf(xs, as) ds
)}

+
‖ω1‖ − ω1(x, a)

t
.

Therefore letting t→∞ we get

λ ≤ 1
β

lim sup
t→∞

1
t

lnEāx
{

exp
(t�

0

βf(xs, as) ds
)}

with equality for the strategy for which the inf in (2.1) is attained.
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Remark 2.1. It is easily seen that the constant λ satisfying equation
(2.1) is bounded. Namely,

−‖f‖ ≤ λ ≤ ‖f‖.
Therefore, to study the Bellman equation (2.1) it is sufficient to consider
the case |λ| ≤ ‖f‖.

Consequently, the optimal control problem is reduced to the problem of
the existence of a unique solution to (2.1). Notice that (2.1) can be rewritten
in the following equivalent form:

(2.2) ω(x) = inf
a∈U

[
ln

γ(x, a)
γ(x, a)− β[f(x, a)− λ]

+ ln
�
E

eω(y) P a(x, dy)
]
.

For |λ| ≤ ‖f‖ define

g(x, a, λ) := ln
γ(x, a)

γ(x, a)− β[f(x, a)− λ]
.

Under assumptions (A2), (A3), g is well defined, continuous and bounded.
Moreover, g is decreasing with respect to λ.

For |λ| ≤ ‖f‖ consider the auxiliary equation

(2.3) ω̂λ(x) + λ̂(λ) = inf
a∈U

[
g(x, a, λ) + ln

�
E

eω̂λ(y) P a(x, dy)
]
,

where λ̂(λ) is a constant depending on the parameter λ.
Moreover, consider the following long run average cost criterion:

(2.4) Iλx (â) = lim sup
t→∞

1
t

lnEâx
{

exp
(t�

0

g(xs, as, λ)ds
)}
.

The next proposition provides a description of the optimal value and an
optimal strategy for the functional (2.4) and follows from Theorem 2.1 of [4].

Proposition 2.2. If there exist an ω̂λ ∈ C(E) and a constant λ̂(λ) such
that equation (2.3) is satisfied then under assumptions (A1)–(A3),

λ̂(λ) = inf
â
Iλx (â) = Iλx (u(xs))

where u : E → U is a Borel function for which the inf in (2.3) is attained.

Now we shall study the problem of the existence of a solution to the
Bellman equation (2.3).

We shall need the following additional assumptions:

(B1) There exists ∆ < 1 such that for all x, x′ ∈ E, a, a′ ∈ U and B ∈ E ,

P a(x,B)− P a′(x′, B) ≤ ∆.
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(B2) There exists η ∈ P(E) and a Borel function E×E×U 3 (x, y, a) 7→
p(x, y, a) such that for all x ∈ E, a ∈ U and B ∈ E ,

P a(x,B) =
�
B

p(x, y, a) η(dy)

and

sup
x,x′∈E

sup
y∈E

sup
a∈U

p(x, y, a)
p(x′, y, a)

= K <∞.

For h ∈ C(E) and λ ∈ [−‖f‖, ‖h‖] define the operator

T λh(x) = inf
a∈U

[
g(x, a, λ) + ln

�
E

eh(y) P a(x, dy)
]
.

We shall use the so-called span norm contraction principle (see [2]). The
next two propositions are Proposition 2 and Theorem 1 in [2]. Therefore we
omit the proofs.

Proposition 2.3. Assume (A1)–(A3) and (B1). Then for |λ| ≤ ‖f‖ the
operator T λ is a local contraction in C(E) endowed with the span norm

‖h‖sp = sup
x∈E

h(x)− inf
y∈E

h(y),

namely for each M > 0, there exists a constant α(M) < 1 such that for each
h1, h2 ∈ C(E) with ‖h1‖sp ≤M and ‖h2‖sp ≤M we have

‖T λh1 − T λh2‖sp ≤ α(M)‖h1 − h2‖sp.
Proposition 2.4. Assume (A1)–(A3) and (B1), (B2). Then for |λ| ≤

‖f‖ the operator T λ is a global contraction in the span norm in CL(E) ⊂
C(E), where CL(E) is the set of continuous bounded functions with span
norm bounded by L = ‖g‖+ lnK.

Remark 2.2. Notice that the contraction constant α(M) in Proposition
2.3 may be chosen independent of λ.

Remark 2.3. Under the assumptions of Proposition 2.4, for each λ ∈
[−‖f‖, ‖f‖] there is a unique (up to an additive constant) function ω̂λ ∈
CL(E) and a constant λ̂(λ) such that

ω̂λ − T λω̂λ = λ̂(λ).

Now we are ready to state the main result of this section.

Theorem 2.1. Under assumptions (A1)–(A3), (B1) and (B2) there ex-
ist a unique constant λ∗ and a unique (up to an additive constant) function
ωλ∗ ∈ C(E) for which the Bellman equation (2.1) is satisfied.

For the proof of the theorem we need an auxiliary lemma.
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Lemma 2.1. Suppose that assumptions (A1)–(A3), (B1) and (B2) are
satisfied. Then the mapping [−‖f‖, ‖f‖] 3 λ 7→ λ̂(λ) is continuous. More-
over , λ̂(λ) is a decreasing function.

Proof. The proof will be divided into 3 steps.

Step 1. For h ∈ C(E) and |λ| ≤ ‖f‖ consider

T λh(x) = inf
a∈U

[
g(x, a, λ) + ln

�
E

eh(y) P a(x, dy)
]
.

Then for λ, λ1 ∈ [−‖f‖, ‖f‖] we have

|T λh(x)− T λ1h(x)| ≤
∣∣∣ inf
a∈U

[
g(x, a, λ) + ln

�
E

eh(y) P a(x, dy)
]

− inf
a∈U

[
g(x, a, λ1) + ln

�
E

eh(y) P a(x, dy)
]∣∣∣

≤ sup
a∈U
|g(x, a, λ)− g(x, a, λ1)|

≤ ln[1 + β|λ− λ1|/b̃]
where b̃ = d− 2‖f‖β > 0. Therefore

|T λh(x)− T λ1h(x)| → 0 as λ→ λ1

uniformly in x ∈ E.

Step 2. Next we show that

‖ω̂λ − ω̂λ1‖sp → 0 as λ→ λ1.

In fact,

‖ω̂λ− ω̂λ1‖sp ≤ ‖ω̂λ−(T λ)n0‖sp +‖(T λ)n0−(T λ1)n0‖sp +‖(T λ1)n0− ω̂λ1‖sp,
where 0 is the null function defined on E. By the span norm contraction
principle, since the contraction constant can be chosen independent of λ we
have

‖ω̂λ − (T λ)n0‖sp ≤ ε, ‖(T λ1)n0− ω̂λ1‖sp ≤ ε
for ε > 0, λ close to λ1 and sufficiently large n. Moreover, for a fixed n we
can choose λ sufficiently close to λ1 such that

‖(T λ)n0− (T λ1)n0‖sp ≤ ε.
Step 3. Notice that by Step 2 there is a constant pλ such that

sup
x∈E
|ω̂λ(x)− pλ − ω̂λ1(x)| → 0 as λ→ λ1.

Therefore for x ∈ E,

ω̂λ(x) = pλ + ω̂λ1(x) + ελ(x),
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where ελ(x) → 0 as λ → λ1 uniformly in x ∈ E. Then by Remark 2.3, for
x ∈ E we have

λ̂(λ) = (T λ − T λ1)ω̂λ(x) + T λ1(ω̂λ1(x) + ελ(x))

− T λ1ω̂λ1(x)− ελ(x) + λ̂(λ1)

and

|λ̂(λ)− λ̂(λ1)| ≤ |(T λ − T λ1)ω̂λ(x)|+ |T λ1(ω̂λ1(x) + ελ(x))

− T λ1ω̂λ1(x)|+ |ελ(x)|.
Consequently

|λ̂(λ)− λ̂(λ1)| → 0 as λ→ λ1.

By Proposition 2.2 it is obvious that λ̂ is decreasing.

Proof of Theorem 2.1. By Remark 2.3, for |λ| ≤ ‖f‖ we have

ω̂λ − T λω̂λ = λ̂(λ)

and ω̂λ ∈ C(E). Since λ̂(−‖f‖) > 0 and λ̂(‖f‖) < 0, there exists a unique
constant λ∗ such that λ̂(λ∗) = 0 and, consequently, ω̂λ∗ − T λ

∗
ω̂λ∗ = 0. This

completes the proof.

3. General control model. Consider the Bellman equation

(3.1) inf
a∈U

[Aaeω(x) + eω(x)β[f(x, a)− λ]] = 0,

where Aa is a linear bounded operator defined on B(E) and has the following
explicit form:

(3.2) Aah(x) = γ(x, a)
[ �
E

[h(y)− h(x)]P a(x, dy)
]
, h ∈ B(E).

Notice that under assumptions (A1), (A2), Aa : C(E)→ C(E).
The next proposition provides a criterion for an optimal value of func-

tional (1.1) and an optimal strategy for the control problem.

Proposition 3.1. Assume (A1), (A2). If there exist a function ω ∈
C(E) and a constant λ such that equation (3.1) is satisfied , then

λ = inf
ā
Jx(ā) = Jx(u(xt))

where u : E → U is a Borel function for which the inf in (3.1) is attained.

Proof. For h ∈ C(E) define the following semigroup:

P̂th(x) = E(at)
x

{
exp
(t�

0

β[f(xs, as)− λ] ds
)
h(xt)

}
,
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where by (at) we denote the restriction of the control strategy ā = (at) up
to time t. The corresponding generator, denoted by Âa, has the form

Âa = Aah(x) + h(x)β[f(x, a)− λ],

where Aa is as in (3.2). By (3.1) for k, t ≥ 0 we have

0 ≤
Tk+1∧t�
Tk∧t

P̂sÂ
aeω(x) ds

= E(at)
x

{
exp
(Tk+1∧t�

0

β[f(xs, as)− λ] ds+ ω(xTk+1∧t)
)}

− E(at)
x

{
exp
(Tk∧t�

0

β[f(xs, as)− λ] ds+ ω(xTk∧t)
)}
,

and, consequently,

0 ≤
n∑

k=0

Tk+1∧t�
Tk∧t

P̂sÂ
aeω(x) ds

= E(at)
x

{
exp
(Tn+1∧t�

0

β[f(xs, as)− λ] ds+ ω(xTn+1∧t)
)}
− eω(x).

Therefore, letting n→∞ we obtain

eω(x) ≤ Eāx
{

exp
(t�

0

β[f(xs, as)− λ] ds+ ω(xt)
)}
,

and, letting t→∞, we get

λ ≤ 1
β

lim sup
t→∞

1
t

lnEāx
{

exp
(t�

0

βf(xs, as) ds
)}
,

and equality holds for the control strategy for which the inf in (3.1) is
attained.

Now, let â = (at) be a strategy with changes of control parameters at
shift times only. By (2.2) we have

eω(x) ≤ γ(x, a)
γ(x, a)− β[f(x, a)− λ]

�
E

eω(x,a) P a(x, dy).

Since γ(x, a)− β[f(x, a)− λ] > 0, we get

γ(x, a)
�
E

[eω(y) − eω(x)]P a(x, dy) + eω(x)β[f(x, a)− λ] ≥ 0

with equality for the optimal strategy.
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Consequently the function ω and a constant λ which are a solution to
(2.1) also solve equation (3.1).

We summarize the above results in the following corollary.

Corollary 3.1. The optimal value of the cost functional (1.1) over
strategies with changes at shift times only is the same as the one for strate-
gies with changes at arbitrary random moments.
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