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SOME EXISTENCE THEOREMS FOR
NONLOCAL ELLIPTIC SYSTEMS.

APPLICATION TO LASER PLASMA

Abstract. We formulate some existence theorems for systems of elliptic
equations with nonlocal terms. The proofs are based on the invariant re-
gion method. The results are applied to a multitemperature model of laser
sustained plasma.

1. Introduction. A variety of phenomena in physics, nuclear reactor
theory, biology, medicine, chemistry etc. may be described by nonlinear
reaction-diffusion systems. One of the most constructive methods of prov-
ing existence of their solutions is based on invariant rectangle (or generally
invariant region) theorems ([1], [4], [16], [19]–[21]). Another method utilizes
the notion of sub- and supersolution pairs ([3], [6], [10]). In this paper we
consider elliptic equations with nonlocal nonlinear source terms.

In our case the necessity to take nonlocal terms into consideration has
originated from a model describing energy phenomena in laser sustained
plasma. The basic aim of this paper is to apply the abstract theorems for-
mulated in Section 3 to such a model. In Section 4 we will analyze the ex-
istence of solutions (and some of their properties) for the following system
of equations:

(1) L1(x, u1)u1 − v1(x, u1,∇u1) · ∇u1

+ γ(u1)IΨ(u1)(x)−G(u1)−
m∑

j 6=1

σ1j(u)(u1 − uj) = 0,
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(2) Li(x, ui)ui − vi(x, ui,∇ui) · ∇ui −
∑

j 6=i
σij(u)(ui − uj) = 0,

for x ∈ Ω ⊂ R3, i = 2, . . . ,m, u = (u1, . . . , um), with boundary conditions

(3) uj(x) = 0, j = 1, . . . ,m, x ∈ ∂Ω.
Here ui, i = 2, . . . ,m, is the temperature of the ith component of the ionized
gas, whereas u1 denotes the temperature of the light (electron) component. I
denotes the asymptotic intensity of laser radiation. Lj(x, uj), j = 1, . . . ,m,
are uniformly elliptic operators. The term Ψ(u1)(x) is nonlocal and models
the absorption of energy of the laser beam during its passage through the
ionized gas. A more detailed form of Ψ(u1)(x) will be given in Section 4.

2. Invariant region theorems. The notion of invariant region for a
system of parabolic equations with local terms has been widely exploited by
many authors (see e.g. [1], [3], [6], [9], [16], [18], [19], [21]). Loosely speaking
this is a region in the space of dependent variables having the following
property: if the initial and boundary values lie in this region then the values
of a solution, if it exists, also lie in it. By using standard methods one can
prove that the existence of such a region implies the existence of a solution.
A similar notion can be used in the case of systems of elliptic equations. In
this case we assume that the boundary values of the Dirichlet problem lie
in such a region ([6], [9], [18], [19]). A sine qua non condition for applying
these methods is to have appropriate a priori estimates. In this work we put
aside the question of possibility of such estimates. This property will be just
assumed below. In the case of laser sustained plasma (Section 4) they are
almost obvious. Such methods are very constructive. Besides the existence
result they provide us with some information about the solution, because it
is “contained” in the chosen region.

Below we will concentrate on the following system of elliptic equations
containing, in general, nonlocal terms:

(4) Li(x, u(x), ∂u(x))ui(x) = Fi(u)(x), x ∈ Ω,
with boundary conditions

(5) ui(x) = φi(x), x ∈ ∂Ω,
where i = 1, . . . ,m ≥ 1 and u := (u1, . . . , um). For notational convenience
we have set ∇u ≡ ∂u. We make the following assumptions:

Assumption 1. Ω is a bounded open region in Rn, n ≥ 1, with C2+α

boundary. For i ∈ {1, . . . ,m} the function φi is in C2+α(Ω), whereΩ denotes
the closure of Ω and α ∈ (0, 1).

Assumption 2. Each Li is of the form

Li(x, u, ∂u) = aikj(x, u, ∂u)∂k∂j ,
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where aikj(x, u, ∂u) is symmetric with respect to k, j. For all i ∈ {1, . . . ,m},
the operators Li are uniformly elliptic in Ω, i.e. there exist continuous func-
tions ν(x, u, p) > 0 and µ(x, u, p) > 0 such that for all ξ ∈ Rn, ξ 6= 0,

ν(x, u, p)ξ2 ≤
∑

j,k

aijk(x, u, p)ξjξk ≤ µ(x, u, p)ξ2,

and µ(x, u, p)ν(x, u, p)−1 ≤ µ1 < ∞ for all x ∈ Ω, all u ∈ Rm and all
p ∈ Rmn. The coefficients aikj(x, u, ∂u) are of class Cα (with α ∈ (0, 1)) on
every bounded subset of Ω × Rm × Rmn.

Assumption 3. Fi, i ∈ {1, . . . ,m}, is a mapping from C2(Ω) × . . . ×
C2(Ω) (m times) to Cα(Ω), α ∈ (0, 1).

Let Σ :=
∏m
i=1(ai, bi) with ai, bi ∈ R, ai < bi.

Assumption 4. φ := (φ1, . . . , φm) : Ω → Rm and φ(x) ∈ Σ for every
x ∈ ∂Ω.

Assumption 5. For every bounded open subset W ⊂ Rm there exists a
positive number η(Ω,φ,W ) such that every C2(Ω,Rm) solution u of problem
(4)–(5) with values in the closure of W satisfies

‖u‖2 := ‖∂u‖C0(Ω) + ‖∂2u‖C0(Ω) ≤ η,
where ∂2u is the matrix of second derivatives of u.

Below , for simplicity , we will often use the symbol Cα to denote the
function space Cα(Ω)× . . .× Cα(Ω) (m times).

Remark 1. Assumption 5 is satisfied when all Li are the same and
do not depend on ∂u, whereas Fi can be represented by local functions
fi = fi(x, u, p), which are of class C1 and

(6) |fi(x, u, p)| < c(u)(‖p‖ · ‖pi‖+ o(‖p‖2))

for all x ∈ Ω as ‖p‖ → ∞ (see e.g. [13]). In the case of Li depending on
∂u, a priori estimates are much more difficult to achieve and some structure
conditions are to be imposed. A great number of papers and books concern
estimates for systems of equations in divergence form (see e.g. [12], [14]).
However, in some situations, when the coefficients in the ith equation depend
only on ∂ui, the theory for a single equation is sufficient (see [2], [13]).

Definition 1. Let W denote an open, bounded, convex subset of Rm.
Then by an outer normal vector at u ∈ ∂W we mean any unit vector n(u)
such that

n(u) · (U − u) ≤ 0

for all U ∈ W.
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A local existence result of invariant region type is contained in the fol-
lowing theorem.

Theorem 1. Let Assumptions 1–2 and 4–5 be satisfied. Let F be rep-
resented by a (local) function f(x, u, p) := (f1(x, u, p), . . . , fm(x, u, p)) :
Ω×Rm×Rmn → Rm of class Cα on every compact subset of Ω×Rm×Rmn.
Let Q = η(Ω,φ,Σ). Suppose that for every u ∈ ∂Σ there exists an outer
normal vector n(u) = (n1(u), . . . , nm(u)) such that

n(u) · f(x, u, p) ≥ 0

for all x ∈ Ω and all p ∈ Rmn such that ‖p‖ ≤ Q and
∑m

i=1 pijni(u) = 0.
Then problem (4)–(5) has a solution u : Ω → Σ and u ∈ C2+α(Ω).

This result can be generalized to the case of equations with nonlocal
terms.

Theorem 2. Let Assumptions 1–5 be satisfied. Let Q = η(Ω,φ,Σ). Let
the mapping F = (F1, . . . ,Fm) be such that for every u0 ∈ ∂Σ there exists
an outer normal vector n(u0) = (n1(u0), . . . , nm(u0)) such that

(7) n(u0) · F(u)(x0) ≥ 0

for all x0 ∈ Ω and all C2+α(Ω) functions u : Ω → Σ such that u(x0) = u0,
‖u‖2 ≤ Q and

∑m
i=1 ∂jui(x0) · ni(u0) = 0. Then problem (4)–(5) has a

solution u : Ω → Σ and u ∈ C2+α(Ω).

Remark 2. If Li = akj(x, u) independently of i, then the assumptions of
Theorem 2 can be weakened. Namely, for Σ we may take any open, bounded,
convex set of Rm (see [19]).

Though the proof of Theorem 2 (and Theorem 1) may be carried out
along the same lines as the proof of Theorem 8, p. 270 in [19], for the reader’s
convenience we give it in the Appendix.

3. Sub- and supersolutions theorems. In this section we will use
Theorem 2 to prove some existence results for systems having, in general,
nonlocal right hand side terms, using the method of barrier functions.

Assumption 6. For i ∈ {1, . . . ,m}, let

(8) Fi(u)(x) = fi(x, u(x), ∂u(x))Fi(u)(x) +Hi(u)(x),

where fi, Fi and Hi are of class Cα and fi is a local function.

It occurs that it is sometimes much easier to find a pair of functions
satisfying certain inequalities than to construct an invariant region in the
phase space.
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Assumption 7. For i ∈ {1, . . . ,m} there exists a pair of functions yi
and Yi of class C2+α(Ω) such that yi(x) < Yi(x) for x ∈ Ω and yi(x)
≤ φi(x) ≤ Yi(x) for x ∈ ∂Ω.

Let Wy =
∏m
i=1(ci, di), with ci, di ∈ R, ci < di, be such that the values

of yi and Yi lie in (ci, di).

Assumption 8. Let β = η(Ω,φ,Wy). We suppose that, for all i ∈
{1, . . . ,m},
Li(x, u1(x), . . . , yi(x), . . . , um(x), ∂u1(x), . . . , ∂yi(x), . . . , ∂um(x))yi(x)

≥ fi(x, u1(x), . . . , yi(x), . . . , um(x), ∂u1(x), . . . , ∂yi(x), . . . , ∂um(x))

× Fi(u1, . . . , ui, . . . , um)(x) +Hi(u1, . . . , ui, . . . , um)(x),

Li(x, u1(x), . . . , Yi(x), . . . , um(x), ∂u1(x), . . . , ∂Yi(x), . . . , ∂um(x))Yi(x)

≤ fi(x, u1(x), . . . , Yi(x), . . . , um(x), ∂u1(x), . . . , ∂Yi(x), . . . , ∂um(x))(x)

× Fi(u1, . . . , ui, . . . , um)(x) +Hi(u1, . . . , ui, . . . , um)(x)

for all x ∈ Ω and all uν , ν ∈ {1, . . . ,m}, ν 6= i, satisfying the inequalities

yν(x) ≤ uν(x) ≤ Yν(x)

and such that
‖u‖2 ≤ β.

Theorem 3. Suppose that Assumptions 1–8 are satisfied. Then there
exists a C2+α(Ω) solution (u1(x), . . . , um(x)) of problem (4)–(5) such that
yi(x) ≤ ui(x) ≤ Yi(x) for x ∈ Ω.

Proof. Let us change the variables ui → u∗i , where

(9) ui = u∗i Yi + (1− u∗i )yi.
Then

Li(x, u, ∂u)ui = L∗i (x, u, ∂u)u∗i + (1− u∗i )Li(x, u, ∂u)yi + u∗iLi(x, u, ∂u)Yi,

where

L∗i (x, u, ∂u) = (Yi − yi)Li(x, u, ∂u) + 2aijk(x, u, ∂u){∂k(Yi − yi)}∂j .
Thus (4) is equivalent to the equation

(10) Li(x, u(u∗(x)), ∂u(u∗(x)))u∗i (x) = (Yi(x)− yi(x))−1F∗i (u∗)(x)

and the boundary conditions (5) are equivalent to

(11) u∗i (x) = [φi(x)− yi(x)][Yi(x)− yi(x)]−1 =: %i(x),

for i = 1, . . . ,m,

F∗i (u∗)(x) = Fi(u(u∗))(x) +R(u∗)(x),
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where

R(u∗)(x) = − 2aijk(x, u(u∗(x)), ∂u(u∗(x))){∂k(Yi(x)− yi(x))}∂ju∗i (x)

− (1− u∗i (x))Li(x, u(u∗(x)), ∂u(u∗(x)))yi(x)

− u∗i (x)Li(x, u(u∗(x)), ∂u(u∗(x)))Yi(x),

and according to (9),

uj(u∗j ) = u∗jYj + (1− u∗j )yj .
To apply Theorem 2 we will set Σ = Λ, where Λ is an open rectangle in the
u∗-space whose vertices have coordinates equal to 0 or 1.

Now, we can determine a unit (though nonunique) vector field n(u∗)
on ∂Λ satisfying the conditions of Definition 1 and thus being a field of
vectors normal to ∂Λ at every point of it. Namely, if u∗ belongs to an open
side I+1i := (t1, . . . , ti−1, 1, ti+1, . . . , tm) or I−1i(t1, . . . , ti−1, 0, ti+1, . . . , tm)
with tj ∈ (0, 1), then let n(u∗) = ni or n(u∗) = −ni, where ni denotes
the unit vector directed along the ith axis. For all the other u∗ there exists
the smallest i ∈ {1, . . . ,m} such that u∗ belongs to the intersection of the
closures of the sides Iχi and Iχ̃j , i < j, χ, χ̃ ∈ {−1,+1}. Then let n(u∗) :=
χni. We must check that for Σ = Λ, for this outer normal vector field
and for system (10)–(11), Assumptions 1–5 are satisfied with respect to u∗i
and % (in place of u and φ). First, note that, due to the form of (9) and
Assumption 5, we have a priori estimates for any function u∗ satisfying the
system (10)–(11), namely ‖u∗‖2 ≤ η(Ω, %, Λ) = Q∗.

Now we check that condition (7) is satisfied. So, suppose that u∗0 =
u∗(x0) ∈ ∂Λ, x0 ∈ Ω. Then n(u∗0) = ±ni, where ni is the unit vector directed
along the ith axis. Suppose that n(u∗0) = ni for some i ∈ {1, . . . ,m}. Then
u∗0i = 1 and the value of n(u∗(x0)) · F∗(u)(x0) for ∂ju∗i (x0) = 0 is equal to

F∗i (u∗)(x0) = fi(x0, Ui(u∗)(x0), ∂Ui(u∗)(x0))F (u∗)(x0)

+H(u∗)(x0)− Li(x0, Ui(u∗)(x0), ∂Ui(u∗)(x0))Yi(x0),

where Ui(u∗) = (u1(u∗1), . . . , Yi, . . . , um(u∗m)) with uj(u∗j ) determined by (9)
and u∗j such that 0 ≤ u∗j (x) ≤ 1, j 6= i, and ‖u∗‖2 ≤ η(Ω, %, Λ). According
to Assumption 7 this value is nonnegative for all x0 ∈ Ω. Thus condition
(7) is satisfied. In the same way we can prove that this condition remains
valid for n(u∗) = −ni. The theorem is proved.

Remark 3. If the inequalities satisfied by Li in Assumption 8 are strict,
then in Assumption 7 we can demand only yi(x) ≤ Yi(x). This follows from
the fact that in this case we can replace yi and Yi by functions ŷi and Ŷi
(for example by adding constants of sufficiently small absolute value) such
that ŷi < Ŷi and Assumption 7 is satisfied (for ŷi and Ŷi).
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In Section 4 we will consider equations of laser sustained plasma, in which
the mappings Hi are local functions. Assumption 8 may then be weakened.

Assumption 9. For all i ∈ {1, . . . ,m}, let

Li(x, u, ∂u) = aikj(x, ui, ∂ui)∂k∂j

and
Fi(u)(x) = fi(x, u(x), ∂u(x))Fi(u)(x) +Hi(x, u(x), ∂u(x)),

i.e. let fi and Hi be local functions. Let β = η(Ω,φ,Wy) and suppose that,
for all i ∈ {1, . . . ,m},
Li(x, yi(x), ∂yi(x))

≥ fi(x, u1(x), . . . , yi(x), . . . , um(x), ∂u1(x), . . . , ∂yi(x), . . . , ∂um(x))

× Fi(u1, . . . , ui, . . . , um)(x)

+Hi(x, u1(x), . . . , yi(x), . . . , um(x), ∂u1(x), . . . , ∂yi(x), . . . , ∂um(x)),

Li(x, Yi(x), ∂Yi(x))

≤ fi(x, u1(x), . . . , Yi(x), . . . , um(x), ∂u1(x), . . . , ∂Yi(x), . . . , ∂um(x))

× Fi(u1, . . . , ui, . . . , um)(x)

+Hi(x, u1(x), . . . , Yi(x), . . . , um(x), ∂u1(x), . . . , ∂Yi(x), . . . , ∂um(x)),

for all x ∈ Ω and all uν , ν ∈ {1, . . . ,m}, ν 6= i, satisfying the inequalities

yν(x) ≤ uν(x) ≤ Yν(x)

and such that
‖u‖2 ≤ β.

Theorem 4. Let Assumptions 1–7 and Assumption 9 hold. Then there
exists a C2+α(Ω) solution (u1(x), . . . , um(x)) to problem (4)–(5) such that
yi(x) ≤ ui(x) ≤ Yi(x) for all x ∈ Ω.

This theorem may be proved similarly to Theorem 3.

4. Application to equations of laser plasma. Let us examine the
Dirichlet problem connected with stationary laser sustained plasma. The
model considered below was initiated in the paper of Eckhaus, van Harten
and Peradzyński [5] and developed, in a sense, in [8]. However, in contrast to
[8] we will work in the spaces of Hölder continuous functions. The schematic
experimental LSP (laser sustained plasma) setting is shown in Fig. 1 of [8].
The incoming cold gas is entering the light cone of laser radiation. Here it
gains energy in the process of heat conduction and directly from the laser
radiation in the process of Inverse Brehmsstrahlung. The crucial element of
the model is introducing the effect of laser light absorption by the ionized
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gas. So, let W0 denote the ideal light cone, i.e. the light cone generated by
an ideal lens. It is determined by a focal point F ∈ Ω, which is a focus of
the lens, the axis of the lens, which may be identified with the z-axis, and
its angle θ. Thus in cylindrical coordinates (z, %, ϕ) centered at F ,

W0 = {(z, %, ϕ) : cos2(θ)z2 ≥ %2 sin2(θ)}.

(Cf. Fig. 1 in [8].) Because we want to work in spaces of smooth functions
we will diffuse the boundary of W0. This will also take into account the fact
that the real focus of the lens always has a nonzero diameter. First, define
an auxiliary cut-off type function. Namely, for k > 0, let ψ̃(k, r) ≡ 0 for
r ≤ 0, ψ̃(k, r) ≡ 1 for r ≥ 1 and

(12) ψ̃(k, r) =
ηk(r)

ηk(r) + ηk(1− r) for r ∈ (0, 1),

where ηk(r) = exp(−k/r) for r ∈ (0,∞), and ηk(r) ≡ 0 for r ∈ (−∞, 0]. For
b > c, let

(13) ψ(k, c, b, x) = ψ̃

(
k,
x− c
b− c

)
.

The function ψ(k, c, b, x) is of class C∞. As

ψ̃

(
k,
x− c
b− c

)
+ ψ̃

(
k,
b− x
b− c

)
= 1,

we have
c�

b

ψ̃

(
k,
x− c
b− c

)
dx =

b− c
2

.

Now, let a be of the order of the physical focus of the lens. Consider
a cylinder K = {(z, %, ϕ) : % ≤ 3

2at, z ∈ [−a, a]}, where t = tan(θ). Let
ψa(z) = ψ(1, a, 2a, z). Let W := K ∪W0 ∪ L1 ∪ L2, where

L1 =
{

(z, %, ϕ) : z ∈ [a, 2a], % ≤ t
z�

2a

ψa(s) ds+ 2ta
}
,

L2 =
{

(z, %, ϕ) : z ∈ [−2a,−a], % ≤ −t
z�

−2a

ψa(−s) ds+ 2ta
}
.

To every point in the light cone we may assign a unique line. There is a
one-to-one correspondence between these lines and the points (0, %0, ϕ0) of
the circle {(z, %, ϕ) : z = 2a, % ≤ 2at}. Every line can be parametrized by z
through the relations
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%(z) =
%0

2a
z, ϕ = ϕ0 for z2 > 4a2,

%(z) =
%0

2a

z�

2a

ψa(s) ds+ %0, ϕ = ϕ0 for a ≤ z ≤ 2a,

%(z) = − %0

2a

z�

−2a

ψa(−s) ds+ %0, ϕ = ϕ0 for − 2a ≤ z ≤ −a,

%(z) ≡ %0, ϕ = ϕ0 for z2 < a2.

These lines are smooth and they differ from straight lines only in the small
set K ∪L1∪L2. In K they become segments parallel to the z-axis. Now, for
a given u ∈ C2+α, define the absorption term:

(14)
Ψ0(u)(x) = K(x) exp

(
−

�

lx(x)∩Ω
γ(u(l)) dl

)
, x ∈W,

Ψ0(u)(x) ≡ 0, x 6∈W,
where we integrate along the light line corresponding to the point x (up
till the point x) in the direction of increasing z. (We assume that the laser
light comes from z = −∞.) In (14), γ is the absorption coefficient of the
laser light. The factor K(x) models the effect of focusing the radiation beam
by the lens. We tacitly assume that the light rays in plasma do not change
when compared with those in vacuum.

As the boundary of W is smooth, we can make Ψ a Hölder continuous
function of x ∈ Ω by taking

(15) Ψ(u)(x) = {1− ψW (x)}Ψ0(u)(x),

where ψW (x) = ψ(1, 0, εW , dW (x)), εW > 0 is some constant, and dW (x)
denotes the distance of x to Y (x), the point of ∂W nearest to x. If εW is taken
sufficiently small, then this function is well defined. (We take dW (x) ≤ 0 for
x ∈ W , so ψW (x) = 0 for x ∈ W .) We will also take into account the
process of energy losses through radiation. The phenomenological function
G(u) which describes this process is an increasing function of u, it is rather
small for low temperatures and rises abruptly for large u.

Thus, we describe the mean temperature field u in laser sustained plasma
by the equation

(16) ∆u− ~v(x) · ∇u+ γ(u)IΨ(u)(x)−G(u) = 0, x ∈ Ω,
with the zero boundary conditions

(17) u(x) = 0, x ∈ ∂Ω.
(We have chosen the constant coefficient elliptic operator only for the sake
of clarity. More general elliptic operators will be considered below.)
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Assumption 10. ~v : Ω → R3 is of class C1. The functions γ,G : R→ R
and K : Ω → R are of class C1. γ(u) ≡ 0 for u ∈ (−∞, 0], γ′(u) > 0
for u ∈ (0, u∗), u∗ > 0, γ(u) < γ∗ < ∞ for all u ∈ (0,∞), γ(u) ≥ γ > 0
for u ∈ [u∗,∞). G(u) ≡ 0 for u ∈ (−∞, 0], 0 < G(u) for all u ∈ (0,∞),
G(u)→∞ as u→∞. Ω ⊂ R3 satisfies Assumption 1.

It follows from Assumption 10 that for any fixed intensity I of the
laser radiation and every x inside the light cone W , there exists a unique
u(I, x) satisfying the equation γ(u)Ψ(u)(x)I − G(u) = 0 and such that
γ(u)Ψ(u)(x)−G(u) < 0 for all u > u(I, x).

Existence of a priori estimates is obvious. Namely, if f is bounded in
Ω, then any solution to the equation ∆u(x) − ~v(x) · ∇u = f(x) satisfy-
ing the zero boundary conditions belongs to W 2

p (Ω) for all p ∈ (2,∞),
hence (due to the imbedding theorem) also belongs to the space C1+τ for
all τ ∈ (0, 1). Thus, by a “bootstrap” argument we infer that Assumption 5
is satisfied.

To prove the existence of solutions to problem (16)–(17) we will construct
appropriate sub- and supersolutions. Let B be a given C3 domain such that
B ⊆ (W\∂W )∩Ω. We know that for all x ∈ Γµ = {x ∈ B : dist(x, ∂B) ≤ µ},
where µ > 0 depends on B, the function dist(x, ∂B) is of clas C3 (see [7],
Lemma 14.16). (This time, unlike the case of the function Ψ defining the
absorption term, we have taken dist(x, ∂B) to be positive for x ∈ B.) Let
h ∈ (0, µ/2] and let

(18) ψB(h, x) =





0 for x ∈ B,
ψ(h, d(x)) for x ∈ Γh,
1 for x ∈ B \ Γh,

where ψ(h, d(x)) = ψ̃(1, d(x)h−1), d(x) = dist(x, ∂B). Our candidate for a
subsolution will be

y(J, x) = ψB(h, x)J,

where J is a constant. We have

(19) ∆y(J, x)− ~v(x) · ∇y(J, x) = J∆ψB − J~v(x) · ∇ψB.
Note that if ~n(x) is an outer normal to ∂B at x then ∇ψB(h, x) · ~n(x) ≤ 0.
Moreover, due to the form of ψ̃ we have ψ′(h, d(x)) = O(d2(x))ψ′′(h, d(x))
as d(x)↘ 0, where ψ′ denotes the derivative of ψ with respect to d = d(x).
For x ∈ Γh we have ∆ψB(h, x) = ψ′′(h, d(x)) + ψ′(h, d(x))∇ · ~n(x), where
~n(x) is the unit vector normal to ∂B at the unique point y(x) ∈ ∂B such
that d(x) = |x − y(x)|. As noted above this is a C3 function on Γµ. Thus
∆ψB > 0 for all x ∈ Γµ∗ , x 6∈ ∂B, for some µ∗ ∈ (0, µ) sufficiently small.
Consequently, since ψB(h, x) = O(d4(x))ψ′′(h, d(x)) as d(x) ↘ 0, we have
∆y(J, x) > 0 in Γµ∗ , x 6∈ ∂B.
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Our candidate for a supersolution will be

(20) Y (A, ε, x) = AK(x) + ε,

where K(x) is the positive (on Ω) eigenfunction corresponding to the princi-
pal negative eigenvalue of ∆−~v(x) ·∇ with respect to Ω with ‖K‖L2(Ω) = 1
(see the theorems of Chapter VIII in [13]) and ε > 0 can be taken arbitrarily
small.

We are in a position to prove the following lemma.

Lemma 1. For arbitrary J > 0 and ε > 0 there exists I∗ > 0 such that
for all I > I∗ and all A > A∗(J, I, ε),

(21) y(J, x) < Y (A, ε, x),

(22) ∆y(J, x)− ~v · ∇y(J, x) + γ(y(J, x))IΨ(u)(x)−G(y(J, x)) ≥ 0,

(23) ∆Y (A, ε, x)− ~v · ∇Y (A, ε, x)

+ γ(Y (A, ε, x))IΨ(u)(x)−G(Y (A, ε, x)) ≤ 0,

for all x ∈ Ω and all C2+α(Ω) functions u satisfying the inequality

y(J, x) ≤ u(x) ≤ Y (A, ε, x).

Proof. Fix J . As already noted, there exists µ∗ > 0 such that for all
x ∈ Γµ∗ , x 6∈ ∂B, we have ∆y(J, r) > 0. Moreover, the dominating term
in this quantity is J∆ψB(h, x) = Jψ′′(h, d(x)) and the term G(y(J, x))
behaves like G′(y(J, x))JψB(h, x) = G′(y(J, x))JO(d4(x))ψ′′(h, d(x)), so by
taking smaller µ∗ if necessary we can achieve that ∆y(J, x)− ~v · ∇y(J, x) +
γ(y(J, x))I − G(y(J, x)) > 0 for all x ∈ Γµ∗ , x 6∈ ∂B. Obviously, ∇y(J, x),
∆y(J, x) and G(y(J, x)) are bounded in B. According to Assumption 10 the
function γ(u) is bounded and, if u2 ≥ u1, then either γ(u2) ≥ γ(u1) or
γ(u2) ≥ γ. So, for all C2(Ω) functions u such that u(x) ≥ y(J, x) ∈ Ω we
have γ(y(J, x))Ψ(u)(x) > gJ > 0 in B \ Γµ∗ and one can choose I∗ so large
that for all I > I∗,

∆y(J, x)− ~v · ∇y(J, x) + γ(y(J, x))IΨ(u)(x)−G(y(J, x)) > 0

inΩ. Note that this holds independently of how fast γ(u) tends to 0 as u↘ 0.
Now, for fixed I > I∗ we can find A∗ > 0 so large that for all A > A∗ we
have Y (A, ε, x) > y(J, x) for all x ∈ Ω and the function Y (A, ε, x) satisfies
inequality (23). This follows from the fact that (for finite I) the nonlocal
term is globally bounded from above in view of Assumption 10. The proof
of the lemma is complete.

By means of the last lemma and Theorem 4 we conclude that there exists
a solution to problem (16)–(17) between the functions y(J, x) and Y (A, ε, x).
So in order that the solution u(x) obtained by the above method be larger
than some given U > 0 at some x ∈ B we must take I sufficiently large.
Moreover, the following theorem holds.
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Theorem 5. For any C3 domain B with B ⊂ Ω ∩ (W \ ∂W ), and any
given number U > 0 there exists IBU > 0 such that for all I > IBU there
exists a solution u ∈ C2+α of (16)–(17) such that u(x) > U for all x ∈ B.

Proof. There exists a domain B∗ with closure lying in (W \ ∂W ) ∩ Ω
such that B ⊂ B∗, B∗ has a C3 boundary and the distance between B and
∂B∗ is larger than some positive number µ1. Let y∗(J, x) = JψB∗(h, x),
where as before ψB∗(h, x) = ψ(h, d(x)), d(x) = dist(x, ∂B∗) and J > U . We
may take h so small that ψB∗(h, x) is of class C3 and ψB(h, x) ≡ 1 for all
x ∈ B. Taking IBU sufficiently large we obtain the result corresponding to
Lemma 1. This implies the existence of a suitable solution. The differences
in the proof are purely technical.

Multitemperature model. In a multitemperature model, laser sustained
plasma is described by a system of m ≥ 2 equations of the form

(24) L1(x, u1)u1 − ~v1(x, u1,∇u1) · ∇u1 + γ(u1)IΨ(u1)(x)

−G(u1)−
m∑

j 6=1

σ1j(u)[u1 − uj ] = 0,

(25) Li(x, ui)ui − ~vi(x, ui,∇ui) · ∇ui −
∑

j 6=i
σij(u)[ui − uj ] = 0,

for x ∈ Ω, where Ω is a bounded open subset of R3 with C2+α boundary,
i = 2, . . . ,m, u = (u1, . . . , um), with boundary conditions

(26) uj(x) = 0, x ∈ ∂Ω, j = 1, . . . ,m

(see e.g. [11] and the references therein). Here ui (i = 2, . . . ,m) can be
interpreted as the temperature of the ith component of the ionized gas,
whereas u1 denotes the temperature of the light (electron) component. The
terms σij(u)(ui − uj), i, j ∈ {1, . . . ,m}, j 6= i, describe the energy transfer
between the ith and jth component of the ionized gas. We assume that Li
are uniformly elliptic operators in Ω, i.e. they satisfy Assumption 2. We
use general elliptic operators instead of ∆ to take into account the fact that
diffusion coefficients may depend on position in space and on the components
of u.

Assumption 11. For i ∈ {1, . . . ,m}, ~vi : Ω × R × R3 → R3 is of class
C1. For i ∈ {1, . . . ,m}, j 6= i, σij : Rm → R, σij ∈ C1, σij(u) > 0 in the set
Pu = {(u1, . . . , um) : u1 > 0, . . . , um > 0}, σij = σij(ui), i, j 6= 1.

Assumption 12. For all i ∈ {1, . . . ,m}, all x ∈ Ω, all ui ∈ R and all
pi ∈ R3,

|~vi(x, ui, pi) · pi| ≤ m(ui)|pi|(1 + |pi|),
where m is a continuous function.
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A priori estimates for system (24)–(26) can be obtained by means of
Lemma VIII.4.1 of [13] applied separately to each equation of the system.
This can be done due to the fact that the nonlocal term in the first equation
is globally bounded and we can treat it as a given function depending on x.

Let

(27) y(J, x) = JψB(h, x),

where J is a constant and ψB has the same meaning as before, i.e. ψB(h, x) =
ψ(h, d(x)).

If ~n(x) is an outer normal to ∂B then by the definition of ψB(h, x) we
have ~n(x) · ∇ψB(h, x) ≤ 0. Let us also recall that

ψB(h, x) = O(d2(x))ψ′(h, d(x)), ψ′(h, d(x)) = O(d2(x))ψ′′(h, d(x))

as d(x)↘ 0, where ψ′ denotes the derivative of ψ with respect to d = d(x).
By the definition of ψ, it takes constant values on hypersurfaces which are
equidistant from the boundary of B. Thus for x sufficiently close to ∂B the
expression [L1(x, 0)− ~v1(x, 0, 0) · ∇]JψB(h, x) is equal to

J
∑

i,j

a1
ij(x, 0)ni(y(x))nj(y(x))ψ′′(h, d(x))(1 +O(d2(x)))

−J
∑

i

v1i(x, 0, 0)ni(y(x))ψ′(h, d(x)),

where y(x) is the uniquely determined point y(x) ∈ ∂B such that

d(x) = |x− y(x)|,
where as before d(x) denotes the distance to ∂Ω. This term is positive for
x 6∈ ∂B, but sufficiently close to ∂B. Thus for some 0 < h∗ < h/2 sufficiently
small and for x such that d(x) < h∗ we have

[L1(x, JψB(h, x))− ~v1(x, JψB(h, x), J∇ψB(h, x)) · ∇]JψB(h, x)

+G(JψB(h, x))−
∑

j 6=1

σ∗1j(x)JψB(h, x)

= [L1(x, 0)− ~v1(x, 0, 0) · ∇]JψB(h, x) +O(JψB(h, x)) +O(J |∇ψB(h, x)|)

≥ 1
4
ψ′′(h, d(x))J.

Here

σ∗1j(x) = max
uk∈[0,JψB(h,x)], k=2,...,m

σ1j(JψB(h, x), u2, . . . , um).

Hence, as γ(y) > 0 for all y > 0, we infer that there exists I∗ sufficiently
large such that for all I ≥ I∗,
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[L1(x, y(J, x))− ~v1(x, y(J, x)) · ∇]y(J, x)

+ γ(y(J, x))IΨ∗(x)−G(y(J, x))−
∑

j 6=1

σ∗1j(x)y(J, x) > 0

for all x ∈ B and it is 0 for all x ∈ Ω \B, where

(28) Ψ∗(x) = K(x) exp
(
−

�

lx(x)∩Ω
γ∗ dl

)
.

If we fix I ≥ I∗, then one can find Y (I) such that γ(u1)Ψ(0)(x)I −
G(u1) < 0 for all u1 > Y (I) and Y (I) > y(J, x) for all x ∈ Ω. The constant
Y (I) will be the first component of our supersolution. Now, we construct
the other components. For i 6= 1, let

σYi1(x) = max
uk∈[0,Y (I)], k=2,...,m

σi1(Y (I), u2, . . . , um).

Let (Y2(I, x), . . . , Ym(I, x)) be the solution to the system of m−1 equations

(29) Li(x, ui(x))ui(x)− ~vi(x, ui(x)) · ∇ui
−
∑

j 6=i,1
σij(ui(x))(ui(x)− uj(x))− σYi1(x)(ui(x)− Y (I)) = 0,

(30) ui(x) = ε, x ∈ ∂Ω,
i = 1, . . . ,m− 1, where ε > 0 is an arbitrarily small number. Note that the
systems of functions (0, . . . , 0) and (Y (I), . . . , Y (I)) satisfy the conditions of
Assumption 6. Hence there exists a solution (Y2(x), . . . , Ym(x)) to the above
system such that

0 ≤ Yi(I, x) ≤ Y (I)

for all x ∈ Ω, i ∈ {2, . . . ,m}. From the positiveness theorem (Theorem 2.3.7,
p. 65 of [17]) it follows that either Yi(I, x) ≡ ε or Yi(I, x) > ε for all x ∈ Ω.
The first possibility should be excluded as, according to the definition of
σYi1(x), we would have

−
∑

j 6=i,1
σij(ε)(ε− Yj(I, x))− σYi1(x)(ε− Y (I)) > 0, x ∈ Ω,

and we would arrive at contradiction.
Now, as in the case of one equation, it is easy to prove that

(JψB(h, x), 0, . . . , 0), (Y (I), Y2(x), . . . , Ym(x))

are sets of sub- and supersolutions satisfying Assumption 9.
Finally, note that for any domain D lying in the light cone there exists

a set B such that D ⊂⊂ B and B lies in the light cone. Thus by choosing
the constant J appropriately we can prove the following theorem:

Theorem 6. For any C2+α domain D with D ⊂ Ω such that D lies in
the interior of the light cone, and any given U > 0, there exists IDU > 0
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such that for all I > IDU there exists a C2+α solution (u1(x), . . . , um(x)) to
problem (24)–(26) such that u1(x) > U for all x ∈ D.

Appendix. Proof of Theorem 2. First we will assume the strict ver-
sion of inequality (7), i.e.

n(u0) · F(u)(x0) > 0.

By fixing u in the coefficients aikj(x, u, ∂u) and treating the right hand sides
of (1) as given we can formally solve the system (4)–(5) to obtain the relation

(31) u = N (u) := R(u) ◦ F(u).

According to the linear theory of elliptic operators, N (u) is a well defined
operator acting from C2(Ω) to C2(Ω). Moreover, it is completely continuous,
as it maps into C2+α(Ω). Let E denote the Banach space of real C2(Ω)
functions with the natural norm

‖v‖E := ‖v‖C2(Ω) = ‖v‖C0(Ω) + ‖v‖2.

According to Assumption 5 for u satisfying (4)–(5)) and such that u(x) ∈ Σ
for x ∈ Ω we have ‖u‖2 ≤ Q. Define a bounded open subset of E by

O := {v ∈ E : v : Ω → Σ, ‖v‖2 < Q+ 1}.
Note that by a suitable translation in the u-space we can assume that

0 ∈ Σ. This translation does not affect the value of the constant Q. Thus we
can make use of the Leray–Schauder Continuation Theorem (see [15], [19]).

Lemma. Let E be a real Banach space and O a bounded open neighbor-
hood of 0 in E. Let N : Ω → E be a completely continuous operator such
that u 6= λN (u) for all λ ∈ (0, 1) and u ∈ ∂O. Then the equation u = N (u)
has a solution u ∈ O.

Due to this Lemma, Theorem 2 will be proved once we show that for all
u ∈ ∂O and λ ∈ (0, 1), u 6= λN (u). Suppose to the contrary that there exist
λ ∈ (0, 1) and u ∈ ∂O such that

(32) u = λN (u) = λR(u) ◦ F(u).

Then u must be a solution of the problem

Li(x, u(x), ∂u(x))ui(x) = λFi(u)(x) for x ∈ Ω,
ui(x) = λφi(x) for x ∈ ∂Ω,

where i = 1, . . . ,m ≥ 1.
Note that the boundary of O consists of functions v : Ω → Σ with range

meeting ∂Σ and of functions v such that ‖v‖2 = Q + 1. However, by As-
sumption 3 the second group of functions is empty. Thus, if u ∈ ∂O satisfies
(32), then there exists ζ ∈ Ω such that u(ζ) ∈ ∂Σ. On the other hand, as
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Σ is open and convex, λφ(x) ∈ Σ for x ∈ ∂Ω and λ ∈ (0, 1) (see Assump-
tion 4). So, ζ ∈ Ω. Set r(x) := n(u(ζ))(u(x) − u(ζ)), where n(u(ζ)) is an
outer normal at u(ζ) ∈ ∂Σ. We have r(ζ) = 0 and r(x) ≤ 0 for x ∈ Ω (see
Definition 1). As λφ(x) ∈ Σ for x ∈ ∂Ω, r(x) < 0 for x ∈ ∂Ω. Consequently,
r(x) attains its maximum only at inner points of Ω. Hence ∂jr(ζ) = 0, which
implies that n(u(ζ)) · (∂ju)(ζ) = 0 for j = 1, . . . , n. From the assumptions
of Theorem 2 it follows that n(u(ζ)) · f(ζ, u(ζ), ∂u(ζ)) ≥ 0 and there exists
h ∈ {1, . . . ,m} such that n(u(ζ)) · u(ζ) = uh(ζ). Thus we have

Lh(ζ, u(ζ))r(ζ) = Lh(ζ, u(ζ))uh(ζ) = λFh(ζ, u(ζ), ∂u(ζ))(33)

= λn · F(ζ, u(ζ), ∂u(ζ)) > 0.

It follows that there exists a ball B with center at ζ and B ⊆ Ω such that

Lh(x, u(x))uh(x) = λFh(x, u(x), ∂u(x)) ≥ 0, x ∈ B.
From the maximum principle it follows that uh(x) ≡ 0 for x ∈ B. Conse-
quently, L(ζ, u(ζ))uh(ζ) = 0, which contradicts inequality (33). According
to the last Lemma we obtain a solution of (4)–(5) belonging to C2+α(Ω).

Now, suppose that n(u0) · F(u)(x0) = 0 at some u0 ∈ ∂Σ. Replace Fi
by Fiε = Fi + εui, ε > 0, on the right hand side of (4). Then, if 0 ∈ Σ,
the assumptions of Theorem 1 will imply that n(u0) · Fε(u)(x0) > 0 for all
u0 ∈ ∂Σ such that u(x0) = u0. Thus, for εκ := 1/κ, κ ∈ N, we obtain a
sequence of C2+α(Ω) solutions to the problems

Li(x, uε(x), ∂uε(x))uiε(x) = Fiε(uε)(x) for x ∈ Ω,
uiε(x) = φi(x) for x ∈ ∂Ω.

Due to the compact embedding of C2+α in C2+τ for any τ ∈ (0, α) we can
choose a subsequence converging to some function u in C2+τ (Ω) which is a
solution of (4)–(5). But such a solution is also of class C2+α. The proof of
Theorem 2 is now complete.
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[14] J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Teubner-Texte
zur Math. 52, Teubner, Leipzig, 1983.

[15] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Inst. Lect. Notes,
New York Univ., New York, 1974.

[16] M. Plum, Shape-invariant bounds for reaction-diffusion systems with unequal diffu-
sion coefficients, J. Differential Equations 73 (1988), 82–103.

[17] M. Protter and H. Weinberger, Maximum Principles in Differential Equations,
Springer, New York, 1984.

[18] D. Sattinger, Topics in Stability and Bifurcation Theory , Lecture Notes in Math.
309, Springer, 1973.

[19] K. Schmitt, Boundary value problems for quasilinear second order elliptic equations,
Nonlinear Anal. 2 (1978), 263–309.

[20] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer, 1983.
[21] M. Valencia, On invariant regions and asymptotic bounds for semilinear partial

differential equations, Nonlinear Anal. 14 (1990), 217–230.

Institute of Fundamental Technological Research
Świętokrzyska 21
00-049 Warszawa, Poland
E-mail: bkazmier@ippt.gov.pl

Received on 14.3.2001;
revised version on 1.10.2001 (1570)


