Maksymilian Dryja and Krzysztof Moszyński (Warszawa)

ON JEFFREYS MODEL OF HEAT CONDUCTION

Abstract. The Jeffreys model of heat conduction is a system of two partial differential equations of mixed hyperbolic and parabolic character. The analysis of an initial-boundary value problem for this system is given. Existence and uniqueness of a weak solution of the problem under very weak regularity assumptions on the data is proved. A finite difference approximation of this problem is discussed as well. Stability and convergence of the discrete problem are proved.
0. Introduction. The Jeffreys model of heat conduction has recently been discussed by several authors [2], [5]-[7]. Its equations may be written in the following general form [5]:

$$
\begin{equation*}
T_{t}+\operatorname{div}(Q)=0, \quad Q_{t}+D \nabla T+Q-\kappa \Delta Q=0 \tag{0.1}
\end{equation*}
$$

Here D and κ are positive (in general constant) coefficients, the scalar function T is the temperature, and the vector-valued function Q represents the so-called heat flux. We are interested in application of the one-dimensional Jeffreys model to describe heat waves in a thin metallic layer under a very short laser impulse [5]. Generalizations to more space dimensions are certainly possible and do not seem to be very difficult.

Let us discuss the initial-boundary value problem for the one-dimensional Jeffreys model in the form appearing in [5]. We are looking for two scalar functions $T=T(t, x)$ and $Q=Q(t, x)$, subject to the following equations:

$$
\begin{equation*}
T_{t}+Q_{x}=0, \quad Q_{t}+D T_{x}+Q-\kappa Q_{x x}=0 \tag{0.2}
\end{equation*}
$$

2000 Mathematics Subject Classification: 65N06, 65N12, 35A05, 35A15, 35M10.
Key words and phrases: weak formulation, existence and uniqueness of solution, stability and convergence of finite difference approximation.

The first author has been supported in part by the National Science Foundation under Grant NSF-CCR-9732208 and in part by Polish Science Foundation under Grant 2 PO3A 02116.
for $t \in\left(0, t_{\max }\right), x \in(L, P)$ (where $0<t_{\max }, L<P$), and satisfying the following Dirichlet boundary conditions:

$$
\begin{array}{ll}
T(t, L)=\phi(t), & T(t, P)=0 \\
Q(t, L)=\psi(t), & Q(t, P)=0 \tag{0.3}
\end{array}
$$

where the given functions ϕ and ψ describe the physical conditions defining the laser heat impulse. Moreover, the initial conditions are

$$
\begin{equation*}
T(0, x)=T^{0}(x), \quad Q(0, x)=Q^{0}(x) \tag{0.4}
\end{equation*}
$$

with given functions T^{0} and Q^{0}. More complex boundary conditions, for example in the form of linear combinations of the values of T and Q at each end of the interval $[L, P]$, can be considered without any essential change in the following text.

Our goal is to define and analyse a weak formulation of the problem (0.2), $(0,3),(0.4)$ which admits Dirichlet boundary conditions defined by functions ϕ and ψ of $L^{2}\left(0, t_{\max }\right)$ regularity only.

The existence and uniqueness of the solution of the problem (0.2)-(0.4) in the weak formulation may be proved by one of the standard methods, however the weak regularity assumption on ϕ and ψ requires a special care. Moreover, a close inspection makes it possible to explain a certain phenomenon observed during the numerical treatment of the model [5]. Namely we can clearly see why the solution (T, Q) depends weakly on the boundary conditions imposed on the function T.

In Section 2, a finite difference approximation of the problem is discussed. We prove the stability and convergence of the finite difference scheme proposed.

In the report [3] under the same title that appeared in the proceedings of the FVCA Conference in Duisburg we give some information about the first version of this paper. This version was based on a different weak formulation, implying different conclusions on existence and uniquenes of the solution than in the present paper. The report contains only theorems without proofs.

1. Weak formulation. Let us first transform the differential problem (0.2)-(0.4) in order to obtain homogeneous Dirichlet boundary conditions. To do that we define two auxiliary functions

$$
\phi(t, x)=\phi(t) \frac{P-x}{P-L}, \quad \psi(t, x)=\psi(t) \frac{P-x}{P-L}
$$

Let us now introduce functions \widetilde{T} and \widetilde{Q} by

$$
T(t, x)=\widetilde{T}(t, x)+\phi(t, x), \quad Q(t, x)=\widetilde{Q}(t, x)+\psi(t, x) .
$$

The functions \widetilde{T} and \widetilde{Q} satisfy the following non-homogeneous equations:

$$
\begin{equation*}
\widetilde{T}_{t}+\widetilde{Q}_{x}=f(t, x) \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\widetilde{Q}_{t}+D \widetilde{T}_{x}+\widetilde{Q}-\kappa \widetilde{Q}_{x x}=g(t, x) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{aligned}
f(t, x) & =\frac{1}{P-L}\left[\psi(t)-(P-x) \frac{d}{d t} \phi(t)\right] \\
g(t, x) & =\frac{1}{P-L}\left[D \phi(t)-(P-x)\left(\frac{d}{d t} \psi(t)+\psi(t)\right)\right]
\end{aligned}
$$

Note that the Dirichlet boundary condition is homogeneous:

$$
\widetilde{T}(t, L)=\widetilde{Q}(t, L)=\widetilde{T}(t, P)=\widetilde{Q}(t, P)=0
$$

and the initial conditions take the form

$$
\begin{align*}
& \widetilde{T}(0, x)=\widetilde{T}^{0}(x)=T^{0}(x)-\phi(0) \frac{P-x}{P-L} \\
& \widetilde{Q}(0, x)=\widetilde{Q}^{0}(x)=Q^{0}(x)-\psi(0) \frac{P-x}{P-L} \tag{1.3}
\end{align*}
$$

The functions \widetilde{T} and \widetilde{Q} are not yet satisfactory: the initial conditions for them involve $\phi(0)$ and $\psi(0)$, which may not exist. Therefore we introduce new functions R and S :

$$
R(t, x)=\int_{0}^{t} \widetilde{T}(s, x) d s, \quad S(t, x)=\int_{0}^{t} \widetilde{Q}(s, x) d s
$$

They are more regular, and satisfy the zero initial and boundary conditions.
Let us derive equations for R and S. It is easy to see that

$$
\begin{align*}
R_{t}+S_{x} & =F \tag{1.4}\\
S_{t}+D R_{x}+S-\kappa S_{x x} & =G \tag{1.5}
\end{align*}
$$

where

$$
\begin{align*}
& F(t, x)=\frac{1}{P-L}\left[\int_{0}^{t} \psi(s) d s-(P-x) \phi(t)\right]+T^{0}(x) \tag{1.6}\\
& G(t, x)=\frac{1}{P-L}\left[D \int_{0}^{t} \phi(s) d s-(P-x)\left(\psi(t)+\int_{0}^{t} \psi(s) d s\right)\right]+Q^{0}(x)
\end{align*}
$$

To define the weak formulation of our problem we introduce a space \mathbf{H} :
Definition. Let \mathbf{H} denote the Hilbert space of all pairs (V, W) such that

$$
\begin{aligned}
& V, V_{t}, W_{t} \in L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right) \\
& W \in L^{2}\left(0, t_{\max } ; H_{0}^{1}(L, P)\right)
\end{aligned}
$$

Its norm is defined by

$$
\begin{aligned}
& \|(V, W)\|_{\mathbf{H}}^{2} \\
& \quad=\int_{0}^{t_{\max }}\left[\|V(s, \cdot)\|_{0}^{2}+\|W(s, \cdot)\|_{0}^{2}+\left\|W_{x}(s, \cdot)\right\|_{0}^{2}+\left\|V_{t}(s, \cdot)\right\|_{0}^{2}+\left\|W_{t}(s, \cdot)\right\|_{0}^{2}\right] d s,
\end{aligned}
$$

where $\|\cdot\|_{0}=\|\cdot\|_{L^{2}(L, P)}$.
Let R, S, V and W be sufficiently regular. Using the formulas

$$
R_{x} W+R W_{x}=[R W]_{x} \quad \text { and } \quad S_{x x} W+S_{x} W_{x}=\left[S_{x} W\right]_{x}
$$

from (1.4) and (1.5) we obtain

$$
D R_{t} V+D S_{x} V=D F V
$$

and

$$
S_{t} W-D R W_{x}+[R W]_{x}+S W+\kappa S_{x} W_{x}-\kappa\left[S_{x} W\right]_{x}=G W
$$

Note that W satisfies the homogeneous boundary condition. Adding the last two equations and integrating over $[L, P]$, we obtain

$$
\begin{align*}
\int_{L}^{P}\left[D R_{t} V+S_{t} W\right] d x+\int_{L}^{P}\left[D\left(S_{x} V-R W_{x}\right)+\right. & \left.S W+\kappa S_{x} W_{x}\right] d x \tag{1.8}\\
& =\int_{L}^{P}(D F V+G W) d x .
\end{align*}
$$

Define now bilinear forms

$$
a, b:\left(L^{2}(L, P) \times H_{0}^{1}(L, P)\right) \times\left(L^{2}(L, P) \times H_{0}^{1}(L, P)\right) \rightarrow \mathbb{R}
$$

by

$$
\begin{aligned}
a(U, Z ; V, W) & =\int_{L}^{P}\left[D\left(Z_{x} V-U W_{x}\right)+Z W+\kappa Z_{x} W_{x}\right] d x \\
b(U, Z ; V, W) & =\int_{L}^{P}[D U V+Z W] d x
\end{aligned}
$$

Observe that

$$
\begin{aligned}
a(U, Z ; U, Z) & =\int_{L}^{P}\left[D\left(Z_{x} U-U Z_{x}\right)+Z^{2}+\kappa Z_{x}^{2}\right] d x \\
& =\int_{L}^{P}\left[Z^{2}+\kappa Z_{x}^{2}\right] d x \geq \gamma \int_{L}^{P}\left[Z^{2}+Z_{x}^{2}\right] d x=\gamma\|Z\|_{1}^{2}
\end{aligned}
$$

where $\gamma=\min \{1, \kappa\}$. This means the $H_{0}^{1}(L, P)$-ellipticity of the form a with respect to the second argument of the pair (U, Z). Similarly

$$
b(U, Z ; U, Z)=D\|U\|_{0}^{2}+\|Z\|_{0}^{2}
$$

Thus the form $a+b$ is $L^{2}(L, P) \times H_{0}^{1}(L, P)$-elliptic. Moreover, a is continuous:

$$
\begin{aligned}
\mid a(U, Z ; & V, W) \mid \\
& \leq C\left[\|Z\|_{0}\|W\|_{0}+\left\|Z_{x}\right\|_{0}\left\|W_{x}\right\|_{0}+\|U\|_{0}\left\|W_{x}\right\|_{0}+\left\|Z_{x}\right\|_{0}\|V\|_{0}\right] \\
& \leq C \sqrt{\|U\|_{0}^{2}+\|Z\|_{0}^{2}+\left\|Z_{x}\right\|_{0}^{2}} \sqrt{\|V\|_{0}^{2}+\|W\|_{0}^{2}+\left\|W_{x}\right\|_{0}^{2}} \\
& \leq C_{1} \sqrt{\|Z\|_{1}^{2}+\|U\|_{0}^{2}} \sqrt{\|W\|_{1}^{2}+\|V\|_{0}^{2}}
\end{aligned}
$$

here and below $(\cdot, \cdot)_{0},(\cdot, \cdot)_{1},\|\cdot\|_{0}$ and $\|\cdot\|_{1}$ are the $L^{2}(L, P)$ and $H_{0}^{1}(L, P)$ scalar products and norms, respectively, and C, C_{1} are positive constants.

Similarly,

$$
|b(U, Z ; V, W)| \leq C \sqrt{\|U\|_{0}^{2}+\|Z\|_{0}^{2}} \sqrt{\|V\|_{0}^{2}+\|W\|_{0}^{2}} .
$$

Using the above notation we write (1.8) as

$$
\begin{align*}
b\left(R_{t}(t, \cdot), S_{t}(t, \cdot) ; V, W\right)+a(R(t, \cdot), S(t, \cdot) & ; V, W) \tag{1.9}\\
& =b(F(t, \cdot), G(t, \cdot) ; V, W),
\end{align*}
$$

with initial conditions

$$
R(0, x)=0 \quad \text { and } \quad S(0, x)=0 .
$$

We now define a weak formulation of the problem admitting the boundary conditions (0.3) with ϕ and ψ in $L^{2}\left(0, t_{\max }\right)$. Note that F and G, as functions of the variable t, are also in $L^{2}\left(0, t_{\max }\right)$.

Weak formulation. Find a pair $(R, S) \in \mathbf{H}$ satisfying

$$
R(0, x)=0, \quad S(0, x)=0
$$

for a.e. x in (L, P) such that for a.e. t in $\left(0, t_{\max }\right)$ and for all $(V, W) \in \mathbf{H}$,

$$
\begin{align*}
b\left(R_{t}(t, \cdot), S_{t}(t, \cdot) ; V, W\right)+a(R(t, \cdot), S(t, \cdot) & ; V, W) \tag{1.10}\\
& =b(F(t, \cdot), G(t, \cdot) ; V, W) .
\end{align*}
$$

Our aim is to prove that the problem (1.10) is well posed. We first prove the existence of a solution by the Galerkin method [4].

Let $\xi_{k} \in L^{2}(L, P)$ and $\zeta_{k} \in H_{0}^{1}(L, P), k=1,2, \ldots$, be such that $\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ and $\left\{\zeta_{1}, \ldots, \zeta_{n}\right\}$ are linearly independent for each n, so that the subspaces $\operatorname{span}\left\{\xi_{1}, \ldots, \xi_{n}\right\}$ and $\operatorname{span}\left\{\zeta_{1}, \ldots, \zeta_{n}\right\}$ are of dimension n.

Definition. Let $r_{j}^{n}, s_{j}^{n}:\left[0, t_{\max }\right] \rightarrow \mathbb{R}$ for $j=1, \ldots, n, n=1,2, \ldots$ Set

$$
R_{n}(t, x)=\sum_{j=1}^{n} r_{j}^{n}(t) \xi_{j}(x), \quad S_{n}(t, x)=\sum_{j=1}^{n} s_{j}^{n}(t) \zeta_{j}(x) .
$$

The sequence $\left\{\left(R_{n}, S_{n}\right)\right\}$ is a Galerkin solution of (1.10) if:

- $r_{j}^{n}:\left[0, t_{\max }\right] \rightarrow \mathbb{R}$ and $s_{j}^{n}:\left(0, t_{\max }\right) \rightarrow \mathbb{R}$ are absolutely continuous,
- for a.e. t in $\left(0, t_{\max }\right), k=1, \ldots, n$, and $n=1,2, \ldots$,

$$
\begin{aligned}
& b\left(R_{n t}(t, \cdot), S_{n t}(t, \cdot) ; \xi_{k}, 0\right)+a\left(R_{n}(t, \cdot), S_{n}(t, \cdot) ; \xi_{k}, 0\right)=b\left(F, G ; \xi_{k}, 0\right), \\
& b\left(R_{n t}(t, \cdot), S_{n t}(t, \cdot) ; 0, \zeta_{k}\right)+a\left(R_{n}(t, \cdot), S_{n}(t, \cdot) ; 0, \zeta_{k}\right)=b\left(F, G, 0 ; \zeta_{k}\right)
\end{aligned}
$$

Lemma 1.1. Let us introduce the following notation:

$$
\begin{aligned}
\underline{r}^{n} & =\left[r_{1}^{n}, \ldots, r_{n}^{n}\right]^{T}, & \underline{s}^{n} & =\left[s_{1}^{n}, \ldots, s_{n}^{n}\right]^{T}, \\
G_{1} & =\left(\left(\xi_{j}, \xi_{k}\right)_{0}\right)_{j, k=1, \ldots, n}, & G_{2} & =\left(\left(\zeta_{j}, \zeta_{k}\right)_{0}\right)_{j, k=1, \ldots, n}, \\
H_{1} & =\left(\left(\zeta_{j}^{\prime}, \xi_{k}\right)_{0}\right)_{j, k=1, \ldots, n}, & H_{2} & =\left(\left(\zeta_{j}^{\prime}, \zeta_{k}^{\prime}\right)_{0}\right)_{j, k=1, \ldots, n}, \\
\underline{f}^{n} & =\left[f_{1}, \ldots, f_{n}\right]^{T}, & \underline{g}^{n} & =\left[g_{1}, \ldots, g_{n}\right]^{T}, \\
f_{k} & =\int_{0}^{t}\left(F, \xi_{k}\right)_{0} d s, & g_{k} & =\int_{0}^{t}\left(G, \zeta_{k}\right)_{0} d s .
\end{aligned}
$$

If $\left(R_{n}, S_{n}\right)$ is a Galerkin solution of (1.10), then

$$
\begin{aligned}
G_{1} \underline{r}^{n}(t)+\int_{0}^{t} H_{1} \underline{s}^{n}(t) d s & =\underline{f}^{n}(t) \\
G_{2} \underline{s}^{n}(t)+\int_{0}^{t}\left[\left(G_{2}+\kappa H_{2}\right) \underline{s}^{n}(s)-D H_{1} \underline{r}^{n}(s)\right] d s & =\underline{g}^{n}(t) .
\end{aligned}
$$

Proof. It is enough to use the definitions of a and b and the equations

$$
\begin{aligned}
& b\left(R_{n}(t, \cdot), S_{n}(t, \cdot) ; \xi_{k}, 0\right)+\int_{0}^{t} a\left(R_{n}(s, \cdot), S_{n}(s, \cdot) ; \xi_{k}, 0\right) d s \\
&=\int_{0}^{t} b\left(F, G ; \xi_{k}, 0\right) d s
\end{aligned}
$$

$$
b\left(R_{n}(t, \cdot), S_{n}(t, \cdot) ; 0, \zeta_{k}\right)+\int_{0}^{t} a\left(R_{n}(s, \cdot), S_{n}(s, \cdot) ; 0, \zeta_{k}\right) d s
$$

$$
=\int_{0}^{t} b\left(F, G ; 0, \zeta_{k}\right) d s
$$

Lemma 1.2. If $F \in L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)$ and $G \in L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)$, then there exists a unique Galerkin solution of (1.10).

Proof. By Lemma 1.1 we have

$$
\begin{aligned}
G_{1} \underline{r}^{n}+\int_{0}^{t} H_{1} \underline{s}^{n} d s & =\underline{f}^{n} \\
G_{2} \underline{s}^{n}+\int_{0}^{t}\left[\left(G_{2}+\kappa H_{2}\right) \underline{s}^{n}-D H_{1} \underline{r}^{n}\right] d s & =\underline{g}^{n}
\end{aligned}
$$

Note that \underline{f}^{n} and \underline{g}^{n} are absolutely continuous functions of $t \in\left[0, t_{\max }\right]$. Let $w=\left[\underline{r}^{n}, \underline{s}^{\bar{n}}\right]^{T}$; then w satisfies the following integral equation:

$$
w=A \int_{0}^{t} w d s+d
$$

where A is a constant $2 n \times 2 n$ matrix and $d:\left[0, t_{\max }\right] \rightarrow \mathbb{R}^{2 n}$ is an absolutely continuous vector-valued function, defined by $G_{1}, G_{2}, H_{1}, H_{2}, \underline{f}^{n}$ and \underline{g}^{n} respectively. To prove the existence of a solution, we proceed in a standard way. First, we construct a sequence of absolutely continuous functions:

$$
\begin{aligned}
w_{0}(t) & =0 \\
w_{1}(t) & =A \int_{0}^{t} w_{0}(s) d s+d(t)=d(t) \\
w_{2}(t) & =A \int_{0}^{t} w_{1}(s) d s+d(t), \ldots \\
w_{k+1}(t) & =A \int_{0}^{t} w_{k}(s) d s+d(t), \ldots
\end{aligned}
$$

This sequence satisfies the estimate

$$
\left|w_{k+1}(t)-w_{k}(t)\right| \leq \frac{\|A\|^{k} t_{\max }^{k}}{k!} \sup _{t \in\left[0, t_{\max }\right]}\left|w_{1}(t)\right|
$$

where $|\cdot|$ is a norm in $\mathbb{R}^{2 n}$. From this inequality, using the standard procedure, we prove that the sequence $\left\{w_{k}(t)\right\}$ converges uniformly in $\left[0, t_{\text {max }}\right]$ to a continuous function w, which is a solution of our integral equation. The equation implies that w is absolutely continuous since $\int_{0}^{t} w(s) d s$ and d are. Uniqueness is proved in the standard way.

Lemma 1.3. If $F \in L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)$ and $G \in L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)$, then the Galerkin solution $\left(R_{n}, S_{n}\right)$ satisfies the following estimates:

$$
\left\|R_{n}(t, \cdot)\right\|_{0}^{2}+\left\|S_{n}(t, \cdot)\right\|_{0}^{2} \leq K_{1}
$$

for $t \in\left[0, t_{\max }\right]$, and

$$
\int_{0}^{t_{\max }}\left(\left\|R_{n}(t, \cdot)\right\|_{0}^{2}+\left\|S_{n}(t, \cdot)\right\|_{0}^{2}+\left\|S_{n x}(t, \cdot)\right\|_{0}^{2}\right) d t \leq K_{2}
$$

where K_{1} and K_{2} are constants, determined by F and G, and independent of n.

Proof. Since R_{n}, S_{n} are absolutely continuous with respect to $t \in$ [$\left.0, t_{\text {max }}\right]$, for fixed k have

$$
\begin{aligned}
b\left(R_{n t}(t, \cdot), S_{n t}(t, \cdot) ; \xi_{k}, 0\right)+a\left(R_{n}(t, \cdot), S_{n}(s, \cdot)\right. & \left.; \xi_{k}, 0\right) \\
& =b\left(F(t, \cdot), G(t, \cdot) ; \xi_{k}, 0\right) \\
b\left(R_{n t}(t, \cdot), S_{n t}(t, \cdot) ; 0, \zeta_{k}\right)+a\left(R_{n}(t, \cdot), S_{n}(s, \cdot)\right. & \left.; 0, \zeta_{k}\right) \\
& =b\left(F(t, \cdot), G(t, \cdot) ; 0, \zeta_{k}\right)
\end{aligned}
$$

a.e. in $\left(0, t_{\max }\right)$. Take the linear combination of the first equations with the coefficients $r_{k}^{n}(t), k=1, \ldots, n$, and the linear combination of the second equations with the coefficients $s_{k}^{n}(t), k=1, \ldots, n$. Adding the resulting equations, we obtain

$$
\begin{aligned}
b\left(R_{n t}(t, \cdot), S_{n t}(t, \cdot) ; R_{n}(t, \cdot), S_{n}(t, \cdot)\right)+a & \left(R_{n}(t, \cdot), S_{n}(\cdot) ; R_{n}(t, \cdot), S_{n}(t, \cdot)\right) \\
& =b\left(F(t, \cdot), G(t, \cdot) ; R_{n}(t, \cdot), S_{n}(t, \cdot)\right)
\end{aligned}
$$

Using the definition of a and b, we have

$$
\begin{aligned}
\frac{D}{2}\left\|R_{n}(t, \cdot)\right\|_{0 t}^{2}+\frac{1}{2}\left\|S_{n}(t, \cdot)\right\|_{0 t}^{2} & +\left\|S_{n}(t, \cdot)\right\|_{0}^{2}+\kappa\left\|S_{n x}(t, \cdot)\right\|_{0}^{2} \\
& =D\left(F(t, \cdot), R_{n}(t, \cdot)\right)_{0}+\left(G(t, \cdot), S_{n}(t, \cdot)\right)_{0}
\end{aligned}
$$

a.e. in $\left(0, t_{\max }\right)$. Integrating both sides over $(0, t)$ for $t \in\left[0, t_{\max }\right]$, we have

$$
\begin{aligned}
& \frac{D}{2}\left\|R_{n}(t, \cdot)\right\|_{0}^{2}+\frac{1}{2}\left\|S_{n}(t, \cdot)\right\|_{0}^{2}+\int_{0}^{t}\left[\left\|S_{n}(s, \cdot)\right\|_{0}^{2}+\kappa\left\|S_{n x}(s, \cdot)\right\|_{0}^{2}\right] d s \\
&=\int_{0}^{t}\left[D\left(F(s, \cdot), R_{n}(s, \cdot)\right)_{0}+\left(G(s, \cdot), S_{n}(s, \cdot)\right)_{0}\right] d s
\end{aligned}
$$

for $t \in\left[0, t_{\max }\right]$. Applying the ε-inequality to the right-hand side, we obtain

$$
\begin{align*}
\frac{D}{2}\left\|R_{n}(t, \cdot)\right\|_{0}^{2}+ & \frac{1}{2}\left\|S_{n}(t, \cdot)\right\|_{0}^{2}+\int_{0}^{t}\left[\left\|S_{n}(s, \cdot)\right\|_{0}^{2}+\kappa\left\|S_{n x}(s, \cdot)\right\|_{0}^{2}\right] d s \tag{1.11}\\
\leq & \frac{D}{2} \int_{0}^{t} \frac{\|F(s, \cdot)\|_{0}^{2}}{\varepsilon^{2}} d s+\frac{1}{2} \int_{0}^{t} \frac{\|G(s, \cdot)\|_{0}^{2}}{\varepsilon^{2}} d s \\
& +\frac{D}{2} \varepsilon^{2} \int_{0}^{t}\left\|R_{n}(s, \cdot)\right\|_{0}^{2} d s+\frac{\varepsilon^{2}}{2} \int_{0}^{t}\left\|S_{n}(s, \cdot)\right\|_{0}^{2} d s
\end{align*}
$$

Using the notation

$$
\begin{aligned}
C & =\frac{D}{2} \int_{0}^{t_{\max }} \frac{\|F(s, \cdot)\|_{0}^{2}}{\varepsilon^{2}} d s+\frac{1}{2} \int_{0}^{t_{\max }} \frac{\|G(s, \cdot)\|_{0}^{2}}{\varepsilon^{2}} d s \\
U(t) & =\frac{D}{2}\left\|R_{n}(t, \cdot)\right\|_{0}^{2}+\frac{1}{2}\left\|S_{n}(t, \cdot)\right\|_{0}^{2}
\end{aligned}
$$

we get the following Gronwall inequality (see for example [1]):

$$
0 \leq U(t) \leq C+\varepsilon^{2} \int_{0}^{t} U(s) d s
$$

It yields, for example for $\varepsilon=1$,

$$
0 \leq U(t) \leq C e^{t} \leq C e^{t_{\max }}=K_{1}
$$

This implies the first statement of the lemma. Moreover, for all n,

$$
\int_{0}^{t_{\max }}\left\|R_{n}(s, \cdot)\right\|_{0}^{2} d s \leq \int_{0}^{t_{\max }}\left[\left\|R_{n}(s, \cdot)\right\|_{0}^{2}+\left\|S_{n}(s, \cdot)\right\|_{0}^{2}\right] d s \leq K_{3}
$$

where K_{3} is a constant which depends on F and G only. From (1.11) we have

$$
\begin{aligned}
& \int_{0}^{t}\left[\left\|S_{n}(s, \cdot)\right\|_{0}^{2}+\kappa\left\|S_{n x}(s, \cdot)\right\|_{0}^{2}\right] d s \\
& \quad \leq \int_{0}^{t}\left[\frac{D}{2} \cdot \frac{\|F(s, \cdot)\|_{0}^{2}}{\varepsilon^{2}}+\frac{1}{2} \cdot \frac{\|G(s, \cdot)\|_{0}^{2}}{\varepsilon^{2}}+\frac{D}{2} \varepsilon^{2}\left\|R_{n}(s, \cdot)\right\|_{0}^{2}+\frac{\varepsilon^{2}}{2}\left\|S_{n}(s, \cdot)\right\|_{0}^{2}\right] d s
\end{aligned}
$$

Using the estimate for $U(t)$, for $\varepsilon=1$ we get

$$
\int_{0}^{t_{\max }}\left[\left\|S_{n}(s, \cdot)\right\|_{0}^{2}+\kappa\left\|S_{n x}(s, \cdot)\right\|_{0}^{2}\right] d s \leq C+C e^{t_{\max }} t_{\max }=K_{4}
$$

Hence,

$$
\int_{0}^{t_{\max }}\left[\left\|R_{n}(s, \cdot)\right\|_{0}^{2}+\left\|S_{n}(s, \cdot)\right\|_{0}^{2}+\left\|S_{n x}(s, \cdot)\right\|_{0}^{2}\right] d s \leq K_{2}
$$

where K_{2} is a constant.
Lemma 1.4. Let $F \in L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)$ and $G \in L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)$. Then there exists a constant K, determined by F and G, such that for the Galerkin solution $\left(R_{n}, S_{n}\right)$ of (1.10) and for $n=1,2, \ldots$ the following estimate holds:

$$
\int_{0}^{t_{\max }}\left[\left\|R_{n}(s, \cdot)\right\|_{0}^{2}+\left\|S_{n}(s, \cdot)\right\|_{0}^{2}+\left\|S_{n x}(s, \cdot)\right\|_{0}^{2}+\left\|R_{n t}(s, \cdot)\right\|_{0}^{2}+\left\|S_{n t}(s, \cdot)\right\|_{0}^{2}\right] d s \leq K
$$

Proof. The proof reduces to showing that for some constant M,

$$
\begin{equation*}
\int_{0}^{t_{\max }}\left[\left\|R_{n t}(s, \cdot)\right\|_{0}^{2}+\left\|S_{n t}(s, \cdot)\right\|_{0}^{2}\right] d s \leq M \tag{1.12}
\end{equation*}
$$

Proceeding as in the proof of Lemma 1.3, we get

$$
\begin{aligned}
& b\left(R_{n t}(t, \cdot), S_{n t}(t, \cdot) ; R_{n t}(t, \cdot), 0\right)+a\left(R_{n}(t, \cdot), S_{n}(t, \cdot,) ; R_{n t}(t, \cdot), 0\right) \\
&=b\left(F(t, \cdot), G(t, \cdot) ; R_{n t}(t, \cdot), 0\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\left|\left(R_{n t}(t, \cdot), R_{n t}(t, \cdot)\right)_{0}\right| & \leq\left|\left(S_{n x}(t, \cdot), R_{n t}(t, \cdot)\right)_{0}\right|+\left|\left(F(t, \cdot), R_{n t}(t, \cdot)\right)_{0}\right| \\
& \leq\left\|S_{n x}(t, \cdot)\right\|_{0}\left\|R_{n t}(t, \cdot)\right\|_{0}+\|F(t, \cdot)\|_{0}\left\|R_{n t}(t, \cdot)\right\|_{0}
\end{aligned}
$$

and so

$$
\left\|R_{n t}(t, \cdot)\right\|_{0} \leq\left\|S_{n x}(t, \cdot)\right\|_{0}+\|F(t, \cdot)\|_{0}
$$

Integrating this inequality over $(0, t)$ for $t \in\left[0, t_{\max }\right]$, we get

$$
\begin{equation*}
\int_{0}^{t}\left\|R_{n t}(s, \cdot)\right\|_{0} d s \leq \int_{0}^{t}\left\|S_{n x}(s, \cdot)\right\|_{0} d s+\int_{0}^{t}\|F(s, \cdot)\|_{0} d s \tag{1.13}
\end{equation*}
$$

which is bounded in view of Lemma 1.3. Similarly, by the definition of a Galerkin solution, we have

$$
\begin{aligned}
\left(S_{n t}(t, \cdot), S_{n t}(t, \cdot)\right)_{0}-D & \left(R_{n}(t, \cdot), S_{n x t}(t, \cdot)\right)_{0}+\left(S_{n}(t, \cdot), S_{n t}(t, \cdot)\right)_{0} \\
& +\kappa\left(S_{n x}(t, \cdot), S_{n x t}(s, \cdot)\right)_{0}=\left(G(t, \cdot), S_{n t}(t, \cdot)\right)_{0}
\end{aligned}
$$

After integration over $(0, t)$ for $t \in\left[0, t_{\text {max }}\right]$, we obtain

$$
\begin{align*}
& \int_{0}^{t}\left\|S_{n t}(s, \cdot)\right\|_{0}^{2} d s-D \int_{0}^{t}\left(R_{n}(s, \cdot), S_{n x t}(s, \cdot)\right)_{0} d s \tag{1.14}\\
& +\int_{0}^{t}\left(S_{n}(s, \cdot), S_{n t}(s, \cdot)\right)_{0} d s+\kappa \int_{0}^{t}\left(S_{n x}(s, \cdot),\right. \\
& \left.S_{n x t}(s, \cdot)\right)_{0} d s \\
& \\
& \quad=\int_{0}^{t}\left(G(s, \cdot), S_{n t}(s, \cdot)\right)_{0} d s
\end{align*}
$$

Observe that

$$
\int_{0}^{t}\left(S_{n}(s, \cdot), S_{n t}(s, \cdot)\right)_{0} d s=\frac{1}{2}\left\|S_{n}(t, \cdot)\right\|_{0}^{2}
$$

and

$$
\int_{0}^{t}\left(S_{n x}(s, \cdot), S_{n x t}(s, \cdot)\right)_{0} d s=\frac{1}{2}\left\|S_{n x}(t, \cdot)\right\|_{0}^{2}
$$

since $S_{n}(0, \cdot)=0$ and $S_{n x}(0, \cdot)=0$. We also have

$$
-\int_{0}^{t}\left(R_{n}(s, \cdot), S_{n x t}(s, \cdot)\right)_{0} d s=\int_{0}^{t}\left(R_{n t}(s, \cdot), S_{n x}(s, \cdot)\right)_{0} d s-\left(R_{n}(t, \cdot), S_{n x}(t, \cdot)\right)_{0}
$$

Using the ε-inequality for the second term, we get

$$
\begin{aligned}
& \left|\int_{0}^{t}\left(R_{n}(s, \cdot), S_{n x t}(s, \cdot)\right)_{0} d s\right| \\
& \quad \leq 2 \int_{0}^{t}\left\|S_{n x}(s, \cdot)\right\|_{0}^{2} d s+2 \int_{0}^{t}\left\|R_{n t}(s, \cdot)\right\|_{0}^{2} d s+C\left\|R_{n}(t, \cdot)\right\|_{0}^{2}+\frac{\varepsilon^{2}}{2}\left\|S_{n x}(t, \cdot)\right\|_{0}^{2}
\end{aligned}
$$

Using (1.13), we obtain

$$
\begin{aligned}
& \left|\int_{0}^{t}\left(R_{n}(s, \cdot), S_{n x t}(s, \cdot)\right)_{0} d s\right| \\
& \quad \leq 4 \int_{0}^{t}\left\|S_{n x}(s, \cdot)\right\|_{0}^{2} d s+2 \int_{0}^{t}\|F(s, \cdot)\|_{0}^{2} d s+\frac{\varepsilon^{2}}{2}\left\|S_{n x}(t, \cdot)\right\|_{0}^{2}+C\left\|R_{n}(t, \cdot)\right\|_{0}^{2}
\end{aligned}
$$

where C is a constant introduced by the ε-inequality. To estimate the term $\int_{0}^{t}\left(G(s, \cdot), S_{n t}(s, \cdot)\right)_{0} d s$, we again use the ε-inequality:

$$
\left|\int_{0}^{t}\left(G(s, \cdot), S_{n t}(s, \cdot)\right)_{0} d s\right| \leq C \int_{0}^{t}\|G(s, \cdot)\|_{0}^{2} d s+\varepsilon^{2} \int_{0}^{t}\left\|S_{n t}(s, \cdot)\right\|_{0}^{2} d s
$$

Using these estimates in (1.14), we get

$$
\begin{aligned}
& \left(1-\varepsilon^{2}\right) \int_{0}^{t}\left\|S_{n t}(s, \cdot)\right\|_{0}^{2} d s+\frac{1}{2}\left\|S_{n}(t, \cdot)\right\|_{0}^{2}+\frac{1}{2}\left(\kappa-D \varepsilon^{2}\right)\left\|S_{x}(t, \cdot)\right\|_{0}^{2} \\
& \quad \leq C\left[\int_{0}^{t}\|F(s, \cdot)\|_{0}^{2} d s+\int_{0}^{t}\|G(s, \cdot)\|_{0}^{2} d s+\left\|R_{n}(t, \cdot)\right\|_{0}^{2}+\int_{0}^{t}\left\|S_{n x}(s, \cdot)\right\|_{0}^{2} d s\right]
\end{aligned}
$$

where C is a positive constant. The terms of the right-hand side with R_{n} and $S_{n x}$ are estimated by Lemma 1.3. From this, (1.13) and Lemma 1.3, the inequality (1.12) follows.

Let us comment on the results obtained. Lemmas 1.3 and 1.4 imply that if $F, G \in L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)$, then any Galerkin solution is in the space \mathbf{H}. This justifies our choice of the space \mathbf{H} for the weak formulation of the problem.

Theorem 1.1. Assume that

- $\phi, \psi \in L^{2}\left(0, t_{\max }\right)$,
- $T^{0}, Q^{0} \in L^{2}(L, P)$.

Then in \mathbf{H} there exists a solution (R, S) of the problem (1.10).
Proof. Let

$$
\begin{aligned}
& X_{n}=\left\{\sum_{j=1}^{n} \xi_{j} c_{j} \mid c_{j} \in H^{1}\left(0, t_{\max }\right)\right\} \\
& Y_{n}=\left\{\sum_{j=1}^{n} \zeta_{j} d_{j} \mid d_{j} \in H^{1}\left(0, t_{\max }\right)\right\}
\end{aligned}
$$

where ξ_{j} and ζ_{j} are as in the Galerkin solution. Observe that $X_{n} \subset X_{n+1}$ and $Y_{n} \subset Y_{n+1}$ for all n, and that

$$
X_{n} \times Y_{n} \subset \mathbf{H}
$$

We can assume that the subspaces X_{n} and Y_{n} satisfy the following approximation condition:

For all $(x, y) \in \mathbf{H}$ and for all n there exist $x_{n}(x) \in X_{n}$ and $y_{n}(y) \in Y_{n}$ such that

$$
\left\|\left(x_{n}(x), y_{n}(y)\right)-(x, y)\right\|_{\mathbf{H}} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Let $\left(R_{n}, S_{n}\right)$ be the Galerkin solution of the problem (1.10). By Lemmas 1.3 and 1.4 it follows that the sequence $\left\{\left(R_{n}, S_{n}\right)\right\}$ is bounded in the Hilbert space \mathbf{H}, hence it has a subsequence, denoted also by $\left\{\left(R_{n}, S_{n}\right)\right\}$, weakly converging to some $(R, S) \in \mathbf{H}$. We prove that (R, S) is a solution of the problem (1.10). Fix m, and take $n \geq m$. For $k=1, \ldots, m$ we have

$$
\begin{aligned}
& b\left(R_{n t}(t, \cdot), S_{n t}(t, \cdot) ; \xi_{k}, 0\right)+a\left(R_{n}(t, \cdot), S_{n}(t, \cdot) ;\right.\left.\xi_{k}, 0\right) \\
&=b\left(F(t, \cdot), G(t, \cdot) ; \xi_{k}, 0\right), \\
& b\left(R_{n t}(t, \cdot), S_{n t}(t, \cdot) ; 0, \zeta_{k}\right)+a\left(R_{n}(t, \cdot), S_{n}(t, \cdot) ; 0, \zeta_{k}\right) \\
&=b\left(F(t, \cdot), G(t, \cdot) ; 0, \zeta_{k}\right),
\end{aligned}
$$

a.e. in $\left(0, t_{\text {max }}\right)$. Taking linear combinations with coefficients $c_{k}, d_{k} \in$ $H^{1}\left(0, t_{\max }\right)$ for the first and second equations respectively and $k=1, \ldots, m$, and adding the resulting equations, we get

$$
\begin{aligned}
b\left(R_{n t}(t, \cdot), S_{n t}(t, \cdot) ; V, W\right)+a\left(R_{n}(t, \cdot), S_{n}(t, \cdot)\right. & ; V, W) \\
& =b(F(t, \cdot), G(t, \cdot) ; V, W),
\end{aligned}
$$

a.e. in $\left(0, t_{\max }\right)$, for all $V \in X_{m}$ and $W \in Y_{m}$. Letting $n \rightarrow \infty$ and taking into account the continuity of the forms a and b in \mathbf{H}, we see that

$$
b\left(R_{t}(t, \cdot), S_{t}(t, \cdot) ; V, W\right)+a(R(t, \cdot), S(t, \cdot) ; V, W)=b(F(t, \cdot), G(t, \cdot) ; V, W)
$$

a.e. in $\left(0, t_{\max }\right)$, for all $V \in X_{m}$ and $W \in Y_{m}$ and any m, and hence for all $(V, W)=\mathbf{H}$, by the approximation property of the subspaces X_{n} and Y_{n}.

Theorem 1.2. Under the assumptions of Theorem 1.1, the problem (1.10) has a unique solution in \mathbf{H}.

Proof. Suppose that (R, S) and $\left(R_{1}, S_{1}\right)$ are two solutions of (1.10) in \mathbf{H}. For $(U, Z)=\left(R-R_{1}, S-S_{1}\right)$ we have

$$
b\left(U_{t}(t, \cdot), Z_{t}(t, \cdot) ; V, W\right)+a(U(s, \cdot), Z(s, \cdot \cdot) ; V, W) d s=0,
$$

where $U(0, \cdot)=Z(0, \cdot)=0$ for all $(V, W) \in \mathbf{H}$, a.e. in $\left(0, t_{\max }\right)$.
Setting now $V=U$ and $W=Z$ and using the definition of a and b, we get

$$
D\left(U_{t}, U\right)_{0}+\left(Z_{t}, Z\right)_{0}+\|Z\|_{0}^{2}+\kappa\left\|Z_{x}\right\|_{0}^{2}=0 .
$$

Integrating this equation over $(0, t)$ for $t \in\left(0, t_{\max }\right)$, we obtain

$$
\frac{D}{2}\|U(t, \cdot)\|_{0}^{2}+\frac{1}{2}\|Z(t, \cdot)\|_{0}^{2}+\int_{0}^{t}\|Z(s, \cdot)\|_{0}^{2} d s+\kappa \int_{0}^{t}\left\|Z_{x}(s, \cdot)\right\|_{0}^{2} d s=0
$$

for all $t \in\left[0, t_{\max }\right]$, which implies that $R=R_{1}$ and $S=S_{1}$.
REmark 1. It follows from Lemmas 1.3 and 1.4 that the problem (1.10) is stable with respect to F and G, i.e.

$$
\|(R, S)\|_{\mathbf{H}} \leq C\left[\|F\|_{L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)}+\|G\|_{L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)}\right]
$$

where C is independent of F and G.
Remark 2. Theorems 1.1 and 1.2 imply that we may attribute to the original problem (0.2)-(0.4) a generalized solution (T, Q) satisfying

$$
\begin{aligned}
& R(t, x)=\int_{0}^{t}[T(s, x)-\Phi(s, x)] d s \\
& S(t, x)=\int_{0}^{t}[Q(s, x)-\Psi(s, x)] d s
\end{aligned}
$$

where $(R, S) \in \mathbf{H}$ is the solution of (1.10). It follows that

$$
T, Q, \int_{0}^{t} T(s, \cdot) d s \in L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)
$$

however

$$
\int_{0}^{t} Q(s, \cdot) d s \in L^{2}\left(0, t_{\max } ; H^{1}(L, P)\right)
$$

Note that T and even $\int_{0}^{t} T(s, \cdot) d s$ are in $L^{2}\left(0, t_{\max } ; L^{2}(L, P)\right)$. In fact the initial and boundary values for $(T, Q), T^{0}(x), Q^{0}(x), \Phi(t, 0)$, and $\Psi(t, 0)$ enter into the problem via the right-hand sides of the equations for (R, S), but $T(0, x), Q(0, x), T(t, 0)$ are not well defined. This explains why the computed approximate solution (T, Q) of the original problem only weakly depends on the boundary condition on T. The function Q is more regular, hence its behaviour is slightly different.
2. Numerical model. On the rectangle $\Omega=\left[0, t_{\max }\right] \times[L, P]$, we define the grid

$$
t_{n}=\tau n, \quad n=0,1, \ldots, N, \quad x_{k}=L+h k, \quad k=0,1, \ldots, M+1
$$

where $t_{\max }=\tau N$ and $h(M+1)=P-L$.
Let $f=\left\{f_{k}\right\}_{k=0,1, \ldots, M+1}$ be a real grid-function. The following notation is used for finite differences:

$$
\begin{array}{ll}
\Delta f_{k}=f_{k+1}-f_{k} & \text { (forward difference) } \\
\nabla f_{k}=f_{k}-f_{k-1} & \text { (backward difference). }
\end{array}
$$

We denote by $(\cdot, \cdot)_{h}$ and $\|\cdot\|_{h}$ the $L_{h}^{2}(L, P)$ inner product and norm, respectively:

$$
(f, g)_{h}=h \sum_{k=1}^{M} f_{k} g_{k}, \quad\|f\|_{h}^{2}=h \sum_{k=1}^{M} f_{k}^{2} .
$$

The values $T_{k}^{n}, Q_{k}^{n}, \ldots$ of grid-functions correspond to $T\left(t_{n}, x_{k}\right), Q\left(t_{n}, x_{k}\right), \ldots$ where (T, Q) is the solution of $(0.2)-(0.4)$ (see Section 1).

Let us now define the relevant discrete problem. The difference equations for the grid-functions $\left\{T_{k}^{n}\right\}$ and $\left\{Q_{k}^{n}\right\}$ are

$$
\begin{gather*}
T_{k}^{n+1}-T_{k}^{n}+\frac{\lambda}{4}(\Delta+\nabla)\left(Q_{k}^{n}+Q_{k}^{n+1}\right)=0 \tag{2.1}\\
Q_{k}^{n+1}-Q_{k}^{n}+\frac{D \lambda}{4}(\Delta+\nabla)\left(T_{k}^{n}+T_{k}^{n+1}\right)+\frac{\tau}{2}\left(Q_{k}^{n}+Q_{k}^{n+1}\right) \tag{2.2}\\
-\frac{\kappa \mu}{2}(\nabla \Delta)\left(Q_{k}^{n}+Q_{k}^{n+1}\right)=0,
\end{gather*}
$$

where $\lambda=\tau / h$ and $\mu=\tau / h^{2}$.
For these equations we impose initial conditions for the grid-functions

$$
\begin{equation*}
T_{k}^{0}, Q_{k}^{0}, \quad k=1, \ldots M \tag{2.3}
\end{equation*}
$$

and the following boundary conditions:

$$
\begin{equation*}
T_{0}^{n}=\phi^{n}, \quad T_{M+1}^{n}=0, \quad Q_{0}^{n}=\psi^{n}, \quad Q_{M+1}^{n}=0, \quad n=0,1, \ldots N . \tag{2.4}
\end{equation*}
$$

The right-hand sides of these conditions are given by certain averages of the functions T^{0}, Q^{0} in $L^{2}(L, P)$ or ϕ and ψ in $L^{2}\left(0, t_{\max }\right)$ respectively. For example

$$
\phi^{n}=\frac{1}{\tau} \int_{t_{n}}^{t_{n+1}} \phi(s) d s, \quad \psi^{n}=\frac{1}{\tau} \int_{t_{n}}^{t_{n+1}} \psi(s) d s
$$

and so on. Introducing, as in Section 1, the grid-functions

$$
\begin{aligned}
& \phi_{k}^{n}=\phi^{n}\left(1-\frac{k h}{P-L}\right) \quad \text { and } \quad \psi_{k}^{n}=\psi^{n}\left(1-\frac{k h}{P-L}\right), \\
& k=0,1, \ldots, M+1, n=0,1, \ldots, N,
\end{aligned}
$$

and

$$
\widetilde{T}_{k}^{n}=T_{k}^{n}-\phi_{k}^{n}, \quad \widetilde{Q}_{k}^{n}=Q_{k}^{n}-\psi_{k}^{n},
$$

we write down equations for \widetilde{T} and \widetilde{Q} :

$$
\begin{gathered}
\widetilde{T}_{k}^{n+1}-\widetilde{T}_{k}^{n}+\frac{\lambda}{4}(\Delta+\nabla)\left(\widetilde{Q}_{k}^{n}+\widetilde{Q}_{k}^{n+1}\right)=F_{k}^{n} \\
\widetilde{Q}_{k}^{n+1}-\widetilde{Q}_{k}^{n}+\frac{D \lambda}{4}(\Delta+\nabla)\left(\widetilde{T}_{k}^{n}+\widetilde{T}_{k}^{n+1}\right)+\frac{\tau}{2}\left(\widetilde{Q}_{k}^{n}+\widetilde{Q}_{k}^{n+1}\right) \\
\\
-\frac{\kappa \mu}{2}(\nabla \Delta)\left(\widetilde{Q}_{k}^{n}+\widetilde{Q}_{k}^{n+1}\right)=G_{k}^{n} .
\end{gathered}
$$

Here

$$
\begin{aligned}
F_{k}^{n} & =\frac{\tau}{2} \cdot \frac{\psi^{n}+\psi^{n+1}}{(P-L)}-\left(\phi^{n+1}-\phi^{n}\right)\left(1-\frac{k h}{P-L}\right) \\
G_{k}^{n} & =\frac{\tau}{2} \cdot \frac{D}{P-L}\left(\phi^{n}+\phi^{n+1}\right)=\left[\psi^{n+1}-\psi^{n}+\frac{\tau}{2}\left(\psi^{n}+\psi^{n+1}\right)\right]\left(1-\frac{k h}{P-L}\right) .
\end{aligned}
$$

Let us finally introduce grid-functions R_{k}^{n} and S_{k}^{n} :

$$
\begin{aligned}
R_{k}^{n}=\tau \sum_{j=0}^{n} \widetilde{T}_{k}^{j}, & R_{k}^{0}=\tau\left[T_{k}^{0}-\phi(0)\left(1-\frac{k h}{P-L}\right)\right] \\
S_{k}^{n}=\tau \sum_{j=0}^{n} \widetilde{Q}_{k}^{j}, & S_{k}^{0}=\tau\left[Q_{k}^{0}-\psi(0)\left(1-\frac{k h}{P-L}\right)\right]
\end{aligned}
$$

Multiplying both sides of the last two equations by τ and then adding them for $j=0,1, \ldots, n$, we get equations for $\left\{R_{k}^{n}\right\}$ and $\left\{S_{k}^{n}\right\}$:

$$
\begin{array}{r}
R_{k}^{n+1}-R_{k}^{n}+\frac{\lambda}{4}(\Delta+\nabla)\left(S_{k}^{n}+S_{k}^{n+1}\right)=\tau \Phi_{k}^{n} \\
S_{k}^{n+1}-S_{k}^{n}+\frac{D \lambda}{4}(\Delta+\nabla)\left(R_{k}^{n}+R_{k}^{n+1}\right)+\frac{\tau}{2}\left(S_{k}^{n}+S_{k}^{n+1}\right) \tag{2.6}\\
\\
-\frac{\kappa \mu}{2}(\nabla \Delta)\left(S_{k}^{n}+S_{k}^{n+1}\right)=\tau \Psi_{k}^{n}
\end{array}
$$

where

$$
\begin{aligned}
\Phi_{k}^{n}= & T_{k}^{0}+\frac{\lambda}{4}\left(Q_{k+1}^{0}-Q_{k-1}^{0}\right)+\frac{\lambda}{M+1} \sum_{j=0}^{n} \psi\left(t_{j}\right) \\
& +\frac{\lambda}{2(M+1)} \psi\left(t_{n+1}\right)-\left(1-\frac{k}{M+1}\right) \phi\left(t_{n+1}\right) \\
\Psi_{k}^{n}= & \frac{\lambda D}{2(M+1)}\left[\phi(0)+2 \sum_{j=0}^{n} \phi\left(t_{j}\right)+\phi\left(t_{j+1}\right)\right] \\
& +\left(1-\frac{k}{M+1}\right)\left[\left(1-\frac{\tau}{2}\right) \phi(0)-\tau \sum_{j=1}^{n} \psi\left(t_{j}\right)-\left(1+\frac{\tau}{2}\right) \psi\left(t_{n+1}\right)\right] \\
& +\left(1+\frac{\tau}{2}\right)\left[Q_{k}^{0}-\left(1-\frac{k}{M+1}\right) \psi(0)\right] \\
& +\frac{\lambda D}{4}\left[T_{k+1}^{0}-T_{k-1}^{0}+\frac{2}{M+1} \phi(0)\right]-\frac{\kappa \mu}{2} \nabla \Delta Q_{k}^{0} \\
\text { for } n= & 1, \ldots, N .
\end{aligned}
$$

For the original functions T_{k}^{n} and Q_{k}^{n} we have

$$
T_{k}^{n+1}=\frac{R_{k}^{n+1}-R_{k}^{n}}{\tau}+\phi_{k}^{n}, \quad Q_{k}^{n+1}=\frac{S_{k}^{n+1}-S_{k}^{n}}{\tau}+\psi_{k}^{n}
$$

Let now $\left\{f_{k}\right\}_{k=0,1, \ldots, M+1}$ and $\left\{g_{k}\right\}_{k=0,1, \ldots, M+1}$ be two grid-functions. We need the following facts:

Lemma 2.1. If $f_{M+1}=g_{0}=0$, then

$$
\sum_{k=1}^{M} g_{k} \Delta f_{k}=-\sum_{k=1}^{M} f_{k} \nabla g_{k}
$$

Proof. We have

$$
\begin{aligned}
\sum_{k=1}^{M} g_{k} \Delta f_{k} & =\sum_{k=1}^{M} f_{k+1} g_{k}-\sum_{k=1}^{M} f_{k} g_{k}=\sum_{k=2}^{M+1} f_{k} g_{k-1}-\sum_{k=1}^{M} f_{k} g_{k} \\
& =\sum_{k=2}^{M} f_{k}\left(g_{k-1}-g_{k}\right)+f_{M+1} g_{M}-f_{1} g_{1} \\
& =\sum_{k=2}^{M} f_{k}\left(g_{k-1}-g_{k}\right)+f_{1}\left(g_{0}-g_{1}\right)=-\sum_{k=1}^{M} f_{k} \nabla g_{k}
\end{aligned}
$$

Lemma 2.2. If $f_{0}=g_{M+1}=0$, then

$$
\sum_{k=1}^{M} g_{k} \nabla f_{k}=-\sum_{k=1}^{M} f_{k} \Delta g_{k}
$$

Proof. Exchange f_{k} and g_{k}.
Lemma 2.3. If $g_{0}=g_{M+1}$, then

$$
\sum_{k=1}^{M} g_{k} \nabla \Delta f_{k}=-\sum_{k=0}^{M} \Delta f_{k} \Delta g_{k}
$$

Proof. Let $F_{k}=\Delta f_{k}$. We have

$$
\begin{aligned}
\sum_{k=1}^{M} g_{k} \nabla \Delta f_{k} & =\sum_{k=1}^{M} g_{k} F_{k}-\sum_{k=0}^{M-1} F_{k} g_{k+1} \\
& =\sum_{k=1}^{M-1} F_{k}\left(g_{k}-g_{k+1}\right)+g_{m} F_{M}-g_{1} F_{0} \\
& =-\sum_{k=1}^{M-1} F_{k}\left(g_{k+1}-g_{k}\right)+g_{M} F_{M}-g_{M+1} F_{M} \\
& =-F_{0} g_{1}+F_{0} g_{0}=-\sum_{k=0}^{M} F_{k}\left(g_{k+1}-g_{k}\right)=-\sum_{k=0}^{M} \Delta f_{k} \Delta g_{k}
\end{aligned}
$$

Lemma 2.4 (Gronwall inequality). Let $u_{n} \geq 0, \gamma_{n} \geq 0, \gamma_{n} \leq \gamma_{n+1}, c \geq 0$ for all $n=0,1,2, \ldots$ If

$$
0 \leq u_{n} \leq \gamma_{n}+c \sum_{j=0}^{n-1} u_{j} \quad \text { for all } n=0,1, \ldots
$$

then

$$
0 \leq u_{n} \leq e^{n c}\left(\gamma_{n}+u_{0}\right) \quad \text { for all } n=0,1, \ldots
$$

Proof. Let us proceed by induction. We have $0 \leq u_{0} \leq\left(\gamma_{0}+u_{0}\right)=$ $e^{0 c}\left(\gamma_{0}+u_{0}\right)$. Assume the statement to be true for $u_{j}, 0 \leq j \leq n$. Then

$$
\begin{aligned}
0 \leq u_{n+1} & \leq \gamma_{n+1}+c \sum_{j=0}^{n} u_{j} \leq \gamma_{n+1}+c \sum_{j=0}^{n} e^{j c}\left(\gamma_{j}+u_{0}\right) \\
& \leq \gamma_{n+1}+c \sum_{j=0}^{n} e^{j c}\left(\gamma_{n+1}+u_{0}\right) \\
& \leq \gamma_{n+1}\left[1+c \sum_{j=0}^{n}\left(e^{c}\right)^{j}\right]+u_{0} c \sum_{j=0}^{n}\left(e^{c}\right)^{j} .
\end{aligned}
$$

Observe that

$$
c \sum_{j=0}^{n}\left(e^{c}\right)^{j}=c \frac{e^{c(n+1)}-1}{e^{c}-1} \quad \text { and } \quad 1+c \frac{e^{c(n+1)}-1}{c}=e^{c(n+1)} .
$$

But $c \leq e^{c}-1$, hence

$$
c \sum_{j=0}^{n}\left(e^{c}\right)^{j} \leq c \frac{e^{c(n+1)}-1}{c} \leq e^{c(n+1)}
$$

Hence

$$
u_{n+1} \leq \gamma_{n+1}\left[1+c \sum_{j=0}^{n}\left(e^{c}\right)^{j}\right]+u_{0} c \sum_{j=0}^{n}\left(e^{c}\right)^{j} \leq e^{c(n+1)}\left(\gamma_{n+1}+u_{0}\right)
$$

We are now in a position to state the first stability result. For an arbitrary grid-function $\left\{U_{k}^{n}\right\}_{k=1, \ldots, M}$, let

$$
\underline{U}^{n}=\left[U_{1}^{n}, \ldots, U_{M}^{n}\right]^{T}
$$

Theorem 2.1. There exists a positive constant K, independent of τ and h, such that for $m=0,1, \ldots, N-1\left(N \leq t_{\max } / \tau\right)$,

$$
D\left\|\underline{R}^{m}\right\|_{h}^{2}+\left\|\underline{S}^{m}\right\|_{h}^{2} \leq K\left[\left\|\underline{R}^{0}\right\|_{h}^{2}+\left\|\underline{S}^{0}\right\|_{h}^{2}+\tau \sum_{k=0}^{m}\left(\left\|\underline{\Phi}^{k}\right\|_{h}^{2}+\left\|\underline{\Psi}^{k}\right\|_{h}^{2}\right)\right]
$$

Proof. Multiply (2.5) and (2.6) by $D h\left(R_{k}^{n+1}+R_{k}^{n}\right)$ and $h\left(S_{k}^{n+1}+S_{k}^{n}\right)$ respectively and sum each of them over $k=1, \ldots, M$. Summing the resulting
two equations for $n=0,1, \ldots, m$, we get

$$
\begin{aligned}
D\left[\left\|\underline{R}^{m+1}\right\|_{h}^{2}-\left\|\underline{R}^{0}\right\|_{h}^{2}\right]+\frac{\lambda D}{4} \sum_{n=0}^{m}((\Delta+\nabla) & \left.\left(\underline{S}^{n}+\underline{S}^{n+1}\right), \underline{R}^{n}+\underline{R}^{n+1}\right)_{h} \\
& =\tau D \sum_{n=0}^{m}\left(\underline{\Phi}^{n}, \underline{R}^{n}+\underline{R}^{n+1}\right)_{h}
\end{aligned}
$$

and

$$
\begin{array}{r}
\left\|\underline{S}^{m+1}\right\|_{h}^{2}-\left\|\underline{S}^{0}\right\|_{h}^{2}+\frac{\lambda D}{4} \sum_{n=0}^{m}\left((\Delta+\nabla)\left(\underline{R}^{n}+\underline{R}^{n+1}\right), \underline{S}^{n}+\underline{S}^{n+1}\right)_{h} \\
+\frac{\tau}{2} \sum_{n=0}^{m}\left\|\underline{S}^{n}+\underline{S}^{n+1}\right\|_{h}^{2}-\frac{\kappa \mu}{2} \sum_{n=0}^{m}\left((\nabla \Delta)\left(\underline{S}^{n}+\underline{S}^{n+1}\right), \underline{S}^{n}+\underline{S}^{n+1}\right)_{h} \\
\\
=\tau \sum_{n=0}^{m}\left(\underline{\Psi}^{n}, \underline{S}^{n}+\underline{S}^{n+1}\right)_{h}
\end{array}
$$

Adding the resulting equations, by Lemmas 2.1-2.3 we have

$$
\begin{aligned}
& D\left\|\underline{R}^{m+1}\right\|_{h}^{2}+\left\|\underline{S}^{n+1}\right\|_{h}^{2}+\frac{\tau}{2} \sum_{n=0}^{m}\left\|\underline{S}^{n}+\underline{S}^{n+1}\right\|_{h}^{2}+\frac{\kappa \mu}{2} \sum_{n=0}^{m} \sum_{k=0}^{M} h\left[\Delta\left(S_{k}^{n}+S_{k}^{n+1}\right)\right]^{2} \\
& \quad=\tau D \sum_{n=0}^{m}\left(\underline{\Phi}^{n}, \underline{R}^{n}+\underline{R}^{n+1}\right)_{h}+\tau \sum_{n=0}^{m}\left(\underline{\Psi}^{n}, \underline{S}^{n}+\underline{S}^{n+1}\right)_{h}+D\left\|\underline{R}^{0}\right\|_{h}^{2}+\left\|\underline{S}^{0}\right\|_{h}^{2}
\end{aligned}
$$

Applying now the ε-inequality to the terms $\left(\underline{\Phi}^{n}, \underline{R}^{n}+\underline{R}^{n+1}\right)_{h}$ and $\left(\underline{\Psi}^{n}\right.$, $\left.\underline{S}^{n}+\underline{S}^{n+1}\right)_{h}$, we obtain

$$
\begin{align*}
D(1-2 \varepsilon \tau) & \left\|\underline{R}^{m+1}\right\|_{h}^{2}+(1-2 \varepsilon \tau)\left\|\underline{S}^{m+1}\right\|_{h}^{2} \tag{2.7}\\
& +\frac{\tau}{2} \sum_{n=0}^{m}\left\|\underline{S}^{n}+\underline{S}^{n+1}\right\|_{h}^{2}+\frac{\kappa \tau}{2} \sum_{n=0}^{m} \sum_{k=0}^{M} h\left[\frac{\Delta\left(S_{k}^{n}+S_{k}^{n+1}\right)}{h}\right]^{2} \\
\leq & 2 \varepsilon \tau \sum_{n=0}^{m}\left[D\left\|\underline{R}^{n}\right\|_{h}^{2}+\left\|\underline{S}^{n}\right\|_{h}^{2}\right] \\
& +D\left\|\underline{R}^{0}\right\|_{h}^{2}+\left\|\underline{S}^{n}\right\|_{h}^{2}+K_{1} \tau \sum_{n=0}^{m}\left[D\left\|\underline{\Phi}^{n}\right\|_{h}^{2}+\left\|\underline{\Psi}^{n}\right\|_{h}^{2}\right]
\end{align*}
$$

Set

$$
\begin{aligned}
u_{m+1} & =D\left\|\underline{R}^{m+1}\right\|_{h}^{2}+\left\|\underline{S}^{m+1}\right\|_{h}^{2} \\
\gamma_{m+1} & =\frac{K_{1}}{1-2 \varepsilon \tau} \tau \sum_{n=0}^{m}\left[D\left\|\underline{\Phi}^{n}\right\|_{h}^{2}+\left\|\underline{\Psi}^{n}\right\|_{h}^{2}\right]+\frac{D}{1-2 \varepsilon \tau}\left\|\underline{R}^{0}\right\|_{h}^{2}+\frac{1}{1-2 \varepsilon \tau}\left\|\underline{S}^{0}\right\|_{h}^{2} \\
c & =\tau \frac{2 \varepsilon}{1-2 \varepsilon \tau}
\end{aligned}
$$

and apply the Gronwall inequality (Lemma 2.4). This implies, for $0 \leq m \leq$ $N \leq t_{\max } / \tau$,
$D\left\|\underline{R}^{m}\right\|_{h}^{2}+\left\|\underline{S}^{m}\right\|_{h}^{2} \leq e^{m \tau 2 \varepsilon /(1-2 \varepsilon \tau)}$

$$
\times\left[\frac{K_{1}}{1-2 \varepsilon \tau} \tau \sum_{n=0}^{m}\left(D\left\|\underline{\Phi}^{n}\right\|_{h}^{2}+\left\|\underline{\Psi}^{n}\right\|_{h}^{2}\right)+\frac{D}{1-2 \varepsilon \tau}\left\|\underline{R}^{0}\right\|_{h}^{2}+\frac{1}{1-2 \varepsilon \tau}\left\|\underline{S}^{0}\right\|_{h}^{2}\right]
$$

We can choose a constant K such that for all n with $0 \leq n \leq N$,

$$
D\left\|\underline{R}^{m}\right\|_{h}^{2}+\left\|\underline{S}^{m}\right\|_{h}^{2} \leq K\left[\tau \sum_{n=0}^{m}\left(\left\|\underline{\Phi}^{n}\right\|_{h}^{2}+\left\|\underline{\Psi}^{n}\right\|_{h}^{2}\right)+\left\|\underline{R}^{0}\right\|_{h}^{2}+\left\|\underline{S}^{0}\right\|_{h}^{2}\right]
$$

since $m \tau \leq N \tau \leq t_{\max }$.
We now state the second stability result.
Theorem 2.2. There is a positive constant K independent of τ and h such that for $m=1, \ldots, N-1\left(N \leq t_{\max } / \tau\right)$,

$$
\begin{aligned}
& D\left\|\underline{R}^{m+1}\right\|_{h}^{2}+\left\|\underline{S}^{m+1}\right\|_{h}^{2} \\
&+\frac{\tau}{2} \sum_{n=0}^{m} \| \underline{S}^{n}+ \underline{S}^{n+1} \|_{h}^{2}+\frac{\kappa \tau}{2} \sum_{n=0}^{m} \sum_{k=0}^{M} h\left[\frac{\Delta\left(S_{k}^{n}+S_{k}^{n+1}\right)}{h}\right]^{2} \\
& \leq K\left[\tau \sum_{n=0}^{N}\left(\left\|\underline{\Phi}^{n}\right\|_{h}^{2}+\left\|\underline{\Psi}^{n}\right\|_{h}^{2}\right)+\left\|\underline{R}^{0}\right\|_{h}^{2}+\left\|\underline{S}^{0}\right\|_{h}^{2}\right]
\end{aligned}
$$

Proof. For sufficiently small ε the inequality (2.7) implies

$$
\begin{aligned}
& D\left\|\underline{R}^{m+1}\right\|_{h}^{2}+\left\|\underline{S}^{m+1}\right\|_{h}^{2}+\frac{\tau}{2} \sum_{n=0}^{m}\left\|\underline{S}^{n}+\underline{S}^{n+1}\right\|_{h}^{2}+\frac{\kappa}{2} \sum_{n=0}^{m} \sum_{k=0}^{M} h \tau\left[\frac{\Delta\left(S_{k}^{n}+S_{k}^{n+1}\right)}{h}\right]^{2} \\
& \leq D\left\|\underline{R}^{m+1}\right\|_{h}^{2}+\left\|\underline{S}^{m+1}\right\|_{h}^{2}+\frac{\tau}{2(1-2 \varepsilon \tau)} \sum_{n=0}^{m}\left\|\underline{S}^{n}+\underline{S}^{n+1}\right\|_{h}^{2} \\
&+\frac{\kappa}{2(1-2 \varepsilon \tau)} \sum_{n=0}^{m} \sum_{k=0}^{M} h \tau\left[\frac{\Delta\left(S_{k}^{n}+S_{k}^{n+1}\right)}{h}\right]^{2} \\
& \leq \frac{K_{1}}{1-2 \varepsilon \tau} \tau \sum_{n=0}^{m}\left[D\left\|\underline{\Phi}^{n}\right\|_{h}^{2}+\left\|\underline{\Psi}^{n}\right\|_{h}^{2}\right] \\
&+\frac{D}{1-2 \varepsilon \tau}\left\|\underline{R}^{0}\right\|_{h}^{2}+\frac{1}{1-2 \varepsilon \tau}\left\|\underline{S}^{0}\right\|_{h}^{2} \\
&+\frac{2 \varepsilon \tau}{1-2 \varepsilon \tau} \sum_{n=0}^{m}\left[D\left\|\underline{R}^{n}\right\|_{h}^{2}+\left\|\underline{S}^{n}\right\|_{h}^{2}\right]
\end{aligned}
$$

Applying now Theorem 2.1 to the last sum and taking into account that $\tau m \leq \tau N=t_{\max }$, we obtain the assertion with some constant K.

Remark 3. Theorems 2.1 and 2.2 give the stability of the finite difference scheme (2.5), (2.6). Theorem 2.1 gives the stability in the discrete norm, the max norm with respect to t and the discrete L^{2} norm with respect to x. Theorem 2.2 gives the stability in some stronger norm. By well-known theory, the convergence in the corresponding norms follows from the stability [8].

We now derive a stability result for the scheme with the grid-functions $\left\{T_{k}^{n}\right\}$ and $\left\{Q_{k}^{n}\right\}$, corresponding directly to the original problem $(0.2)-(0,4)$. For that we introduce divided differences $\left(\underline{R}^{n+1}-\underline{R}^{n}\right) / \tau$ and $\left(\underline{S}^{n+1}-\underline{S}^{n}\right) / \tau$.

It is convenient to use the following simple estimate:
Let $f=\left[f_{1}, \ldots, f_{M}\right]^{T}$ and $f_{0}=f_{M+1}=0$. Then

$$
\begin{equation*}
\|(\Delta+\nabla) f\|_{h}^{2} \leq 4 \sum_{k=0}^{M} h\left(\Delta f_{k}\right)^{2} \tag{2.8}
\end{equation*}
$$

Theorem 2.3. There exists a constant K independent of τ and h such that for all $m<N=t_{\max } / \tau$,

$$
\begin{aligned}
\sum_{n=0}^{m-1} \tau \| & \underline{\underline{R}}^{n+1}-\underline{R}^{n}\left\|_{h}^{2}+\sum_{n=0}^{m-1} \tau\right\| \frac{\underline{S}^{n+1}-\underline{S}^{n}}{\tau}\left\|_{h}^{2}+\right\| S^{m} \|_{h}^{2}+\sum_{k=0}^{M} h\left(\frac{\Delta S_{k}^{m}}{h}\right)^{2} \\
& \leq K\left[\left\|\underline{R}^{0}\right\|_{h}^{2}+\left\|\underline{S}^{0}\right\|_{h}^{2}+\sum_{k=0}^{M} h\left(\frac{\Delta S_{k}^{0}}{h}\right)^{2}+\sum_{n=0}^{N} \tau\left\|\underline{\Phi}^{n}\right\|_{h}^{2}+\sum_{n=0}^{N} \tau\left\|\underline{\Psi}^{n}\right\|_{h}^{2}\right]
\end{aligned}
$$

Proof. From (2.5) we deduce

$$
\left\|\frac{\underline{R}^{n+1}-\underline{R}^{n}}{\tau}\right\|_{h}^{2} \leq \frac{1}{8}\left\|\frac{\Delta+\nabla}{h}\right\|_{h}^{2}+2\left\|\underline{\Phi}^{n}\right\| h^{2}
$$

and by (2.8), summing with respect to $m<N=t_{\max } / \tau$, we get

$$
\tau \sum_{n=0}^{m}\left\|\frac{\underline{R}^{n+1}-\underline{R}^{n}}{\tau}\right\|_{h}^{2} \leq \frac{\tau}{2} \sum_{n=0}^{m} h \sum_{k=0}^{M}\left[\frac{\Delta\left(S_{k}^{n}+S_{k}^{n+1}\right)}{h}\right]^{2}+2 \tau \sum_{n=0}^{m}\left\|\underline{\Phi}^{n}\right\|_{h}^{2}
$$

This gives the estimate

$$
\begin{equation*}
\tau \sum_{n=0}^{m}\left\|\frac{\underline{R}^{n+1}-\underline{R}^{n}}{\tau}\right\|_{h}^{2} \leq K\left\{\tau \sum_{n=0}^{N}\left[\left\|\underline{\Phi}^{n}\right\|_{h}^{2}+\left\|\underline{\Psi}^{n}\right\|_{h}^{2}\right]+\left\|\underline{R}^{0}\right\|_{h}^{2}+\left\|\underline{S}^{0}\right\|_{h}^{2}\right\} \tag{2.9}
\end{equation*}
$$

for a constant K independent of τ and h. Using Lemmas 2.1 and 2.2, we
deduce from (2.6) that

$$
\begin{aligned}
\sum_{n=0}^{m} \tau\left\|\underline{S}^{n+1}-\underline{S}^{n}\right\|_{h}^{2}+ & \frac{1}{2}\left\|\underline{S}^{m+1}\right\|_{h}^{2}+\frac{\kappa}{2} h \sum_{k=0}^{M}\left(\frac{\Delta S_{k}^{m+1}}{h}\right)^{2} \\
= & \frac{1}{2}\left\|\underline{S}^{0}\right\|_{h}^{2}+\frac{\kappa}{2} h \sum_{k=0}^{M}\left(\frac{\Delta S_{k}^{0}}{h}\right)^{2} \\
& +\frac{D}{4} \sum_{n=0}^{m} h \sum_{k=1}^{M}\left[\frac{\Delta+\nabla}{h}\left(S_{k}^{n+1}-S_{k}^{n}\right)\right]\left(R_{k}^{n+1}+R_{k}^{n}\right) \\
& +\tau \sum_{n=0}^{m}\left(\underline{\Phi}^{n}, \frac{\underline{S}^{n+1}-\underline{S}^{n}}{\tau}\right)_{h}
\end{aligned}
$$

We have

$$
\begin{aligned}
\sum_{n=0}^{m} h & \sum_{k=1}^{M}
\end{aligned} \begin{aligned}
h & {\left[\frac{\Delta+\nabla}{h}\left(S_{k}^{n+1}-S_{k}^{n}\right)\right]\left(R_{k}^{n+1}+R_{k}^{n}\right) } \\
= & -\tau \sum_{n=1}^{m} h \sum_{k=1}^{M}\left[\frac{\Delta+\nabla}{h} S_{k}^{n}\right]\left(\frac{R_{k}^{n+1}-R_{k}^{n}}{\tau}-\frac{R_{k}^{n}-R_{k}^{n-1}}{\tau}\right) \\
& -h \sum_{k=1}^{M}\left[\frac{\Delta+\nabla}{h} S_{k}^{0}\right]\left(R_{k}^{0}+R_{k}^{1}\right)+h \sum_{k=1}^{M}\left[\frac{\Delta+\nabla}{h} S_{k}^{m+1}\right]\left(R_{k}^{m}+R_{k}^{m+1}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
\sum_{n=0}^{m} & \tau\left\|\frac{\underline{S}^{n+1}-\underline{S}^{n}}{\tau}\right\|_{h}^{2}+\frac{1}{2}\left\|\underline{S}^{m+1}\right\|_{h}^{2}+\frac{\kappa}{2} h \sum_{k=0}^{M}\left(\frac{\Delta S_{k}^{m+1}}{h}\right)^{2} \\
= & \frac{1}{2}\left\|\underline{S}^{0}\right\|_{h}^{2}+\frac{\kappa}{2} h \sum_{k=0}^{M}\left(\frac{\Delta S_{k}^{0}}{h}\right)^{2} \\
& -\frac{D}{4} \tau \sum_{n=1}^{m}\left(\frac{\Delta+\nabla}{h} \underline{S}^{n}, \frac{\underline{R}^{n+1}-\underline{R}^{n}}{\tau}-\frac{\underline{R}^{n}-\underline{R}^{n-1}}{\tau}\right)_{h} \\
& +\frac{D}{4}\left(\frac{\Delta+\nabla}{h} \underline{S}^{0}, \underline{R}^{0}+\underline{R}^{1}\right)_{h}-\frac{D}{4}\left(\frac{\Delta+\nabla}{h} \underline{S}^{m+1}, \underline{R}^{m+1}+\underline{R}^{m}\right)_{h} \\
& +\tau \sum_{n=0}^{m}\left(\underline{\Phi}^{n}, \frac{\underline{S}^{n+1}-\underline{S}^{n}}{\tau}\right)_{h}
\end{aligned}
$$

Using the ε-inequality twice, we obtain

$$
\begin{aligned}
&(1-\varepsilon) \sum_{n=0}^{m} \tau\left\|\frac{\underline{S}^{n+1}-\underline{S}^{n}}{\tau}\right\|_{h}^{2}+\frac{1}{2}\left\|\underline{S}^{m+1}\right\|_{h}^{2}+\left(\frac{\kappa}{2}-\varepsilon\right) h \sum_{k=0}^{M}\left(\frac{\Delta S_{k}^{m+1}}{h}\right)^{2} \\
& \leq \frac{1}{2}\left\|\underline{S}^{0}\right\|_{h}^{2}+K h \sum_{k=0}^{M}\left(\frac{\Delta S_{k}^{0}}{h}\right)^{2} \\
&+\tau K \sum_{n=1}^{m} \sum_{k=0}^{M} h\left(\frac{\Delta}{h} S_{k}^{n}\right)^{2} \\
&+K \tau \sum_{n=1}^{m} \| \underline{R}^{n+1}-\underline{R}^{n} \\
& \tau
\end{aligned}\left\|_{h}^{2}+K \tau \sum_{n=1}^{m}\right\| \frac{\underline{R}^{n}-\underline{R}^{n-1}}{\tau} \|_{h}^{2} \quad\left(\underline{R}_{h} \underline{R}_{h}^{2}+K\left\|\underline{R}^{1}\right\|_{h}^{2}+K\left\|\underline{R}^{m}\right\|_{h}^{2}+K\left\|\underline{R}^{m+1}\right\|_{h}^{2}+\tau K \sum_{n=0}^{m}\left\|\underline{\Psi}^{n}\right\|_{h}^{2} .\right.
$$

Using now the Gronwall inequality (Lemma 2.4) to the terms $\sum_{k=0}^{M}\left(\frac{\Delta}{h} S_{k}^{n}\right)^{2}$, inequality (2.9), Theorems 2.1 and 2.2 , we get the final result.

Figure 1
Functions $T(t, x)$ and $Q(t, x)$ for $t=0.2 p s, D=0.35$, kappa $=0.01$

Remark 4. The last theorem gives the stability and convergence for the finite difference scheme, directly for the original grid-functions $\left\{T_{k}^{n}\right\}$ and $\left\{Q_{k}^{n}\right\}$.

REMARK 5. We now briefly discuss certain numerical experiments which confirm our results. The numerical solution of the problem (0.2)-(0.4) with $D=0.35$ and $\kappa=0.01$ is obtained by the scheme (2.1)-(2.4) for the original problem. The graph shown in Fig. 1 corresponds to experiments described in [1] and [4]. Two curves $T(t, x)$ and $Q(t, x)$ are given, both for $t=0.2 \mathrm{pi}-$ coseconds (time from the beginning of the experiment). For both functions the zero initial conditions and zero Dirichlet boundary conditions at $x=P$ are imposed. The heat impulse is modelled by the boundary conditions of the Dirichlet type at $x=L$, which depend on t. For T this impulse is constantly equal to zero, while $Q(t, L)$ is a discontinuous rectangular impulse lasting 0.096 picoseconds. A weaker regularity of the function T (temperature) compared to Q (heat flux) is visible: see oscillations near the left boundary, and then a sudden jump and stabilization at a positive level, before the wave peak. This means that the zero boundary condition imposed at $x=L$ for T does not play any role even very close to the start point of the heat impulse. The heat flux Q behaves in a more regular way. It is a travelling wave of the form of smoothed initial impulse.

References

[1] R. Bellman and E. Beckenbach, Inequalities, Ergeb. Math. Grenzgeb. 30, Springer, 1965.
[2] S. D. Brorson, J. G. Fujimoto and E. P. Ippen, Femtosecond electronic heat-transport dynamics in thin gold films, Phys. Rev. Lett. 59 (1987), 1962-1965.
[3] M. Dryja and K. Moszyński, On Jeffreys model of heat conduction, in: Proceedings of the Conference "Finite Volumes for Complex Applications" (Duisburg, 1999).
[4] J. L. Lions, Problèmes aux limites dans les équations aux dérivées partielles, Univ. de Montréal, 1967.
[5] K. Moszyński and A. Palczewski, Asymptotic analysis of heat propagation models, Arch. Mech. 52 (2000), 225-246.
[6] D. D. Joseph and L. Preziosi, Heat waves, Rev. Modern Phys. 61 (1989), 41-73.
[7] -, 一, Addendum to the paper "Heat waves", ibid. 62 (1990), 375-391.
[8] R. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems, 2nd ed., Interscience, 1967.

Department of Mathematics, Computer Science and Mechanics
Warsaw University
Banacha 2
02-097 Warszawa, Poland
E-mail: kmoszyns@mimuw.edu.pl

