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ON JEFFREYS MODEL OF HEAT CONDUCTION

Abstract. The Jeffreys model of heat conduction is a system of two par-
tial differential equations of mixed hyperbolic and parabolic character. The
analysis of an initial-boundary value problem for this system is given. Ex-
istence and uniqueness of a weak solution of the problem under very weak
regularity assumptions on the data is proved. A finite difference approxima-
tion of this problem is discussed as well. Stability and convergence of the
discrete problem are proved.

0. Introduction. The Jeffreys model of heat conduction has recently
been discussed by several authors [2], [5]–[7]. Its equations may be written
in the following general form [5]:

(0.1) Tt + div(Q) = 0, Qt +D∇T +Q− κ∆Q = 0.

Here D and κ are positive (in general constant) coefficients, the scalar func-
tion T is the temperature, and the vector-valued function Q represents the
so-called heat flux . We are interested in application of the one-dimensional
Jeffreys model to describe heat waves in a thin metallic layer under a very
short laser impulse [5]. Generalizations to more space dimensions are cer-
tainly possible and do not seem to be very difficult.

Let us discuss the initial-boundary value problem for the one-dimensional
Jeffreys model in the form appearing in [5]. We are looking for two scalar
functions T = T (t, x) and Q = Q(t, x), subject to the following equations:

(0.2) Tt +Qx = 0, Qt +DTx +Q− κQxx = 0
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for t ∈ (0, tmax), x ∈ (L,P ) (where 0 < tmax, L < P ), and satisfying the
following Dirichlet boundary conditions:

(0.3)
T (t, L) = φ(t), T (t, P ) = 0,

Q(t, L) = ψ(t), Q(t, P ) = 0,

where the given functions φ and ψ describe the physical conditions defining
the laser heat impulse. Moreover, the initial conditions are

(0.4) T (0, x) = T 0(x), Q(0, x) = Q0(x),

with given functions T 0 and Q0. More complex boundary conditions, for
example in the form of linear combinations of the values of T and Q at each
end of the interval [L,P ], can be considered without any essential change in
the following text.

Our goal is to define and analyse a weak formulation of the problem (0.2),
(0, 3), (0.4) which admits Dirichlet boundary conditions defined by functions
φ and ψ of L2(0, tmax) regularity only.

The existence and uniqueness of the solution of the problem (0.2)–(0.4)
in the weak formulation may be proved by one of the standard methods,
however the weak regularity assumption on φ and ψ requires a special care.
Moreover, a close inspection makes it possible to explain a certain phe-
nomenon observed during the numerical treatment of the model [5]. Namely
we can clearly see why the solution (T,Q) depends weakly on the boundary
conditions imposed on the function T .

In Section 2, a finite difference approximation of the problem is discussed.
We prove the stability and convergence of the finite difference scheme pro-
posed.

In the report [3] under the same title that appeared in the proceedings of
the FVCA Conference in Duisburg we give some information about the first
version of this paper. This version was based on a different weak formulation,
implying different conclusions on existence and uniquenes of the solution
than in the present paper. The report contains only theorems without proofs.

1. Weak formulation. Let us first transform the differential problem
(0.2)–(0.4) in order to obtain homogeneous Dirichlet boundary conditions.
To do that we define two auxiliary functions

φ(t, x) = φ(t)
P − x
P − L, ψ(t, x) = ψ(t)

P − x
P − L.

Let us now introduce functions T̃ and Q̃ by

T (t, x) = T̃ (t, x) + φ(t, x), Q(t, x) = Q̃(t, x) + ψ(t, x).

The functions T̃ and Q̃ satisfy the following non-homogeneous equations:

(1.1) T̃t + Q̃x = f(t, x),
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(1.2) Q̃t +DT̃x + Q̃− κQ̃xx = g(t, x),

where

f(t, x) =
1

P − L

[
ψ(t)− (P − x)

d

dt
φ(t)

]
,

g(t, x) =
1

P − L

[
Dφ(t)− (P − x)

(
d

dt
ψ(t) + ψ(t)

)]
.

Note that the Dirichlet boundary condition is homogeneous:

T̃ (t, L) = Q̃(t, L) = T̃ (t, P ) = Q̃(t, P ) = 0,

and the initial conditions take the form

(1.3)
T̃ (0, x) = T̃ 0(x) = T 0(x)− φ(0)

P − x
P − L,

Q̃(0, x) = Q̃0(x) = Q0(x)− ψ(0)
P − x
P − L.

The functions T̃ and Q̃ are not yet satisfactory: the initial conditions for
them involve φ(0) and ψ(0), which may not exist. Therefore we introduce
new functions R and S:

R(t, x) =
t�

0

T̃ (s, x) ds, S(t, x) =
t�

0

Q̃(s, x) ds.

They are more regular, and satisfy the zero initial and boundary conditions.
Let us derive equations for R and S. It is easy to see that

Rt + Sx = F,(1.4)

St +DRx + S − κSxx = G,(1.5)

where

F (t, x) =
1

P − L
[ t�

0

ψ(s) ds− (P − x)φ(t)
]

+ T 0(x),(1.6)

G(t, x) =
1

P −L
[
D

t�

0

φ(s) ds− (P − x)
(
ψ(t) +

t�

0

ψ(s) ds
)]

+Q0(x).(1.7)

To define the weak formulation of our problem we introduce a space H:

Definition. Let H denote the Hilbert space of all pairs (V,W ) such
that

V, Vt,Wt ∈ L2(0, tmax;L2(L,P )),

W ∈ L2(0, tmax;H1
0 (L,P )).

Its norm is defined by
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‖(V,W )‖2H

=
tmax�

0

[‖V (s, ·)‖20 + ‖W (s, ·)‖20 + ‖Wx(s, ·)‖20 + ‖Vt(s, ·)‖20 + ‖Wt(s, ·)‖20] ds,

where ‖ · ‖0 = ‖ · ‖L2(L,P ).

Let R, S, V and W be sufficiently regular. Using the formulas

RxW +RWx = [RW ]x and SxxW + SxWx = [SxW ]x,

from (1.4) and (1.5) we obtain

DRtV +DSxV = DFV

and

StW −DRWx + [RW ]x + SW + κSxWx − κ[SxW ]x = GW.

Note that W satisfies the homogeneous boundary condition. Adding the last
two equations and integrating over [L,P ], we obtain

(1.8)
P�

L

[DRtV + StW ] dx+
P�

L

[D(SxV −RWx) + SW + κSxWx] dx

=
P�

L

(DFV +GW ) dx.

Define now bilinear forms

a, b : (L2(L,P )×H1
0 (L,P ))× (L2(L,P )×H1

0 (L,P ))→ R
by

a(U,Z;V,W ) =
P�

L

[D(ZxV − UWx) + ZW + κZxWx] dx,

b(U,Z;V,W ) =
P�

L

[DUV + ZW ] dx.

Observe that

a(U,Z;U,Z) =
P�

L

[D(ZxU − UZx) + Z2 + κZ2
x] dx

=
P�

L

[Z2 + κZ2
x] dx ≥ γ

P�

L

[Z2 + Z2
x] dx = γ‖Z‖21

where γ = min{1, κ}. This means the H1
0 (L,P )-ellipticity of the form a with

respect to the second argument of the pair (U,Z). Similarly

b(U,Z;U,Z) = D‖U‖20 + ‖Z‖20.
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Thus the form a+ b is L2(L,P )×H1
0 (L,P )-elliptic. Moreover, a is contin-

uous:

|a(U,Z;V,W )|
≤ C[‖Z‖0‖W‖0 + ‖Zx‖0‖Wx‖0 + ‖U‖0‖Wx‖0 + ‖Zx‖0‖V ‖0]

≤ C
√
‖U‖20 + ‖Z‖20 + ‖Zx‖20

√
‖V ‖20 + ‖W‖20 + ‖Wx‖20

≤ C1

√
‖Z‖21 + ‖U‖20

√
‖W‖21 + ‖V ‖20;

here and below (·, ·)0, (·, ·)1, ‖ · ‖0 and ‖ · ‖1 are the L2(L,P ) and H1
0 (L,P )

scalar products and norms, respectively, and C, C1 are positive constants.
Similarly,

|b(U,Z;V,W )| ≤ C
√
‖U‖20 + ‖Z‖20

√
‖V ‖20 + ‖W‖20.

Using the above notation we write (1.8) as

(1.9) b(Rt(t, ·), St(t, ·);V,W ) + a(R(t, ·), S(t, ·);V,W )

= b(F (t, ·), G(t, ·);V,W ),

with initial conditions

R(0, x) = 0 and S(0, x) = 0.

We now define a weak formulation of the problem admitting the bound-
ary conditions (0.3) with φ and ψ in L2(0, tmax). Note that F and G, as
functions of the variable t, are also in L2(0, tmax).

Weak formulation. Find a pair (R,S) ∈ H satisfying

R(0, x) = 0, S(0, x) = 0

for a.e. x in (L,P) such that for a.e. t in (0, tmax) and for all (V,W ) ∈ H,

(1.10) b(Rt(t, ·), St(t, ·);V,W ) + a(R(t, ·), S(t, ·);V,W )

= b(F (t, ·), G(t, ·);V,W ).

Our aim is to prove that the problem (1.10) is well posed. We first prove
the existence of a solution by the Galerkin method [4].

Let ξk∈L2(L,P ) and ζk∈H1
0 (L,P ), k=1, 2, . . . , be such that {ξ1, . . . , ξn}

and {ζ1, . . . , ζn} are linearly independent for each n, so that the subspaces
span{ξ1, . . . , ξn} and span{ζ1, . . . , ζn} are of dimension n.

Definition. Let rnj , s
n
j : [0, tmax]→ R for j = 1, . . . , n, n = 1, 2, . . . Set

Rn(t, x) =
n∑

j=1

rnj (t)ξj(x), Sn(t, x) =
n∑

j=1

snj (t)ζj(x).

The sequence {(Rn, Sn)} is a Galerkin solution of (1.10) if:
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• rnj : [0, tmax]→ R and snj : (0, tmax)→ R are absolutely continuous,
• for a.e. t in (0, tmax), k = 1, . . . , n, and n = 1, 2, . . . ,

b(Rnt(t, ·), Snt(t, ·); ξk, 0) + a(Rn(t, ·), Sn(t, ·); ξk, 0) = b(F,G; ξk, 0),

b(Rnt(t, ·), Snt(t, ·); 0, ζk) + a(Rn(t, ·), Sn(t, ·); 0, ζk) = b(F,G, 0; ζk).

Lemma 1.1. Let us introduce the following notation:

rn = [rn1 , . . . , r
n
n]T , sn = [sn1 , . . . , s

n
n]T ,

G1 = ((ξj , ξk)0)j,k=1,...,n, G2 = ((ζj , ζk)0)j,k=1,...,n,

H1 = ((ζ ′j , ξk)0)j,k=1,...,n, H2 = ((ζ ′j , ζ
′
k)0)j,k=1,...,n,

fn = [f1, . . . , fn]T , gn = [g1, . . . , gn]T ,

fk =
t�

0

(F, ξk)0 ds, gk =
t�

0

(G, ζk)0 ds.

If (Rn, Sn) is a Galerkin solution of (1.10), then

G1r
n(t) +

t�

0

H1s
n(t) ds = fn(t),

G2s
n(t) +

t�

0

[(G2 + κH2)sn(s)−DH1r
n(s)] ds = gn(t).

Proof. It is enough to use the definitions of a and b and the equations

b(Rn(t, ·), Sn(t, ·); ξk, 0) +
t�

0

a(Rn(s, ·), Sn(s, ·); ξk, 0) ds

=
t�

0

b(F,G; ξk, 0) ds,

b(Rn(t, ·), Sn(t, ·); 0, ζk) +
t�

0

a(Rn(s, ·), Sn(s, ·); 0, ζk) ds

=
t�

0

b(F,G; 0, ζk) ds.

Lemma 1.2. If F ∈L2(0, tmax;L2(L,P )) and G∈L2(0, tmax;L2(L,P )),
then there exists a unique Galerkin solution of (1.10).

Proof. By Lemma 1.1 we have

G1r
n +

t�

0

H1s
n ds = fn,

G2s
n +

t�

0

[(G2 + κH2)sn −DH1r
n] ds = gn.
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Note that fn and gn are absolutely continuous functions of t ∈ [0, tmax]. Let
w = [ rn, sn]T ; then w satisfies the following integral equation:

w = A

t�

0

w ds+ d,

where A is a constant 2n×2n matrix and d : [0, tmax]→ R2n is an absolutely
continuous vector-valued function, defined by G1, G2, H1, H2, fn and gn

respectively. To prove the existence of a solution, we proceed in a standard
way. First, we construct a sequence of absolutely continuous functions:

w0(t) = 0,

w1(t) = A

t�

0

w0(s) ds+ d(t) = d(t),

w2(t) = A

t�

0

w1(s) ds+ d(t), . . .

wk+1(t) = A

t�

0

wk(s) ds+ d(t), . . .

This sequence satisfies the estimate

|wk+1(t)− wk(t)| ≤ ‖A‖
ktkmax

k!
sup

t∈[0,tmax]
|w1(t)|

where | · | is a norm in R2n. From this inequality, using the standard proce-
dure, we prove that the sequence {wk(t)} converges uniformly in [0, tmax] to
a continuous function w, which is a solution of our integral equation. The
equation implies that w is absolutely continuous since � t0 w(s) ds and d are.
Uniqueness is proved in the standard way.

Lemma 1.3. If F ∈L2(0, tmax;L2(L,P )) and G∈L2(0, tmax;L2(L,P )),
then the Galerkin solution (Rn, Sn) satisfies the following estimates:

‖Rn(t, ·)‖20 + ‖Sn(t, ·)‖20 ≤ K1

for t ∈ [0, tmax], and
tmax�

0

(‖Rn(t, ·)‖20 + ‖Sn(t, ·)‖20 + ‖Snx(t, ·)‖20) dt ≤ K2,

where K1 and K2 are constants, determined by F and G, and independent
of n.

Proof. Since Rn, Sn are absolutely continuous with respect to t ∈
[0, tmax], for fixed k have
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b(Rnt(t, ·), Snt(t, ·); ξk, 0) + a(Rn(t, ·), Sn(s, ·); ξk, 0)

= b(F (t, ·), G(t, ·); ξk, 0),

b(Rnt(t, ·), Snt(t, ·); 0, ζk) + a(Rn(t, ·), Sn(s, ·); 0, ζk)

= b(F (t, ·), G(t, ·); 0, ζk)

a.e. in (0, tmax). Take the linear combination of the first equations with the
coefficients rnk (t), k = 1, . . . , n, and the linear combination of the second
equations with the coefficients snk (t), k = 1, . . . , n. Adding the resulting
equations, we obtain

b(Rnt(t, ·), Snt(t, ·);Rn(t, ·), Sn(t, ·)) + a(Rn(t, ·), Sn(·);Rn(t, ·), Sn(t, ·))
= b(F (t, ·), G(t, ·);Rn(t, ·), Sn(t, ·)).

Using the definition of a and b, we have

D

2
‖Rn(t, ·)‖20t +

1
2
‖Sn(t, ·)‖20t + ‖Sn(t, ·)‖20 + κ‖Snx(t, ·)‖20

= D(F (t, ·), Rn(t, ·))0 + (G(t, ·), Sn(t, ·))0

a.e. in (0, tmax). Integrating both sides over (0, t) for t ∈ [0, tmax], we have

D

2
‖Rn(t, ·)‖20 +

1
2
‖Sn(t, ·)‖20 +

t�

0

[‖Sn(s, ·)‖20 + κ‖Snx(s, ·)‖20] ds

=
t�

0

[D(F (s, ·), Rn(s, ·))0 + (G(s, ·), Sn(s, ·))0] ds

for t ∈ [0, tmax]. Applying the ε-inequality to the right-hand side, we obtain

(1.11)
D

2
‖Rn(t, ·)‖20 +

1
2
‖Sn(t, ·)‖20 +

t�

0

[‖Sn(s, ·)‖20 + κ‖Snx(s, ·)‖20] ds

≤ D

2

t�

0

‖F (s, ·)‖20
ε2 ds+

1
2

t�

0

‖G(s, ·)‖20
ε2 ds

+
D

2
ε2

t�

0

‖Rn(s, ·)‖20 ds+
ε2

2

t�

0

‖Sn(s, ·)‖20 ds.

Using the notation

C =
D

2

tmax�

0

‖F (s, ·)‖20
ε2 ds+

1
2

tmax�

0

‖G(s, ·)‖20
ε2 ds,

U(t) =
D

2
‖Rn(t, ·)‖20 +

1
2
‖Sn(t, ·)‖20,

we get the following Gronwall inequality (see for example [1]):
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0 ≤ U(t) ≤ C + ε2
t�

0

U(s) ds.

It yields, for example for ε = 1,

0 ≤ U(t) ≤ Cet ≤ Cetmax = K1.

This implies the first statement of the lemma. Moreover, for all n,
tmax�

0

‖Rn(s, ·)‖20 ds ≤
tmax�

0

[‖Rn(s, ·)‖20 + ‖Sn(s, ·)‖20] ds ≤ K3,

where K3 is a constant which depends on F and G only. From (1.11) we
have
t�

0

[‖Sn(s, ·)‖20 + κ‖Snx(s, ·)‖20] ds

≤
t�

0

[
D

2
· ‖F (s, ·)‖20

ε2 +
1
2
· ‖G(s, ·)‖20

ε2 +
D

2
ε2‖Rn(s, ·)‖20 +

ε2

2
‖Sn(s, ·)‖20

]
ds.

Using the estimate for U(t), for ε = 1 we get
tmax�

0

[‖Sn(s, ·)‖20 + κ‖Snx(s, ·)‖20] ds ≤ C + Cetmaxtmax = K4.

Hence,
tmax�

0

[‖Rn(s, ·)‖20 + ‖Sn(s, ·)‖20 + ‖Snx(s, ·)‖20] ds ≤ K2,

where K2 is a constant.

Lemma 1.4. Let F ∈L2(0, tmax;L2(L,P )) and G∈L2(0, tmax;L2(L,P )).
Then there exists a constant K, determined by F and G, such that for
the Galerkin solution (Rn, Sn) of (1.10) and for n = 1, 2, . . . the following
estimate holds:
tmax�

0

[‖Rn(s, ·)‖20+‖Sn(s, ·)‖20+‖Snx(s, ·)‖20+‖Rnt(s, ·)‖20+‖Snt(s, ·)‖20] ds≤K.

Proof. The proof reduces to showing that for some constant M ,

(1.12)
tmax�

0

[‖Rnt(s, ·)‖20 + ‖Snt(s, ·)‖20] ds ≤M.

Proceeding as in the proof of Lemma 1.3, we get

b(Rnt(t, ·), Snt(t, ·);Rnt(t, ·), 0) + a(Rn(t, ·), Sn(t, ·, );Rnt(t, ·), 0)

= b(F (t, ·), G(t, ·);Rnt(t, ·), 0).
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Hence,

|(Rnt(t, ·), Rnt(t, ·))0| ≤ |(Snx(t, ·), Rnt(t, ·))0|+ |(F (t, ·), Rnt(t, ·))0|
≤ ‖Snx(t, ·)‖0‖Rnt(t, ·)‖0 + ‖F (t, ·)‖0‖Rnt(t, ·)‖0,

and so
‖Rnt(t, ·)‖0 ≤ ‖Snx(t, ·)‖0 + ‖F (t, ·)‖0.

Integrating this inequality over (0, t) for t ∈ [0, tmax], we get

(1.13)
t�

0

‖Rnt(s, ·)‖0 ds ≤
t�

0

‖Snx(s, ·)‖0 ds+
t�

0

‖F (s, ·)‖0 ds,

which is bounded in view of Lemma 1.3. Similarly, by the definition of a
Galerkin solution, we have

(Snt(t, ·), Snt(t, ·))0 −D(Rn(t, ·), Snxt(t, ·))0 + (Sn(t, ·), Snt(t, ·))0

+ κ(Snx(t, ·), Snxt(s, ·))0 = (G(t, ·), Snt(t, ·))0.

After integration over (0, t) for t ∈ [0, tmax], we obtain

(1.14)
t�

0

‖Snt(s, ·)‖20 ds−D
t�

0

(Rn(s, ·), Snxt(s, ·))0 ds

+
t�

0

(Sn(s, ·), Snt(s, ·))0 ds+ κ

t�

0

(Snx(s, ·), Snxt(s, ·))0 ds

=
t�

0

(G(s, ·), Snt(s, ·))0 ds.

Observe that
t�

0

(Sn(s, ·), Snt(s, ·))0 ds =
1
2
‖Sn(t, ·)‖20

and
t�

0

(Snx(s, ·), Snxt(s, ·))0 ds =
1
2
‖Snx(t, ·)‖20,

since Sn(0, ·) = 0 and Snx(0, ·) = 0. We also have

−
t�

0

(Rn(s, ·), Snxt(s, ·))0 ds =
t�

0

(Rnt(s, ·), Snx(s, ·))0 ds−(Rn(t, ·), Snx(t, ·))0.

Using the ε-inequality for the second term, we get
∣∣∣
t�

0

(Rn(s, ·), Snxt(s, ·))0 ds
∣∣∣

≤ 2
t�

0

‖Snx(s, ·)‖20 ds+ 2
t�

0

‖Rnt(s, ·)‖20 ds+ C‖Rn(t, ·)‖20 +
ε2

2
‖Snx(t, ·)‖20.



Jeffreys model of heat conduction 339

Using (1.13), we obtain
∣∣∣
t�

0

(Rn(s, ·), Snxt(s, ·))0 ds
∣∣∣

≤ 4
t�

0

‖Snx(s, ·)‖20 ds+ 2
t�

0

‖F (s, ·)‖20 ds+
ε2

2
‖Snx(t, ·)‖20 + C‖Rn(t, ·)‖20

where C is a constant introduced by the ε-inequality. To estimate the term
� t0(G(s, ·), Snt(s, ·))0 ds, we again use the ε-inequality:

∣∣∣
t�

0

(G(s, ·), Snt(s, ·))0 ds
∣∣∣ ≤ C

t�

0

‖G(s, ·)‖20 ds+ ε2
t�

0

‖Snt(s, ·)‖20 ds.

Using these estimates in (1.14), we get

(1− ε2)
t�

0

‖Snt(s, ·)‖20 ds+
1
2
‖Sn(t, ·)‖20 +

1
2

(κ−Dε2)‖Sx(t, ·)‖20

≤ C
[ t�

0

‖F (s, ·)‖20 ds+
t�

0

‖G(s, ·)‖20 ds+ ‖Rn(t, ·)‖20 +
t�

0

‖Snx(s, ·)‖20 ds
]
,

where C is a positive constant. The terms of the right-hand side with Rn
and Snx are estimated by Lemma 1.3. From this, (1.13) and Lemma 1.3, the
inequality (1.12) follows.

Let us comment on the results obtained. Lemmas 1.3 and 1.4 imply
that if F,G ∈ L2(0, tmax;L2(L,P )), then any Galerkin solution is in the
space H. This justifies our choice of the space H for the weak formulation
of the problem.

Theorem 1.1. Assume that

• φ, ψ ∈ L2(0, tmax),
• T 0, Q0 ∈ L2(L,P ).

Then in H there exists a solution (R,S) of the problem (1.10).

Proof. Let

Xn =
{ n∑

j=1

ξjcj

∣∣∣ cj ∈ H1(0, tmax)
}
,

Yn =
{ n∑

j=1

ζjdj

∣∣∣ dj ∈ H1(0, tmax)
}
,

where ξj and ζj are as in the Galerkin solution. Observe that Xn ⊂ Xn+1

and Yn ⊂ Yn+1 for all n, and that

Xn × Yn ⊂ H.
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We can assume that the subspaces Xn and Yn satisfy the following approx-
imation condition:

For all (x, y) ∈ H and for all n there exist xn(x) ∈ Xn and yn(y) ∈ Yn
such that

‖(xn(x), yn(y))− (x, y)‖H → 0 as n→∞.

Let (Rn, Sn) be the Galerkin solution of the problem (1.10). By Lem-
mas 1.3 and 1.4 it follows that the sequence {(Rn, Sn)} is bounded in the
Hilbert space H, hence it has a subsequence, denoted also by {(Rn, Sn)},
weakly converging to some (R,S) ∈ H. We prove that (R,S) is a solution
of the problem (1.10). Fix m, and take n ≥ m. For k = 1, . . . ,m we have

b(Rnt(t, ·), Snt(t, ·); ξk, 0) + a(Rn(t, ·), Sn(t, ·); ξk, 0)

= b(F (t, ·), G(t, ·); ξk, 0),

b(Rnt(t, ·), Snt(t, ·); 0, ζk) + a(Rn(t, ·), Sn(t, ·); 0, ζk)

= b(F (t, ·), G(t, ·); 0, ζk),

a.e. in (0, tmax). Taking linear combinations with coefficients ck, dk ∈
H1(0, tmax) for the first and second equations respectively and k = 1, . . . ,m,
and adding the resulting equations, we get

b(Rnt(t, ·), Snt(t, ·);V,W ) + a(Rn(t, ·), Sn(t, ·);V,W )

= b(F (t, ·), G(t, ·);V,W ),

a.e. in (0, tmax), for all V ∈ Xm and W ∈ Ym. Letting n → ∞ and taking
into account the continuity of the forms a and b in H, we see that

b(Rt(t, ·), St(t, ·);V,W ) + a(R(t, ·), S(t, ·);V,W ) = b(F (t, ·), G(t, ·);V,W )

a.e. in (0, tmax), for all V ∈ Xm and W ∈ Ym and any m, and hence for all
(V,W ) = H, by the approximation property of the subspaces Xn and Yn.

Theorem 1.2. Under the assumptions of Theorem 1.1, the problem
(1.10) has a unique solution in H.

Proof. Suppose that (R,S) and (R1, S1) are two solutions of (1.10) in H.
For (U,Z) = (R−R1, S − S1) we have

b(Ut(t, ·), Zt(t, ·);V,W ) + a(U(s, ·), Z(s, ·);V,W ) ds = 0,

where U(0, ·) = Z(0, ·) = 0 for all (V,W ) ∈ H, a.e. in (0, tmax).
Setting now V = U and W = Z and using the definition of a and b, we

get
D(Ut, U)0 + (Zt, Z)0 + ‖Z‖20 + κ‖Zx‖20 = 0.

Integrating this equation over (0, t) for t ∈ (0, tmax), we obtain
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D

2
‖U(t, ·)‖20 +

1
2
‖Z(t, ·)‖20 +

t�

0

‖Z(s, ·)‖20 ds+ κ

t�

0

‖Zx(s, ·)‖20 ds = 0

for all t ∈ [0, tmax], which implies that R = R1 and S = S1.

Remark 1. It follows from Lemmas 1.3 and 1.4 that the problem (1.10)
is stable with respect to F and G, i.e.

‖(R,S)‖H ≤ C[‖F‖L2(0,tmax;L2(L,P )) + ‖G‖L2(0,tmax;L2(L,P ))],

where C is independent of F and G.

Remark 2. Theorems 1.1 and 1.2 imply that we may attribute to the
original problem (0.2)–(0.4) a generalized solution (T,Q) satisfying

R(t, x) =
t�

0

[T (s, x)− Φ(s, x)] ds,

S(t, x) =
t�

0

[Q(s, x)− Ψ(s, x)] ds,

where (R,S) ∈ H is the solution of (1.10). It follows that

T, Q,

t�

0

T (s, ·) ds ∈ L2(0, tmax;L2(L,P )),

however
t�

0

Q(s, ·) ds ∈ L2(0, tmax;H1(L,P )).

Note that T and even � t0 T (s, ·) ds are in L2(0, tmax;L2(L,P )). In fact the
initial and boundary values for (T,Q), T 0(x), Q0(x), Φ(t, 0), and Ψ(t, 0)
enter into the problem via the right-hand sides of the equations for (R,S),
but T (0, x), Q(0, x), T (t, 0) are not well defined. This explains why the
computed approximate solution (T,Q) of the original problem only weakly
depends on the boundary condition on T . The function Q is more regular,
hence its behaviour is slightly different.

2. Numerical model. On the rectangle Ω = [0, tmax]×[L,P ], we define
the grid

tn = τn, n = 0, 1, . . . , N, xk = L+ hk, k = 0, 1, . . . ,M + 1,

where tmax = τN and h(M + 1) = P − L.
Let f = {fk}k=0,1,...,M+1 be a real grid-function. The following notation

is used for finite differences:
∆fk = fk+1 − fk (forward difference),

∇fk = fk − fk−1 (backward difference).
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We denote by (·, ·)h and ‖ ·‖h the L2
h(L,P ) inner product and norm, respec-

tively:

(f, g)h = h
M∑

k=1

fkgk, ‖f‖2h = h
M∑

k=1

f2
k .

The values Tnk ,Qnk , . . . of grid-functions correspond to T (tn, xk),Q(tn, xk), . . .
where (T , Q) is the solution of (0.2)–(0.4) (see Section 1).

Let us now define the relevant discrete problem. The difference equations
for the grid-functions {Tnk } and {Qnk} are

(2.1) Tn+1
k − Tnk +

λ

4
(∆ +∇)(Qnk +Qn+1

k ) = 0,

(2.2) Qn+1
k −Qnk +

Dλ

4
(∆ +∇)(Tnk + Tn+1

k ) +
τ

2
(Qnk +Qn+1

k )

− κµ

2
(∇∆)(Qnk +Qn+1

k ) = 0,

where λ = τ/h and µ = τ/h2.
For these equations we impose initial conditions for the grid-functions

(2.3) T 0
k , Q

0
k, k = 1, . . .M,

and the following boundary conditions:

(2.4) Tn0 = φn, TnM+1 = 0, Qn0 = ψn, QnM+1 = 0, n = 0, 1, . . .N.

The right-hand sides of these conditions are given by certain averages of
the functions T 0, Q0 in L2(L,P ) or φ and ψ in L2(0, tmax) respectively. For
example

φn =
1
τ

tn+1�

tn

φ(s) ds, ψn =
1
τ

tn+1�

tn

ψ(s) ds,

and so on. Introducing, as in Section 1, the grid-functions

φnk = φn
(

1− kh

P − L

)
and ψnk = ψn

(
1− kh

P − L

)
,

k = 0, 1, . . . ,M + 1, n = 0, 1, . . . , N,

and
T̃nk = Tnk − φnk , Q̃nk = Qnk − ψnk ,

we write down equations for T̃ and Q̃:

T̃n+1
k − T̃nk +

λ

4
(∆ +∇)(Q̃nk + Q̃n+1

k ) = Fnk ,

Q̃n+1
k − Q̃nk +

Dλ

4
(∆ +∇)(T̃nk + T̃n+1

k ) +
τ

2
(Q̃nk + Q̃n+1

k )

− κµ

2
(∇∆)(Q̃nk + Q̃n+1

k ) = Gnk .
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Here

Fnk =
τ

2
· ψ

n + ψn+1

(P − L)
− (φn+1 − φn)

(
1− kh

P − L

)
,

Gnk =
τ

2
· D

P − L (φn + φn+1) =
[
ψn+1−ψn+

τ

2
(ψn+ψn+1)

](
1− kh

P −L

)
.

Let us finally introduce grid-functions Rnk and Snk :

Rnk = τ

n∑

j=0

T̃ jk , R0
k = τ

[
T 0
k − φ(0)

(
1− kh

P − L

)]
,

Snk = τ
n∑

j=0

Q̃jk, S0
k = τ

[
Q0
k − ψ(0)

(
1− kh

P − L

)]
.

Multiplying both sides of the last two equations by τ and then adding them
for j = 0, 1, . . . , n, we get equations for {Rnk} and {Snk }:

(2.5) Rn+1
k −Rnk +

λ

4
(∆ +∇)(Snk + Sn+1

k ) = τΦnk ,

(2.6) Sn+1
k − Snk +

Dλ

4
(∆ +∇)(Rnk +Rn+1

k ) +
τ

2
(Snk + Sn+1

k )

− κµ

2
(∇∆)(Snk + Sn+1

k ) = τΨnk ,

where

Φnk = T 0
k +

λ

4
(Q0

k+1 −Q0
k−1) +

λ

M + 1

n∑

j=0

ψ(tj)

+
λ

2(M + 1)
ψ(tn+1)−

(
1− k

M + 1

)
φ(tn+1),

Ψnk =
λD

2(M + 1)

[
φ(0) + 2

n∑

j=0

φ(tj) + φ(tj+1)
]

+
(

1− k

M + 1

)[(
1− τ

2

)
φ(0)− τ

n∑

j=1

ψ(tj)−
(

1 +
τ

2

)
ψ(tn+1)

]

+
(

1 +
τ

2

)[
Q0
k −

(
1− k

M + 1

)
ψ(0)

]

+
λD

4

[
T 0
k+1 − T 0

k−1 +
2

M + 1
φ(0)

]
− κµ

2
∇∆Q0

k

for n = 1, . . . , N .
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For the original functions Tnk and Qnk we have

Tn+1
k =

Rn+1
k −Rnk

τ
+ φnk , Qn+1

k =
Sn+1
k − Snk

τ
+ ψnk .

Let now {fk}k=0,1,...,M+1 and {gk}k=0,1,...,M+1 be two grid-functions.
We need the following facts:

Lemma 2.1. If fM+1 = g0 = 0, then
M∑

k=1

gk∆fk = −
M∑

k=1

fk∇gk.

Proof. We have
M∑

k=1

gk∆fk =
M∑

k=1

fk+1gk −
M∑

k=1

fkgk =
M+1∑

k=2

fkgk−1 −
M∑

k=1

fkgk

=
M∑

k=2

fk(gk−1 − gk) + fM+1gM − f1g1

=
M∑

k=2

fk(gk−1 − gk) + f1(g0 − g1) = −
M∑

k=1

fk∇gk.

Lemma 2.2. If f0 = gM+1 = 0, then
M∑

k=1

gk∇fk = −
M∑

k=1

fk∆gk.

Proof. Exchange fk and gk.

Lemma 2.3. If g0 = gM+1, then
M∑

k=1

gk∇∆fk = −
M∑

k=0

∆fk∆gk.

Proof. Let Fk = ∆fk. We have
M∑

k=1

gk∇∆fk =
M∑

k=1

gkFk −
M−1∑

k=0

Fkgk+1

=
M−1∑

k=1

Fk(gk − gk+1) + gmFM − g1F0

= −
M−1∑

k=1

Fk(gk+1 − gk) + gMFM − gM+1FM

= −F0g1 + F0g0 = −
M∑

k=0

Fk(gk+1 − gk) = −
M∑

k=0

∆fk∆gk.



Jeffreys model of heat conduction 345

Lemma 2.4 (Gronwall inequality). Let un ≥ 0, γn ≥ 0, γn ≤ γn+1, c ≥ 0
for all n = 0, 1, 2, . . . If

0 ≤ un ≤ γn + c
n−1∑

j=0

uj for all n = 0, 1, . . . ,

then
0 ≤ un ≤ enc(γn + u0) for all n = 0, 1, . . .

Proof. Let us proceed by induction. We have 0 ≤ u0 ≤ (γ0 + u0) =
e0c(γ0 + u0). Assume the statement to be true for uj , 0 ≤ j ≤ n. Then

0 ≤ un+1 ≤ γn+1 + c
n∑

j=0

uj ≤ γn+1 + c
n∑

j=0

ejc(γj + u0)

≤ γn+1 + c
n∑

j=0

ejc(γn+1 + u0)

≤ γn+1

[
1 + c

n∑

j=0

(ec)j
]

+ u0c
n∑

j=0

(ec)j .

Observe that

c
n∑

j=0

(ec)j = c
ec(n+1) − 1
ec − 1

and 1 + c
ec(n+1) − 1

c
= ec(n+1).

But c ≤ ec − 1, hence

c

n∑

j=0

(ec)j ≤ ce
c(n+1) − 1

c
≤ ec(n+1).

Hence

un+1 ≤ γn+1

[
1 + c

n∑

j=0

(ec)j
]

+ u0c

n∑

j=0

(ec)j ≤ ec(n+1)(γn+1 + u0).

We are now in a position to state the first stability result. For an arbitrary
grid-function {Unk }k=1,...,M , let

Un = [Un1 , . . . , U
n
M ]T .

Theorem 2.1. There exists a positive constant K, independent of τ
and h, such that for m = 0, 1, . . . , N − 1 (N ≤ tmax/τ),

D‖Rm‖2h + ‖Sm‖2h ≤ K
[
‖R0‖2h + ‖S0‖2h + τ

m∑

k=0

(‖Φk‖2h + ‖Ψk‖2h)
]
.

Proof. Multiply (2.5) and (2.6) by Dh(Rn+1
k + Rnk ) and h(Sn+1

k + Snk )
respectively and sum each of them over k = 1, . . . ,M . Summing the resulting
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two equations for n = 0, 1, . . . ,m, we get

D[‖Rm+1‖2h − ‖R0‖2h] +
λD

4

m∑

n=0

((∆ +∇)(Sn + Sn+1), Rn +Rn+1)h

= τD
m∑

n=0

(Φn, Rn +Rn+1)h,

and

‖Sm+1‖2h − ‖S0‖2h +
λD

4

m∑

n=0

((∆ +∇)(Rn +Rn+1), Sn + Sn+1)h

+
τ

2

m∑

n=0

‖Sn + Sn+1‖2h −
κµ

2

m∑

n=0

((∇∆)(Sn + Sn+1), Sn + Sn+1)h

= τ

m∑

n=0

(Ψn, Sn + Sn+1)h.

Adding the resulting equations, by Lemmas 2.1–2.3 we have

D‖Rm+1‖2h+‖Sn+1‖2h+
τ

2

m∑

n=0

‖Sn+Sn+1‖2h+
κµ

2

m∑

n=0

M∑

k=0

h[∆(Snk +Sn+1
k )]2

= τD

m∑

n=0

(Φn, Rn +Rn+1)h + τ

m∑

n=0

(Ψn, Sn + Sn+1)h +D‖R0‖2h + ‖S0‖2h.

Applying now the ε-inequality to the terms (Φn, Rn + Rn+1)h and (Ψn,
Sn + Sn+1)h, we obtain

(2.7) D(1− 2ετ)‖Rm+1‖2h + (1− 2ετ)‖Sm+1‖2h

+
τ

2

m∑

n=0

‖Sn + Sn+1‖2h +
κτ

2

m∑

n=0

M∑

k=0

h

[
∆(Snk + Sn+1

k )
h

]2

≤ 2ετ
m∑

n=0

[D‖Rn‖2h + ‖Sn‖2h]

+D‖R0‖2h + ‖Sn‖2h +K1τ

m∑

n=0

[D‖Φn‖2h + ‖Ψn‖2h].

Set

um+1 = D‖Rm+1‖2h + ‖Sm+1‖2h,

γm+1 =
K1

1−2ετ
τ

m∑

n=0

[D‖Φn‖2h + ‖Ψn‖2h] +
D

1−2ετ
‖R0‖2h +

1
1−2ετ

‖S0‖2h,

c = τ
2ε

1− 2ετ
,
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and apply the Gronwall inequality (Lemma 2.4). This implies, for 0 ≤ m ≤
N ≤ tmax/τ ,

D‖Rm‖2h + ‖Sm‖2h ≤ emτ2ε/(1−2ετ)

×
[

K1

1− 2ετ
τ

m∑

n=0

(D‖Φn‖2h + ‖Ψn‖2h) +
D

1− 2ετ
‖R0‖2h +

1
1− 2ετ

‖S0‖2h
]
.

We can choose a constant K such that for all n with 0 ≤ n ≤ N ,

D‖Rm‖2h + ‖Sm‖2h ≤ K
[
τ

m∑

n=0

(‖Φn‖2h + ‖Ψn‖2h) + ‖R0‖2h + ‖S0‖2h
]
,

since mτ ≤ Nτ ≤ tmax.

We now state the second stability result.

Theorem 2.2. There is a positive constant K independent of τ and h
such that for m = 1, . . . , N − 1 (N ≤ tmax/τ),

D‖Rm+1‖2h + ‖Sm+1‖2h

+
τ

2

m∑

n=0

‖Sn + Sn+1‖2h +
κτ

2

m∑

n=0

M∑

k=0

h

[
∆(Snk + Sn+1

k )
h

]2

≤ K
[
τ

N∑

n=0

(‖Φn‖2h + ‖Ψn‖2h) + ‖R0‖2h + ‖S0‖2h
]
.

Proof. For sufficiently small ε the inequality (2.7) implies

D‖Rm+1‖2h+‖Sm+1‖2h+
τ

2

m∑

n=0

‖Sn+Sn+1‖2h+
κ

2

m∑

n=0

M∑

k=0

hτ

[
∆(Snk +Sn+1

k )
h

]2

≤ D‖Rm+1‖2h + ‖Sm+1‖2h +
τ

2(1− 2ετ)

m∑

n=0

‖Sn + Sn+1‖2h

+
κ

2(1− 2ετ)

m∑

n=0

M∑

k=0

hτ

[
∆(Snk + Sn+1

k )
h

]2

≤ K1

1− 2ετ
τ

m∑

n=0

[D‖Φn‖2h + ‖Ψn‖2h]

+
D

1− 2ετ
‖R0‖2h +

1
1− 2ετ

‖S0‖2h

+
2ετ

1− 2ετ

m∑

n=0

[D‖Rn‖2h + ‖Sn‖2h].
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Applying now Theorem 2.1 to the last sum and taking into account that
τm ≤ τN = tmax, we obtain the assertion with some constant K.

Remark 3. Theorems 2.1 and 2.2 give the stability of the finite dif-
ference scheme (2.5), (2.6). Theorem 2.1 gives the stability in the discrete
norm, the max norm with respect to t and the discrete L2 norm with respect
to x. Theorem 2.2 gives the stability in some stronger norm. By well-known
theory, the convergence in the corresponding norms follows from the stabil-
ity [8].

We now derive a stability result for the scheme with the grid-functions
{Tnk } and {Qnk}, corresponding directly to the original problem (0.2)–(0,4).
For that we introduce divided differences (Rn+1 −Rn)/τ and (Sn+1−Sn)/τ .

It is convenient to use the following simple estimate:
Let f = [f1, . . . , fM ]T and f0 = fM+1 = 0. Then

(2.8) ‖(∆ +∇)f‖2h ≤ 4
M∑

k=0

h(∆fk)2.

Theorem 2.3. There exists a constant K independent of τ and h such
that for all m < N = tmax/τ ,

m−1∑

n=0

τ

∥∥∥∥
Rn+1 −Rn

τ

∥∥∥∥
2

h

+
m−1∑

n=0

τ

∥∥∥∥
Sn+1 − Sn

τ

∥∥∥∥
2

h

+ ‖Sm‖2h +
M∑

k=0

h

(
∆Smk
h

)2

≤ K
[
‖R0‖2h + ‖S0‖2h +

M∑

k=0

h

(
∆S0

k

h

)2

+
N∑

n=0

τ‖Φn‖2h +
N∑

n=0

τ‖Ψn‖2h
]
.

Proof. From (2.5) we deduce
∥∥∥∥
Rn+1 −Rn

τ

∥∥∥∥
2

h

≤ 1
8

∥∥∥∥
∆ +∇
h

∥∥∥∥
2

h

+ 2‖Φn‖h2,

and by (2.8), summing with respect to m < N = tmax/τ , we get

τ
m∑

n=0

∥∥∥∥
Rn+1 −Rn

τ

∥∥∥∥
2

h

≤ τ

2

m∑

n=0

h
M∑

k=0

[
∆(Snk + Sn+1

k )
h

]2

+ 2τ
m∑

n=0

‖Φn‖2h.

This gives the estimate

(2.9) τ

m∑

n=0

∥∥∥∥
Rn+1 −Rn

τ

∥∥∥∥
2

h

≤ K
{
τ

N∑

n=0

[‖Φn‖2h+‖Ψn‖2h]+‖R0‖2h+‖S0‖2h
}

for a constant K independent of τ and h. Using Lemmas 2.1 and 2.2, we
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deduce from (2.6) that

m∑

n=0

τ

∥∥∥∥
Sn+1 − Sn

τ

∥∥∥∥
2

h

+
1
2
‖Sm+1‖2h +

κ

2
h
M∑

k=0

(
∆Sm+1

k

h

)2

=
1
2
‖S0‖2h +

κ

2
h
M∑

k=0

(
∆S0

k

h

)2

+
D

4

m∑

n=0

h
M∑

k=1

[
∆ +∇
h

(Sn+1
k − Snk )

]
(Rn+1

k +Rnk )

+ τ
m∑

n=0

(
Φn,

Sn+1 − Sn
τ

)

h

.

We have

m∑

n=0

h
M∑

k=1

[
∆ +∇
h

(Sn+1
k − Snk )

]
(Rn+1

k +Rnk )

= − τ
m∑

n=1

h
M∑

k=1

[
∆ +∇
h

Snk

](
Rn+1
k −Rnk

τ
− Rnk −Rn−1

k

τ

)

− h
M∑

k=1

[
∆ +∇
h

S0
k

]
(R0

k +R1
k) + h

M∑

k=1

[
∆ +∇
h

Sm+1
k

]
(Rmk +Rm+1

k )

and hence

m∑

n=0

τ

∥∥∥∥
Sn+1 − Sn

τ

∥∥∥∥
2

h

+
1
2
‖Sm+1‖2h +

κ

2
h

M∑

k=0

(
∆Sm+1

k

h

)2

=
1
2
‖S0‖2h +

κ

2
h

M∑

k=0

(
∆S0

k

h

)2

− D

4
τ

m∑

n=1

(
∆ +∇
h

Sn,
Rn+1 −Rn

τ
− Rn −Rn−1

τ

)

h

+
D

4

(
∆ +∇
h

S0, R0 +R1
)

h

− D

4

(
∆ +∇
h

Sm+1, Rm+1 +Rm
)

h

+ τ
m∑

n=0

(
Φn,

Sn+1 − Sn
τ

)

h

.

Using the ε-inequality twice, we obtain
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(1− ε)
m∑

n=0

τ

∥∥∥∥
Sn+1 − Sn

τ

∥∥∥∥
2

h

+
1
2
‖Sm+1‖2h +

(
κ

2
− ε
)
h
M∑

k=0

(
∆Sm+1

k

h

)2

≤ 1
2
‖S0‖2h +Kh

M∑

k=0

(
∆S0

k

h

)2

+ τK
m∑

n=1

M∑

k=0

h

(
∆
h
Snk

)2

+Kτ
m∑

n=1

∥∥∥∥
Rn+1 −Rn

τ

∥∥∥∥
2

h

+Kτ
m∑

n=1

∥∥∥∥
Rn −Rn−1

τ

∥∥∥∥
2

h

+K‖R0‖2h +K‖R1‖2h +K‖Rm‖2h +K‖Rm+1‖2h + τK
m∑

n=0

‖Ψn‖2h.

Using now the Gronwall inequality (Lemma 2.4) to the terms
∑M
k=0(∆

h S
n
k )2,

inequality (2.9), Theorems 2.1 and 2.2, we get the final result.

Figure 1

Remark 4. The last theorem gives the stability and convergence for
the finite difference scheme, directly for the original grid-functions {T nk }
and {Qnk}.
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Remark 5. We now briefly discuss certain numerical experiments which
confirm our results. The numerical solution of the problem (0.2)–(0.4) with
D = 0.35 and κ = 0.01 is obtained by the scheme (2.1)–(2.4) for the original
problem. The graph shown in Fig. 1 corresponds to experiments described
in [1] and [4]. Two curves T (t, x) and Q(t, x) are given, both for t = 0.2 pi-
coseconds (time from the beginning of the experiment). For both functions
the zero initial conditions and zero Dirichlet boundary conditions at x = P
are imposed. The heat impulse is modelled by the boundary conditions of
the Dirichlet type at x = L, which depend on t. For T this impulse is con-
stantly equal to zero, while Q(t, L) is a discontinuous rectangular impulse
lasting 0.096 picoseconds. A weaker regularity of the function T (temper-
ature) compared to Q (heat flux) is visible: see oscillations near the left
boundary, and then a sudden jump and stabilization at a positive level, be-
fore the wave peak. This means that the zero boundary condition imposed
at x = L for T does not play any role even very close to the start point of
the heat impulse. The heat flux Q behaves in a more regular way. It is a
travelling wave of the form of smoothed initial impulse.
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