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SOLVABILITY CONDITIONS FOR ELLIPTIC PROBLEMS
WITH NON-FREDHOLM OPERATORS

Abstract. The paper is devoted to solvability conditions for linear
elliptic problems with non-Fredholm operators. We show that the opera-
tor becomes normally solvable with a finite-dimensional kernel on properly
chosen subspaces. In the particular case of a scalar equation we obtain neces-
sary and sufficient solvability conditions. These results are used to apply the
implicit function theorem for a nonlinear elliptic problem; we demonstrate
the persistence of travelling wave solutions to spatially periodic perturba-
tions.

1. Introduction. Consider the elliptic operator

Lu = a(x)∆u+
n∑

j=1

bj(x)
∂u

∂xj
+ c(x)u(1.1)

acting from C2+α(Rn) to Cα(Rn). Here u = (u1, . . . , up), a(x), bj(x), c(x) are
p× p matrices with Cα(Rn) entries, and a(x) is symmetric positive definite,

(a(x)ξ, ξ) ≥ a0|ξ|2

for any vector ξ ∈ Rp, x ∈ Rn with a constant a0 > 0.
The space Ck+α(Rn), α > 0, is the space of functions bounded in Rn

together with their derivatives up to order k, and the senior derivatives
satisfying the Hölder condition with exponent α uniformly in x. To simplify
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the presentation, we consider the case n = 2 with the independent variables
x and y.

An important role in what follows is played by the location of the es-
sential spectrum. To determine it explicitly, we make some simplifying as-
sumptions. We assume the existence of the limits

a(x, y)→ a±(y), bj(x, y)→ b±j (y), c(x, y)→ c±(y)

as x→ ±∞. Here the convergence is uniform in y on every bounded set in
R1. If y → ±∞, then

a(x, y)→ a0
±, bj(x, y)→ b0j±, c(x, y)→ c0

±

uniformly on every bounded set. Here a0
±, b

0
j±, and c0

± are constant matrices,

a0
± = lim

y→±∞
a±(y), b0j± = lim

y→±∞
b±j (y), c0

± = lim
y→±∞

c±(y).

These assumptions allow us to define the limiting operators

L±u = a±(y)∆u+ b±1 (y)
∂u

∂x
+ b±2 (y)

∂u

∂y
+ c±(y)u,(1.2)

L0
±u = a0

±∆u+ b01±
∂u

∂x
+ b02±

∂u

∂y
+ c0
±u.(1.3)

Consider the problems

L±u = λu, L0
±u = λu.(1.4)

If one of them has a nonzero solution in C2+α(R2), then the corresponding
value of λ belongs to the essential spectrum of the operator L, i.e., the
operator L− λI is not Fredholm [6], [2].

We suppose that the last problem in (1.4) does not have nonzero solutions
for any λ with nonnegative real part and that there exists a nonzero solution
of at least one of the limiting problems

L+u = 0,(1.5)

L−u = 0,(1.6)

in C2+α(R2). Then the operator L is not Fredholm. Therefore the usual
solvability conditions for Fredholm operators are not applicable here. In
this work we study the solvability conditions for non-Fredholm operators.
In the next section we construct a reduction of the operator to a subspace
where its image is closed and the kernel is finite-dimensional. This allows us
to localize the non-Fredholm properties of the operator in a complementary
subspace.

In Section 3 we consider a scalar equation. We verify the conditions im-
posed on the operators in Section 2 and we obtain more complete solvability
conditions.
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In the last section we consider some applications to nonlinear elliptic
problems.

2. Normal solvability. We suppose for convenience that both prob-
lems (1.5) and (1.6) have nonzero solutions. We impose the following con-
ditions.

Condition 1. Problems (1.5) and (1.6) have unique nonzero solutions
v+ ∈ C2+α(R1) and v− ∈ C2+α(R1), respectively.

Condition 2. The coefficients of the limiting operators are sufficiently
smooth, and the formally adjoint problems

L̂±u ≡ ∆(â±(y)u)− ∂(̂b±1 (y)u)
∂x

− ∂(̂b±2 (y)u)
∂y

+ ĉ±(y)u = 0(2.1)

have nonzero solutions v̂± ∈ C2+α(R1) such that
�

R1

|v̂±(y)| dy <∞

and �

R1

(v+(y), v̂+(y)) dy 6= 0,
�

R1

(v−(y), v̂−(y)) dy 6= 0.

Here â±, b̂±j , ĉ
± are the matrices transposed to a±, b±j , c

±, respectively
and ( , ) denotes the inner product in R2.

Condition 3. Let

a11 =
�

R1

(v+(y), v̂+(y)) dy, a12 =
�

R1

(v−(y), v̂+(y)) dy,

a21 =
�

R1

(v+(y), v̂−(y)) dy, a22 =
�

R1

(v−(y), v̂−(y)) dy.

Then a11a22 6= a12a21.

Condition 4. Let yk → ±∞,

a(x, y + yk)→ a0
±, bj(x, y + yk)→ b0j±, c(x, y + yk)→ c0

±

uniformly on every bounded set, where a0
±, b

0
j±, and c0

± are constant matri-
ces. The limiting problems

L0u ≡ a0
±∆u+ b01±

∂u

∂x
+ b02±

∂u

∂y
+ c0
±u = 0

do not have nonzero solutions in C2+α(R2).

Introducing the operators

L±1 u = a±(y)
∂2u

∂y2 + b±2 (y)
∂u

∂y
+ c±(y)u
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acting from C2+α(R1) to Cα(R1), we note that

L±1 v
± = 0, (L±1 )∗v̂± = 0.

The essential spectrum λ(ξ) of these operators, which is also a part of
the essential spectrum of the operator L, is a set of all complex numbers λ
satisfying the following algebraic equation:

det(−a0
±ξ

2 + ib02±ξ + c0
± − λ) = 0, ξ ∈ R1.

If it lies in the left half-plane, then the operators L±1 are Fredholm with zero
index [3]. According to Condition 1 they have a zero eigenvalue. Condition 2
means that it is simple.

Set E = C2+α(R2), E′ = Cα(R2) and

E0 =
{
u ∈ E :

�

R1

u(x)v̂+(y) dy =
�

R1

u(x)v̂−(y) dy = 0, ∀x ∈ R1
}
.

Lemma 2.1. For any u ∈ E the following representation holds:

u(x, y) = u0(x, y) + c+(x)v+(y) + c−(x)v−(y),

where u0 ∈ E0, c± ∈ C2+α(R1).

Proof. Let c+(x), c−(x) be a solution of the system

a11c
+(x) + a12c

−(x) =
�

R1

u(x, y)v̂+(y) dy,(2.2)

a21c
+(x) + a22c

−(x) =
�

R1

u(x, y)v̂−(y) dy.(2.3)

The integrals on the right-hand sides of (2.2), (2.3) are well defined, and
they belong to C2+α(R1) as functions of x.

By Condition 3 we can find c± ∈ C2+α(R1) from (2.2), (2.3). The func-
tion

u0(x, y) = u(x, y)− c+(x)v+(y)− c−(x)v−(y)

belongs to E0. The lemma is proved.

Thus we can represent the space E as a direct sum of E0 and the com-
plementary subspace

Ê = {u ∈ E : u = c+(x)v+(y) + c−(x)v−(y), c± ∈ C2+α(R1)}.
Remark. If v+(y) ≡ v−(y), then Condition 3 is not satisfied. Instead

of the representation in Lemma 2.1, in this case we put

u(x, y) = u0(x, y) + c(x)v(y).

Lemma 2.2. Let a sequence uk ∈ E0 be bounded in the norm of E. If
uk → u0 uniformly on every bounded set , then u0 ∈ E0.

The proof is obvious.
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Lemma 2.3. The kernel of the operator L : E0 → E′ is finite-dimen-
sional.

Proof. Consider a sequence uk ∈ E0 with ‖uk‖ ≤ 1 and

Luk = 0.(2.4)

We will show that it has a converging subsequence. From this we will con-
clude that the unit sphere in the kernel of the operator is compact and,
consequently, the kernel is finite-dimensional.

Since uk is bounded in C2+α(R2), there exists a subsequence, still de-
noted by uk, converging to some u0 ∈ E in C2 uniformly on every bounded
set. Passing to the limit in (2.4), we obtain Lu0 = 0. Set vk = uk−u0. Then
Lvk = 0.

We show that the convergence vk → 0 is uniform in R2. Suppose that it
is not and there exists a sequence (xk, yk) such that

|vk(xk, yk)| ≥ ε > 0.

Then x2
k + y2

k →∞.
Consider first the case where yk are uniformly bounded. Then we can

assume that yk → y0 and xk converges to +∞. Put

wk(x, y) = vk(x+ xk, y + yk).

We have

a(x+ xk, y + yk)∆wk + b1(x+ xk, y + yk)
∂wk
∂x

+ b2(x+ xk, y + yk)
∂wk
∂y

+ c(x+ xk)wk = 0,

|wk(0)| ≥ ε, and wk converges to some w0 in C2 uniformly on every bounded
set. Therefore

a+(y + y0)∆w0 + b+1 (y + y0)
∂w0

∂x
+ b+2 (y + y0)

∂w0

∂y
+ c+(y + y0)w0 = 0.

By Condition 1, w0(x, y) ≡ v+(y + y0).
On the other hand�

R1

vk(x+ xk, y + yk)v̂+(y + yk) dy

=
�

R1

(uk(x+ xk, y + yk)− u0(x+ xk, y + yk))v̂+(y + yk) dy = 0, ∀x ∈ R1,

for all k, because uk and u0 belong to E0, and
�

R1

w0(x, y)v̂+(y + y0) dy = lim
k→∞

�

R1

vk(x+ xk, y + yk)v̂+(y + yk) dy.

We obtain a contradiction with Condition 2.
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Therefore, vk → 0 uniformly in R2. The Schauder estimate [1] implies
the convergence vk → 0 in C2+α(R2). Hence the unit sphere in the kernel of
the operator is compact.

Suppose now that |yk| is unbounded. As above, we obtain a nonzero
solution of one of the limiting problems

a0
±∆u+ b01±

∂u

∂x
+ b2

0
±
∂u

∂y
+ +c0

±u = 0.

This contradicts Condition 4. The lemma is proved.

Lemma 2.4. The image of the operator L : E0 → E′ is closed.

Proof. Let

Luk = fk,(2.5)

fk ∈ E′, fk → f0, uk ∈ E0. We will show that there exists u0 ∈ E0 such that
Lu0 = f0.

Consider first the case where the sequence uk is bounded in E. Then
we can choose a subsequence converging to some u0 ∈ E in C2 uniformly
on every bounded set. Therefore u0 ∈ E0. Passing to the limit in (2.5), we
obtain Lu0 = f0.

Suppose now that the sequence uk is unbounded. Since the kernel of the
operator L in E0 is finite-dimensional, we can represent E0 as a direct sum
of KerL and a complementary subspace Ê0. Then

uk = ûk + u0
k,

where ûk ∈ Ê0, u0
k ∈ KerL. Then Lûk = fk. If the sequence ûk is bounded,

we can proceed as above to obtain a function û0 ∈ E0 such that Lû0 = f0.
Suppose now that ûk is not bounded. Define

vk = ûk/‖ûk‖E , gk = fk/‖ûk‖E .
Then

Lvk = gk.(2.6)

We will show that there exists a subsequence of vk converging to some
v0 ∈ Ê0 in E and such that Lv0 = 0. This will contradict the definition
of Ê0.

Since vk is bounded, there exists a subsequence, denoted again by vk,
converging to some v0 ∈ E in C2 uniformly on every bounded set. We have
v0 ∈ E0. Let us show that this convergence is uniform in R2.

Passing to the limit in (2.6), we have

Lv0 = 0

and for wk = vk − v0,
Lwk = gk.
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Suppose wk → 0 on every bounded set but not uniformly in R2. Then there
exists a sequence (xk, yk) such that

|wk(xk, yk)| ≥ ε.
Obviously, x2

k + y2
k → ∞. If yk is unbounded, then we obtain a nonzero

solution of one of the limiting problems

a0
±∆u+ b01±

∂u

∂x
+ b02±

∂u

∂y
+ c0
±u = 0.

This contradicts Condition 4.
If yk is bounded, then we can assume that yk → y0, xk → +∞. Put

ωk(x, y) = wk(x+ xk, y + yk). We can choose a subsequence ωk converging
to some ω0 in C2 uniformly on every bounded set. From the equation

a(x+ xk, y + yk)∆ωk + b1(x+ xk, y + yk)
∂ωk
∂x

b2(x+ xk, y + yk)
∂ωk
∂y

+ c(x+ xk, y + yk)ωk = gk(x+ xk, y + yk)

we obtain

a+(y + y0)∆ω0 + b+1 (y + y0)
∂ω0

∂x
+ b+2 (y + y0)

∂ω0

∂y
+ c+(y + y0)ω0 = 0.

Hence ω0(x, y) = v+(y + y0).
As in the previous lemma we have

�

R1

ω0(x, y)v̂+(y + y0) dy

= lim
k→∞

�

R1

(vk(x+ xk, y + yk)− v0(x+ xk, y + yk))v̂+(y + yk) dy = 0.

This contradicts Condition 2.
Thus we have shown that vk → v0 uniformly on R2. From the Schauder

estimate we obtain the convergence in E. Therefore v0 ∈ Ê0 and Lv0 = 0.
This contradiction proves the lemma.

Along with the subspace E0 we can consider the subspaces

Er,s =
{
u ∈ E :

�

R1

u(x, y)v̂+(y) dy = 0, ∀x ≥ r,
�

R1

u(x, y)v̂−(y) dy = 0, ∀x ≤ s}.

Theorem 2.1. For any r and s the operator L : Er,s → E′ has a finite-
dimensional kernel and closed image.

The proof is the same as above for the subspace E0.
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If we consider a sequence rn converging to +∞ and a sequence sn con-
verging to −∞, we obtain a sequence of subspaces

. . . ⊂ Ern,sn ⊂ Ern+1,sn+1 ⊂ . . .
and the corresponding sequence of images

. . . ⊂ L(Ern,sn) ⊂ L(Ern+1,sn+1) ⊂ . . .
Their union may not be closed. Thus the image of a non-Fredholm operator
can be a countably normed space and not a normed space as for a Fredholm
operator.

There are other possible ways to define subspaces of E where the image
of the operator L is closed. Consider a subspace of functions periodic in x
with a period τ and mean value 0:

Eτ =
{
u ∈ E : u(x+ τ, y) = u(x, y),

τ�

0

u(x, y) dx = 0, ∀y
}
.

Let

Eτ1,...,τm =
m∑

i=1

aiui,(2.7)

where ai are constants and ui ∈ Eτi . Without loss of generality we can
assume that the periods τ1, . . . , τm are linearly independent. This means
that no one of them can be represented as a linear combination with rational
coefficients of other periods.

Consider a sequence {uk} of functions having the form (2.7). Suppose
that it is uniformly bounded in the norm of C2+α(R2). Then we can choose
a subsequence converging to some u0 ∈ C2+α(R2) in C2 uniformly on every
bounded set. Then u0 also has the form (2.7). Indeed, if each summand in
the representation

uk =
m∑

i=1

aki u
k
i(2.8)

is bounded independently of k, then the statement is obvious. Suppose that
one of them is not uniformly bounded and all others are uniformly bounded.
Then we obtain a contradiction with the assumption that the functions uk

are uniformly bounded. If more than one summand in (2.8) is not uniformly
bounded, we deduce once again that the functions uk are not uniformly
bounded using the assumption that the periods are linearly independent.

As above we obtain the following theorem.

Theorem 2.2. The operator L : Eτ1,...,τm → E′ has a finite-dimensional
kernel and closed image.

The proof uses the fact that the number of summands in (2.7) is finite.
If it is infinite, then the image of the operator is not necessarily closed (see
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examples at the end of the next section). It can be closed under additional
conditions on the coefficients ai.

3. Scalar equation. In this section we consider a scalar problem in
R2. We show that the conditions imposed on the operators in the previous
section are satisfied, and we obtain more complete solvability conditions.

Consider the operator

Lu = ∆u+ b(y)u(3.1)

acting from C2+δ(R2) to Cδ(R2). According to Condition 1 the equation

u′′(y) + b(y)u(y) = 0(3.2)

has a solution v(y). We assume moreover that b(±∞) < 0 and that 0 is the
principal eigenvalue of the operator L. Then v(y) > 0, y ∈ R1.

Consider the equation

Lu = g, g ∈ Cδ(R2),(3.3)

and put

k(x) =
∞�

−∞
g(x, y)v(y) dy.(3.4)

The above integral is obviously well defined as v(y) vanishes exponentially
as |y| → ∞ and one notes that k ∈ Cδ(R2). We can represent g(x, y) in the
form

g(x, y) = k(x)v(y) + g0(x, y).(3.5)

Without loss of generality we can assume that v(y) has L2 norm 1:
∞�

−∞
v2(y) dy = 1.(3.6)

Then for all x ∈ R1,
∞�

−∞
g0(x, y)v(y) dy = 0.(3.7)

Thus we can represent the space E = C2+δ(R2) as a direct sum

E = E0 + E1,

where E0 is the subspace of functions satisfying (3.7) and E1 is the subspace
of functions of the form k(x)v(y). We will now consider the restriction of
the operator L to E0. Let u ∈ E0. It is easy to note that

∞�

−∞
Lu(x, y)v(y) dy = 0.
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Indeed,
∞�

−∞

∂2u

∂x2 v(y) dy =
∂2

∂x2

∞�

−∞
u(x, y)v(y) dy = 0,

∞�

−∞

(
∂2u

∂y2 + b(y)
)
v(y) dy =

∞�

−∞
u(x, y)

(
∂2

∂y2 + b(y)
)
v(y) dy = 0.

Hence we can consider L as acting from E0 to

Ê0 =
{
g ∈ Cδ(R2) :

∞�

−∞
g(x, y)v(y) dy = 0

}
.

Obviously L is a bounded operator.
The main result of this section is the following

Theorem 3.1. The operator L : E0 → Ê0 has a bounded inverse.

Before the proof of Theorem 3.1 we state some auxilliary results.

Lemma 3.1. The equation

Lu− σu = 0, σ ≥ 0,(3.8)

has only a zero solution in E0.

Proof. It is sufficient to prove that v(y) is a unique (up to a constant
factor) solution of (3.8) in E. We will show that this factor is 0 for σ > 0.
Suppose that (L − σ)u0 = 0, u0 ∈ E, u0 6= cv(y) for any constant c. Let
r > 0 be such that

b(y) < 0 for |y| ≥ r.(3.9)

We can choose a positive constant k such that

kv(y) ≥ u0(x, y), x ∈ (−∞,∞), |y| ≤ r.(3.10)

Then

kv(y) ≥ u0(x, y), x ∈ (−∞,∞), y ∈ (−∞,∞).(3.11)

The proof of this fact will be given in Lemma 3.3.
Let k0 be the infimum of the k for which (3.10) holds. We can assume

that there are points (x, y) with |y |≤ r where u0(x, y) is positive. Otherwise
we could increase the value of r or change the sign of u0. Then k0 > 0. We
have

k0v(y) ≥ u0(x, y), x, y ∈ (−∞,∞),

and for k < k0 the function

wk(x, y) = kv(y)− u0(x, y)

is negative for some (x, y) with |y| ≤ r.
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Consider the function wk0 . We have

(L− σ)wk0 = f(y), wk0(x, y) ≥ 0, x, y ∈ (−∞,∞),

where f(y) = −σk0v(y). Suppose that

lim
x→±∞

wk0(x, y) = 0.(3.12)

We can choose a positive constant s such that

ωs(x, y) = sv(y)− wk0(x, y) ≥ 0, |y| ≤ r.(3.13)

Hence

ωs(x, y) ≥ 0, x, y ∈ (−∞,∞).(3.14)

Let s0 be the minimal value for which (3.13) holds, i.e. such that

ωs0(x, y) ≥ 0, x ∈ (−∞,∞), |y| ≤ r.(3.15)

Then

ωs0(x, y) ≥ ε > 0, |x| ≥ N, |y| ≤ r(3.16)

for some ε and N ; this follows from (3.12) and the fact that wk0 ∈ C2+δ(R2).
If we assume that

ωs0(x, y) > 0, |x| ≥ N, |y| ≤ r,(3.17)

then this inequality also holds for some s < s0. Consequently, (3.14) is also
valid for this s and we obtain a contradiction with the assumption that s0
is the minimal value.

If (3.17) does not hold, then ωs0(x0, y0) = 0 for some x0, y0. As (L−σ)ωs0
≤ 0 and ωs0(x, y) ≥ 0 for all x, y, we obtain a contradiction with the posi-
tiveness theorem. This contradiction shows that (3.12) cannot hold.

If we have the inequality

lim
x→±∞

wk0(x, y) ≥ η > 0, |y| ≤ r,

then the inequality

wk(x, y) ≥ 0, x, y ∈ (−∞,∞),

will remain valid for some k < k0. This contradiction shows that there exist
two sequences {(x(1)

i , y
(1)
i )} and {(x(2)

i , y
(2)
i )} such that

|x(j)
i | → ∞, |y(j)

i | ≤ r, j = 1, 2,

wk0(x(1)
i , y

(1)
i )→ 0, wk0(x(2)

i , y
(2)
i )→ η,

where η is a positive constant.
We can assume that x(j)

i → +∞, j = 1, 2. Note that, since the coefficient
b in L does not depend on x, the function u0(−x) is a solution to (3.8)
whenever u0(x) is.
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Consider the sequence

w̃i(x, y) = wk0(x+ x
(1)
i , y), i = 1, 2, . . .

Obviously, (L−σ)w̃i = f(y) ≤ 0 and the sequence {w̃i} is uniformly bounded
in C2+δ(R2). Hence we can choose a subsequence {w̃ik} converging in C2

to some w̃0 ∈ C2+δ(R2) uniformly on every bounded subset. Moreover by
choosing a subsequence we may assume that the sequence {y(1)

i } converges
to some y0 with |y0| ≤ r. Therefore,

(L− σ)w̃0 = f(y), w̃0(x, y) ≥ 0, x, y ∈ (−∞,∞),

w̃0(0, y0) = 0.

Hence w̃0(x, y) ≡ 0. Otherwise we would obtain a contradiction with the
positiveness theorem. Similarly, from the sequence

ŵi(x, y) = wk0(x+ x
(2)
i , y), i = 1, 2, . . . ,

we can choose a subsequence converging in C2 uniformly on every bounded
subset to a function ŵ0 ∈ C2+δ(R2),

(L− σ)ŵ0 = f(y), ŵ0(x, y) > 0, x, y ∈ (−∞,∞).

If the function ŵ0 attains the value 0 somewhere then, according to the
positiveness theorem, it is identically zero.

We note that ŵ0 does not belong to E0 and it can be represented in the
form

ŵ0(x, y) = k(x)v(y) + ŵ∗(x, y),

where k(x) = � ∞−∞ ŵ0(x, y)v(y) dy is not identically zero and
∞�

−∞
ŵ∗(x, y)v(y) dy = 0.

It follows that wk0 does not belong to E0 and

wk0(x, y) = c(x)v(y) + w∗k0
(x, y),

where c(x) = � ∞−∞ wk0(x, y)v(y) dy is not identically zero and
∞�

−∞
w∗k0

(x, y)v(y) dy = 0

identically with respect to x.
We have

c(x(1)
i )→ 0, c(x(2)

i )→ c0 > 0.(3.18)

Indeed, the first convergence follows from the convergence

wk0(x+ x
(1)
i , y) = w̃i(x, y)→ w̃0(x, y) ≡ 0
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uniformly on every bounded set. The second convergence follows from the
assumptions on the sequence {(x(2)

i , y
(2)
i )} and from the positiveness of v(y).

On the other hand, multiplying the equality(
∂2

∂x2 +
∂2

∂y2 + b(y)− σ
)
wk0 = f(y)

by v(y) and integrating, we obtain

c′′(x) + c(x)
∞�

−∞
(v′′(y) + b(y)v(y)− σv(y))v(y) dy

+
∂2

∂x2

∞�

−∞
w∗k0

(x, y)v(y) dy+
∞�

−∞

(
∂2w∗k0

∂x2 + b(y)w∗k0
−σw∗k0

)
v(y) dy = −σk0,

or c′′(x) − σc(x) = −σk0. As σ ≥ 0, the only bounded solution to the last
equation is c(x) ≡ const and we obtain a contradiction with (3.18). The
lemma is proved.

In the proof of Lemma 3.1 we have used the following two lemmas.

Lemma 3.2. Let u : R2 → R, u ∈ C2(R2), u 6≡ 0, u ≥ 0, satisfy

∆u+ c(x, y)u = φ(x, y),(3.19)

with φ ≤ 0, |c|C0(R2) <∞. Then u(x, y) > 0 for all (x, y) ∈ R2.

The proof is based on the maximum principle, and it is standard.

Lemma 3.3. Let w(x, y) be a solution of the equation

(L− σ)w = −f̃(x, y), f̃(x, y) ≥ 0,

and
w(x, r) ≥ 0, x ∈ (−∞,∞),

for some r > 0 such that b(y) < 0 for all y ≥ r. Then

w(x, y) ≥ 0, x ∈ (−∞,∞), y ≥ r.
A similar lemma holds when the condition y ≥ r is replaced by y ≤ r,

where r is such that b(y) < 0 for all y < r.

Proof. Suppose that w(x0, y0) < 0 for some x0 and y0 > r. We can
choose a constant b0 < 0 such that

b(y) ≤ b0, y ≥ r.
Let further w0 be a negative constant such that

w(x, y) ≥ w0, x ∈ (−∞,∞), y ≥ r.
Consider the Cauchy problem

∂u

∂t
=
(
∂2

∂x2 +
∂2

∂y2 + b0 − σ
)
u, u|t=0 = w0.
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Its solution is independent of x and y, it is negative and converges to 0 as
t→∞.

On the other hand, w(x, y) is a solution of the problem

∂ũ

∂t
=
(
∂2

∂x2 +
∂2

∂y2 + b(y)− σ
)
ũ+ f̃(x, y), ũ|t=0 = w(x, y),

with f̃(x, y) ≥ 0. Set

û(x, y, t) = w(x, y)− u(x, y, t).

Then
∂û

∂t
=
(
∂2

∂x2 +
∂2

∂y2 + b(y)− σ
)
û+ (−b0 + b(y))u+ f̃(x, y),

û|y=r > 0, û|t=0, y≥r ≥ 0.

Since (b(y)− b0)u(x, y, t) ≥ 0 for all t ≥ 0, y ≥ r, we have û(x, y, t) ≥ 0 for
t ≥ 0, y ≥ r. Therefore w(x, y) ≥ 0 for y ≥ r. This contradiction proves the
lemma.

Lemma 3.4. The image of the operator L − σ : E0 → Ê0, σ ≥ 0, is
closed in Ê0.

The proof is given in Section 2 in a more general case.

Proof of Theorem 3.1. From the previous lemmas it follows that for all
σ ≥ 0 the operator Lσ = L − σ : E0 → Ê0 is normally solvable, and its
kernel is empty.

We show first of all that it is invertible for large positive σ. The operator
Lσ considered from C2+α(R2) to Cα(R2) is invertible for large positive σ.
Therefore the equation

Lu− σu = f(3.20)

has a unique solution u for any f ∈ Cα(R2). Let f ∈ Ê0. Then u ∈ E0.
Indeed, we can represent it in the form

u(x, y) = k(x)v(y) + u0(x, y), u0 ∈ E0.

Multiplying (3.20) by v(y) and integrating, we obtain k′′ − σk = 0. Hence
k(x) ≡ 0.

We now consider the homotopy

Lτσ : E0 → Ê0, τ ∈ [0, 1].

Since this operator is normally solvable with a finite-dimensional kernel for
all τ , we can use stability of the index for Fredholm and semi-Fredholm
operators (see Theorem IV.5.22 in [5]). We conclude that the index of L0
equals the index of Lσ and both are 0. Since the equation Lu = 0 does not
have nonzero solutions in E0, the operator L is invertible. The theorem is
proved.
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This theorem allows us to obtain a solvability condition in the following
form.

Theorem 3.2. The equation

∆u+ b(y)u = g(x, y), g ∈ Cα(R2),(3.21)

is solvable in C2+α(R2) if and only if the equation

φ′′ = k,(3.22)

where

k(x) =
∞�

−∞
g(x, y)v(y) dy,

is solvable in C2+α(R1).

Proof. Let
g(x, y) = g0(x, y) + k(x)v(y).

Then
∞�

−∞
g0(x, y)v(y) dy = 0.

We look for a solution of (3.21) in the form

u(x, y) = u0(x, y) + φ(x)v(y),

where

φ(x) =
∞�

−∞
u(x, y)v(y) dy,

∞�

−∞
u0(x, y)v(y) dy = 0.

From (3.21) we have

∆u0 + b(y)u0 + φ′′(x)v(y) = g0(x, y) + k(x)v(y).(3.23)

Multiplying this equation by v(y) and integrating, we obtain (3.22). From
(3.23) it now follows that

∆u0 + b(y)u0 = g0(x, y).(3.24)

By the previous theorem this equation is solvable in C2+α(R2). Therefore,
solvability of (3.21) is equivalent to solvability of (3.22). The theorem is
proved.

Equation (3.22) can be easily solved explicitly. It provides a simple ex-
ample to show the difficulties arising for non-Fredholm operators. The usual
solvability condition applicable for Fredholm operators says that the equa-
tion is solvable if the right-hand side is orthogonal to the solution of the
formally adjoint homogeneous equation. In this case φ(x) ≡ const. So the
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equation would be solvable for any k(x) such that
∞�

−∞
k(x) dx = 0.(3.25)

A priori k(x) is not necessarily integrable. But even if the integral is well
defined, (3.25) does not imply solvability. As an example we can take any
odd function converging to 0 at infinity as 1/x2.

Consider some other examples.

Examples. 1. Let k(x) be given as a Fourier series

k(x) =
∞∑

j=1

a(ξj) cos(ξjx).

Then

φ(x) = −
∞∑

j=1

a(ξj)
ξ2
j

cos(ξjx).

If ξj → 0, we can choose the coefficients a(ξj) such that the first series
converges and the second diverges. This example also shows that the image
of the operator is not closed. For any partial sum

kn(x) =
n∑

j=1

a(ξj) cos(ξjx)

a solution un exists but the sequence un is not bounded.

2. Consider the Cauchy problem

∂u

∂t
= ∆u+ b(y)u− g(x, y),(3.26)

u(x, 0) = 0.(3.27)

We put
g(x, y) = g0(x, y) + k(x)v(y)

and look for the solution in the form

u(x, y, t) = u0(x, y, t) + φ(x, t)v(y),

where
∞�

−∞
u0(x, y, t)v(y) dy = 0, ∀x, t.

Then we can reduce (3.26) to two equations

∂u0

∂t
= ∆u0 + b(y)u0 − g0(x, y) and

∂φ

∂t
=
∂2φ

∂x2 − k(x).
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Since the operator L : E0 → E′0 has a bounded inverse, the correspond-
ing semigroup is well defined and u0(x, y, t) converges exponentially to the
solution of (3.24).

If for example k(x) = ε cos(εx), then φ(x, t) converges to −(1/ε) cos(εx).
Therefore even a small perturbation of the equation can give a growing
perturbation of the solution if the period of the perturbation increases.

3. In the previous example we put g = 0 and

u(x, 0) =
∞∑

j=1

aj cos(ξjx).

Then

φ(x, t) =
∞∑

j=1

aje
−ξ2

j t cos(ξjx).

Let aj = ξmj . Then

max
x

φ(x, t) =
∞∑

j=1

ξmj e
−ξ2

j t.

Consider the function
ψ(ξ, t) = ξme−ξ

2t.

For each t fixed, ψ considered as a function of ξ has a maximum

ξm =

√
m

2t
, ψm =

(
m

2t

)m/2
e−m/2.

Therefore the solution can converge to zero polynomially if the frequencies
ξm converge to zero.

4. Application to a nonlinear problem. In this section we will use
the results of the previous section to prove existence of solutions for the
problem

∆u− c ∂u
∂y

+ F (u) + εS(x, y, u) = 0,(4.1)

where ε is a small parameter.
We suppose that the perturbation S(x, y, u) is a sufficiently smooth func-

tion periodic in x, i.e.

S(x, y, u) = S(x+ τ, y, u), ∀x, y, u ∈ R1.

We have already seen that periodicity of a perturbation is related to solv-
ability conditions.

The unperturbed problem (ε = 0) describes travelling waves. If F (u) is
of the so-called bistable type,

F (0) = F (1) = F (u0) = 0, F (u)< 0, 0< u < u0, F (u)> 0, u0 < u < 1,
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and F ′(0) < 0, F ′(1) < 0, then there exists a one-dimensional decreasing
function w(y) and a constant c∗ satisfying

w′′ − c∗w′ + F (w) = 0, w(−∞) = 1, w(+∞) = 0.

The function v(y) = −w′(y) is an eigenfunction corresponding to the zero
eigenvalue of the problem

u′′ − c∗u′ + b(y)u = λu, u(±∞) = 0,

where b(y) = F ′(w(y)). The zero eigenvalue is principal and simple [9]. We
suppose for simplicity that c∗ = 0, i.e.,

1�

0

F (u) du = 0.

The operator
Lu = ∆u+ b(y)u

acting from C2+α(R2) to Cα(R2) satisfies all conditions of Section 3. It is
not Fredholm, and we cannot use directly the usual approaches to prove
existence of solutions of the perturbed equation. We show in this section
how to use the solvability conditions obtained above to apply the implicit
function theorem.

Consider the operator

A(u, c, ε) = ∆u− c ∂u
∂y

+ F (u) + εS(x, y, u)

acting from C2+α(R2)× R1 × R1 to Cα(R2).
Denote by Bk, k = 0, 1, 2, the subspace of Ck+α(R2) consisting of the

functions u(x, y) which are τ -periodic with respect to x, with the Ck+α(R2)
norm. Let further B20 be the subspace of B2 consisting of the functions
u(x, y) satisfying

∞�

−∞
u(0, y)v(y) dy = 0.(4.2)

Lemma 4.1. The operator A is bounded and continuous from B20 × R1

×R1 to B0. It has a Fréchet derivative L with respect to the variables (u, c).
The operator L is continuous with respect to (u, c, ε) in some neigbourhood
of the point P ≡ (u, c, ε) = (w(y), 0, 0) in the operator norm. We have

L(ũ, c̃) = Lũ− c̃v(y).(4.3)

In what follows the tildes over u and c are omitted. Let
u(x, y) = φ(x)v(y) + u0(x, y),

g(x, y) = k(x)v(y) + g0(x, y),
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where u0 ∈ E0 and g0 ∈ Ê0. Substituting these expressions into the equation

L(u, c) = g(x, y)

we obtain

Lu0(x, y) = g0(x, y),(4.4)

φ′′(x)− c = k(x),(4.5)

where g0(x, y) and k(x) are τ -periodic with respect to x. Due to Theorem
3.1, (4.4) is uniquely solvable in the space E0 for any g0 ∈ Ê0.

Lemma 4.2. The solution of (4.4) is τ -periodic in x, i.e. it belongs to B2.

Proof. The solution u0(x, y) is unique in E0. Suppose that it is not τ -
periodic. As g0 is τ -periodic the function u0(x + τ, y) is also a solution of
(4.4). Hence, if u0(x + τ, y) 6= u0(x, y), then u0(x + τ, y) would be another
solution of (4.4) belonging to E0 due to the fact that v(y) is invariant with
respect to translation in x. However, by Theorem 3.1 the solution is unique.

Lemma 4.3. Equation (4.5) has a unique solution (φ(x), c), where φ
belongs to B20 and c ∈ R1.

Proof. Integrating (4.5), we obtain

φ′(x) =
x�

0

(k(y) + c) dy + φ′(0).

The right-hand side is bounded (and τ -periodic) iff
τ�

0

(k(y) + c) dy = 0.

This equation allows us to find c. Integrating it we obtain

φ(x) =
x�

0

y�

0

((k(z) + c)dz + φ′(0)) dy + φ(0).

The right-hand side of the last equation is bounded for all x ∈ R1 and
τ -periodic iff

τ�

0

y�

0

((k(z) + c) dz + φ′(0)) dy = 0.

From the above equation one can determine the constant φ′(0) uniquely. By
the definition of B20, φ(0) = 0, and so (4.5) can be uniquely solved in the
space of τ -periodic functions. The lemma is proved.

According to Lemma 4.3 and Theorem 3.1 the equation L(u, c) = g is
uniquely solvable in the space B20×R1. Recall that L is the Fréchet derivative
of the mapping A at the point (u, c, λ) = (v(y), 0, 0).
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Theorem 4.1. For all ε sufficiently small there exists a unique solution
(u, c) of (4.1) in B20 × R1 such that (u, c) = (w, 0) +O(ε) as ε→ 0.

This follows from the implicit function theorem (see e.g. [4]).

We have considered the case where τ is arbitrary but fixed. Let τn be
a sequence converging to infinity. For each τn we can prove existence of a
solution un of (4.1). However this sequence may be divergent. The operator
L : E0 → E′0 is invertible but the norm of the inverse increases as τn → ∞
(cf. Section 3). So the sequence of solutions un may diverge in the C2+α(R2)
norm. Possibly, it can be convergent if the sequence ε = ε(τn) is properly
chosen.
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