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TESTING LINEARITY IN AN
AR ERRORS-IN-VARIABLES MODEL WITH

APPLICATION TO STOCHASTIC VOLATILITY

Abstract. Stochastic Volatility (SV) models are widely used in financial
applications. To decide whether standard parametric restrictions are jus-
tified for a given data set, a statistical test is required. In this paper, we
develop such a test of a linear hypothesis versus a general composite non-
parametric alternative using the state space representation of the SV model
as an errors-in-variables AR(1) model. The power of the test is analyzed. We
provide a simulation study and apply the test to the HFDF96 data set. Our
results confirm a linear AR(1) structure in log-volatility for the analyzed
stock indices S&P500, Dow Jones Industrial Average and for the exchange
rate DEM/USD.

1. Introduction. A good knowledge of path-dependent volatility struc-
tures is important for the analysis of high frequency data in finance (HFDF).
Such knowledge enables multi-step forecasts of volatility, which can be used
for derivative pricing, evaluation of risk exposure and prediction intervals
for the mean. Potential applications of this knowledge are tests of economic
or financial theories concerning the stock, bond and currency markets or
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studies of the link between short and long term interest rates. Another im-
portant set of applications concerns interventions on the markets based on
portfolio choice, hedging portfolios, values at risk, the size and times of block
trading.

Typically, the conditional volatility exhibits a strong dependence on
past values of the observed process. In this context, autoregressive con-
ditional heteroskedasticity (ARCH) models (Engle, 1982; Gouriéroux, 1997)
and stochastic volatility (SV) models (Taylor, 1986) have been studied in-
tensively (see Harvey, Ruiz and Shephard (1994), Shephard (1996)). Duan
(1995) used an ARCH model for option pricing under time-varying volatil-
ity. Volatility models have consequences for the stationary distribution of
the process, and thus influence the calculation of tail indices and value at
risk; see e.g. de Haan (1990) and de Vries (1994).

Starting with Taylor (1986), SV models are mostly specified as paramet-
ric AR(1)-type models. The question arises whether the parametric struc-
ture adequately describes the data. A similar question of appropriateness
of simple parametric description was posed e.g. by Gouriéroux and Monfort
(1992), Härdle and Tsybakov (1997), and Hafner (1998) in the context of
ARCH models. In Härdle and Tsybakov (1997) and Härdle, Tsybakov and
Yang (1998) nonparametric counterparts of ARCH, the CHARN (condition-
ally heteroskedastic autoregressive nonlinear) models are considered. Styl-
ized facts of HFDF show that GARCH volatility models do not sufficiently
capture the structure of HFDF. Thus, it is interesting to test paramet-
ric hypothesis versus nonparametric alternative in various volatility models
(goodness-of-fit testing). Also, testing of purely nonparametric hypotheses
(for example, the symmetry hypothesis for the volatility function) seems
to be of interest. Such tests for nonparametric structures were recently de-
veloped by Leblanc and Lepski (2003) and by Gouriéroux, Monfort and
Tenreiro (1995) in the time series context.

In this paper we consider nonparametric goodness-of-fit testing in the
case of SV models. The discrete time SV model can be represented as an
errors-in-variables autoregressive (AR) model. We propose the test which
allows one to distinguish the linear parametric AR hypothesis from the set of
nonparametric AR alternatives, and we analyze the power of the test. Next,
we investigate its finite sample behavior by a simulation study. Finally, we
apply it to HFDF96 data sets: the S&P500 and the Dow Jones stock price
indices, as well as the DEM/USD exchange rate. Our findings support the
hypothesis of a parametric volatility structure for all analyzed data sets.

2. State space representation of the SV model. Let St denote
the underlying asset price at time t, t = 1, . . . , n, and define returns ht
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as ht = log(St/St−1). The standard SV model as in Taylor (1986) can be
written as

ht = exp(Yt/2)ξ∗t , Yt = ϑYt−1 + εt,

where ξ∗t and εt are i.i.d. random variables with Eξ∗t = 0 and Eεt = 0,
where E denotes expectation. A discussion of this and related models is
given by Harvey, Ruiz and Shephard (1994) and Shephard (1996). Let ξt =
2 log(|ξ∗t |) − ω with ω = 2E[log(|ξ∗t |)] and Zt = log h2

t . Then we obtain the
following linear state space model for the observables Z1, . . . , Zn:

Zt = ω + Yt + ξt,(1)

Yt = ϑYt−1 + εt,(2)

where Eξt = 0.
We can write (2) as

Yt = m(Yt−1) + εt,

where m(·) is an unknown function. In general, there is no prior reason to
assume that m(·) is a linear function. The shape of this function determines
the type of impact of volatility on financial decision variables.

The aim of this paper is to propose a test of the composite hypothesis
that the function m(·) is linear against a composite nonparametric alterna-
tive of rather general structure. In particular, no smoothness assumptions
on m(·) are imposed under the alternative.

3. Main results. Let Z1, . . . , Zn be the observations obtained in the
following model:

Zt = Yt + ξt,(3)

Yt = m(Yt−1) + εt, t = 1, . . . , n,(4)

where {ξt} and {εt} are i.i.d. zero mean random variables and m(·) is an
unknown function. The values {Yt} are not observed.

The model (3) is simpler than (1), since here we put ω = 0. This can be
done without loss of generality if ω is known. An extension to the case of
unknown ω appears in Section 4.

Equations (3)–(4) can be viewed as a nonparametric AR errors-in-var-
iables model. In fact, by (3)–(4) the observations Zt satisfy

Zt = m(Zt−1 − ξt−1) + εt + ξt.

Our goal is to test the hypothesis that the function m(·) is linear, i.e.

H0 : m(x) = ϑx, ϑ ∈ [a, b],(5)

where 0 ≤ a < b < 1 are some known constants.
The problem of testing a linear hypothesis against a nonparametric al-

ternative for the regression model was considered e.g. by Härdle and Mam-
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men (1993), Härdle and Kneip (1999) and Spokoiny (1997). The case of sin-
gle index regression was studied by Härdle, Sperlich and Spokoiny (1997).
Here we consider an autoregressive model and we introduce a new way to
describe the alternative adapted to settings with dependent data.

Assume the following.

A1. The sequences {ξt} and {εt} consist of i.i.d. random variables and
these sequences are mutually independent. The value Y0 = y0 is fixed.

A2. Eε1 = Eξ1 = 0;
Eξ2

1 = η2, Eξ3
1 = 0 and Eξ4

1 = µ;
Eε2

1 = σ2, Eε3
1 = 0 and Eε4

1 = ν;
E|ξ1|4+δ <∞, E|ε1|4+δ <∞ with some δ > 0.

A3. The random variable ε1 has a density p(·) with respect to the
Lebesgue measure, satisfying p(x) > 0 for all x ∈ R1.

Let us now introduce the test statistic Tn and the decision rule ∆n.
Set N = [n/2], where [·] denotes the integer part. Suppose without loss of
generality that N ≥ 4. Consider the pilot statistic

ϑn =
∑N−1

t=3 ZtZt−2∑N−1
t=3 Zt−1Zt−2

,(6)

which is the estimator of ϑ under the null hypothesis obtained by the instru-
mental variables method. It is easy to see that ϑn is

√
n-consistent under H0.

Denote by ϑ̂n the projection of ϑn onto [a, b],

ϑ̂n =





ϑn if a ≤ ϑn ≤ b,
a if ϑn < a,

b if ϑn > b,

and let
Mn = M(ϑ̂n), Bn = B(ϑ̂n),

where
M(ϑ) = σ2 + η2(1 + ϑ2),

B(ϑ) = (ν − σ4) + µ(1 + ϑ2)2 − η4(1− ϑ2)2 + 4σ2η2(1 + ϑ2).

Define the test statistic:

Tn =
1√
NBn

n∑

t=N+1

{(Zt − ϑ̂nZt−1)2 −Mn}.(7)

Fix some 0 < α < 1 and set

∆n =
{

0 if Tn ≤ tα,

1 if Tn > tα,

where tα is the (1− α)-quantile of standard normal distribution.
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The test accepts the hypothesis H0 if ∆n = 0 and rejects H0 if ∆n = 1.
Note that in the definition of the test we split the sample Z1, . . . , Zn

into two parts. The first part Z1, . . . , ZN−1 is used to find the preliminary
estimator (6) and the second part ZN , . . . , Zn appears only in (7). This is
done to make the proofs less technical. We believe that the result can be
extended to the case where the entire sample is used both in (6) and (7).
In simulations and in the real data example below we do not apply the
splitting.

Let Pϑ be the probability measure generated by (Z1, . . . , Zn) satisfying
(3)–(4) when the underlying m(·) has the form m(x) = ϑx.

Theorem 1. Assume A1 and A2. Then

lim sup
n→∞

sup
ϑ∈[a,b]

Pϑ{∆n = 1} ≤ α.

Thus, the test based on the decision rule ∆n is asymptotically of level α.
Now consider the power this test. We introduce a nonparametric set of

alternatives and show that the probability to accept the hypothesis H0 for
the case where the function m(·) belongs to this set (i.e. the second type
error probability) is less than a given value β.

Let us define the set of alternatives. First, assume that the alternatives
m(·) are such that Yt does not explode as t → ∞. This is guaranteed by
the condition m(·) ∈ M, where M = M(c, d) is the set of functions m(·)
satisfying

|m(x)| ≤ c|x|+ d, ∀x ∈ R1,

for some c ∈ (0, 1), d > 0.
Next we assume that the alternativesm(·) are bounded away from the set

of linear functions at a certain distance. It would be natural to characterize
the distance between a function m(·) and the hypothesis set (the set of linear
functions) in the form

ζn = inf
ϑ∈[a,b]

1
N

n∑

t=N+1

(m(Yt−1)− ϑYt−1)2.(8)

However, this distance is random, which does not allow one to describe the
set of alternatives in a relevant way. To avoid this inconvenience we replace
ζn by its nonrandom analog:

dn(m) = dn(m(·)) = inf
ϑ∈[a,b]

1
N

n∑

t=N+1

Em(m(Yt−1)− ϑYt−1)2,(9)

where Em is the expectation w.r.t. the probability measure Pm generated by
the observations (Z1, . . . , Zn) satisfying (3)–(4) when the underlying autore-
gression function is m(·). The asymptotic equivalence of these two distance
measures is justified by the following proposition.
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Proposition 1. Assume A1–A3. Then

(10) lim
C→∞

lim sup
n→∞

sup
m∈M

Pm{
√
n |ζn − dn(m)| ≥ C} = 0.

Proposition 1 is a consequence of Lemma 2 proved below.
Now we complete the definition of the set of alternatives. For any λ > 0

and any n ≥ 1 define

Mn(λ) = {m ∈ M : dn(m) ≥ λ/√n }.
Consider the set of alternatives

Hn : m ∈ Mn(λ).

Theorem 2. Assume A1–A3. Then for any 0 < α, β < 1 there exists
a constant λ(α, β) such that

lim sup
n→∞

sup
m∈Mn(λ(α,β))

Pm{∆n = 0} ≤ β.

This theorem shows that for λ > 0 large enough the proposed test attains
the asymptotical power that is arbitrarily close to 1 uniformly on the set of
nonparametric alternativesMn(λ).

4. The case of unknown ω. Now we turn to the situation where the
constant shift ω is not known. Note that we can rewrite the model (2) as

Zt = ω(1− ϑ) + ϑZt−1 + εt + ξt − ϑξt−1(11)

= γ + ϑZt−1 + νt(ϑ),

where γ = ω(1− ϑ), and νt(ϑ) = εt + ξt − ϑξt−1 with Eνt(ϑ) = 0. Thus, it
is easy to see that the sample mean

ω̂ =
1
n

n∑

t=1

Zt

is a
√
n-consistent estimator for ω. However, in what follows we find it more

convenient to work with estimators of γ rather than those of ω.
We define an iterative procedure to obtain estimates of γ and ϑ. This

procedure will be used for the HFDF96 data set in Section 7. Here and in
the numerical results below we do not apply the sample splitting that was
necessary for the theory. Both the pilot statistic and the test statistic are
computed from the entire sample Z1, . . . , Zn.

Consider the centered observations Z∗t = Zt − ω̂ and define the prelimi-
nary estimates for ϑ and γ:

ϑ(1)
n =

∑n
t=3 Z

∗
t Z
∗
t−2∑n

t=3 Z
∗
t−1Z

∗
t−2

, γ(1) =
1
n

n∑

t=2

(Zt − ϑ(1)
n Zt−1).
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The iterative procedure is suggested by the remark that (11) can be
written as z̃t = ϑZt−1 + νt(ϑ) with z̃t = Zt − γ, and νt(ϑ) are zero mean
random variables. Therefore, to estimate ϑ, one can iteratively regress z̃t on
Zt−1 adjusting at each step the γ values. At the ith step of iterations we
compute

z̃
(i)
t = Zt − γ(i−1), ϑ(i)

n =
∑n

t=3 z̃
(i)
t Zt−2∑n

t=3 Zt−1Zt−2
, γ(i) = ω̂(1− ϑ(i)

n ).(12)

For n fixed and i→∞, ϑ(i)
n converges to some limit ϑ0n. Define ϑ̂0n as the

projection of this ϑ0n onto [a, b] and replace the test statistic Tn by

T̃n =
1√
nBn

n∑

t=2

{(z̃t − ϑ̂0nZt−1)2 −Mn}.(13)

With this definition of a test statistic, one problem still remains: in practice
we do not know the moments of the errors σ2, η2, µ, ν that are needed to
compute Mn and Bn. We return to this issue in Section 7 where a completely
data-driven procedure is discussed.

5. Proofs

5.1. Proof of Theorem 1. Define

νt(ϑ) = εt + ξt − ϑξt−1, ν̂t = νt(ϑ̂n).

Note that under A1 and A2,

Eν2
t (ϑ) = σ2 + η2(1 + ϑ2) = M(ϑ),(14)

E{(ν2
t (ϑ)−M(ϑ))2 + 2(ν2

t (ϑ)−M(ϑ))(ν2
t−1(ϑ)−M(ϑ))} = B(ϑ),(15)

sup
0≤ϑ<1

E|νt(ϑ)|4+δ <∞.(16)

The proof of Theorem 1 is based on the following lemma.

Lemma 1. Assume A1 and A2. Then

lim sup
n→∞

sup
ϑ∈[a,b]

Eϑ(
√
n |ϑ̂n − ϑ|)3/2 <∞,(17)

where Eϑ denotes the expectation w.r.t. Pϑ.

Proof of Theorem 1. The summands in Tn are of the form

(18) (Zt − ϑ̂nZt−1)2 − (σ2 + η2(1 + ϑ̂2
n))

= (ϑ− ϑ̂n)2Y 2
t−1 + [ν̂2

t − (σ2 + η2(1 + ϑ̂2
n))] + 2(ϑ− ϑ̂n)Yt−1ν̂t.

Let Fmk be the σ-algebra generated by (Zk, . . . , Zm). Note that Yt−1 is con-
ditionally independent of ν̂t given F j1 , N − 1 ≤ j ≤ t− 2, and thus,

Eϑ(Yt−1ν̂t | F j1) = 0(19)
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for N − 1 ≤ j ≤ t− 2. Note also that

B(ϑ) ≥ B∗ = 4σ2η2, ∀ϑ ∈ [0, 1),(20)

and
sup
ϑ∈[a,b]

sup
t

EϑY
2
t <∞,(21)

which is straightforward under A1 and A2.
Since ϑ̂n is independent of YN , . . . , Yn−1, we have |ϑ̂n − ϑ| ≤ 1, and in

view of (20) we get

Eϑ

[
1√
NBn

n∑

t=N+1

(ϑ̂n − ϑ)2Y 2
t−1

]
≤ Eϑ|ϑ̂n − ϑ|3/2Eϑ

[
1√
NB∗

n∑

t=N+1

Y 2
t−1

]
.

This, together with (21) and Lemma 1, entails

lim sup
n→∞

sup
ϑ∈[a,b]

Eϑ

[
1√
NBn

n∑

t=N+1

(ϑ̂n − ϑ)2Y 2
t−1

]
= 0.(22)

Next, since ϑ̂n is FN−1
1 -measurable and in view of (19), (20) we find

Eϑ

∣∣∣∣
1√
NBn

n∑

t=N+1

(ϑ̂n − ϑ)Yt−1ν̂t

∣∣∣∣

≤ Eϑ

[
Eϑ

(
1√
NB∗

∣∣∣
n∑

t=N+1

Yt−1ν̂t

∣∣∣
∣∣∣∣FN−1

1

)
Eϑ|ϑ̂n − ϑ|

]

≤ C 1√
N

Eϑ|ϑ̂n − ϑ|
(

sup
ϑ∈[a,b]

Eϑ

( n∑

t=N+1

Y 2
t−1ν

2
t (ϑ)

))1/2

,

where C is a constant which does not depend on ϑ. This, together with
Lemma 1, the fact that the random variable Yt−1 is independent of ν2

t (ϑ),
(21) and A1–A2, yields

lim sup
n→∞

sup
ϑ∈[a,b]

Eϑ

∣∣∣∣
1√
NBn

n∑

t=N+1

(ϑ̂n − ϑ)Yt−1ν̂t

∣∣∣∣ = 0.(23)

Hence, using (18), (22) and (23), we get

(24) Pϑ(∆n = 1) = Pϑ(Tn ≥ tα)

= Pϑ

{
1√
NBn

n∑

t=N+1

(ν̂2
t − (σ2 + η2(1 + ϑ̂2

n))) ≥ tα
}

+ o(1)

as n→∞ uniformly in ϑ ∈ [a, b]. The sequence {ν̂t} for fixed ϑ̂n = ϑ0 ∈ [a, b]
is the sequence of 2-dependent random variables {νt(ϑ0)}, satisfying (14),



Testing linearity 397

(15), (16) and such that (20) holds. For these variables we have the Berry–
Esseen bound (Tikhomirov, 1980):

(25)
∣∣∣∣P
{

1√
NB(ϑ0)

n∑

t=N+1

(ν2
t (ϑ0)− (σ2 + η2(1 + ϑ2

0))) < tα

}
− Φ(tα)

∣∣∣∣

≤ C0(logn)1+δ/2

nδ/4
,

where C0 is a constant independent of ϑ0. Conditioning on ϑ̂n in (24) and
using (25) we arrive at the statement of the theorem.

5.2. Proof of Theorem 2. For all 0 ≤ ϑ < 1 and all m ∈M define

dn(m,ϑ) =
1
N

n∑

t=N+1

Em(m(Yt−1)− ϑYt−1)2,

ζn(m,ϑ) =
1
N

n∑

t=N+1

(m(Yt−1)− ϑYt−1)2.

Lemma 2. Assume A1–A3. Then

lim
C→∞

lim sup
n→∞

sup
m∈M

Pm{ sup
ϑ∈[a,b]

√
n |ζn(m,ϑ)− dn(m,ϑ)| > C} = 0.

Write

Tn =
An +Wn +Rn√

Bn
,(26)

where

An =
1√
N

n∑

t=N+1

(m(Yt−1)− ϑ̂nYt−1)2 =
√
N ζn(m, ϑ̂n),

Wn =
1√
N

n∑

t=N+1

[ν̂2
t − (σ2 + η2(1 + ϑ̂2

n))],

Rn =
2√
N

n∑

t=N+1

ν̂t(m(Yt−1)− ϑ̂nYt−1).

Furthermore, for all ϑ ∈ [a, b] set

d̃n(m,ϑ) =
1
N

n∑

t=N+1

Em[(m(Yt−1)− ϑYt−1)2 | FN−1
1 ].

Lemma 3. Assume A1–A3. Then

lim
C→∞

lim sup
n→∞

sup
m∈M

Pm{ sup
ϑ∈[a,b]

√
n |d̃n(m,ϑ)− dn(m,ϑ)| > C} = 0.
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Lemma 4. Assume A1–A3. Then

lim
n→∞

sup
m∈M

Pm

{
|Rn| ≥

√
N

2
d̃n(m, ϑ̂n); d̃n(m, ϑ̂n) >

Q√
n

}
= 0

for all Q > 0.

Proof of Theorem 2. Consider the random events

Γ1 =
{
d̃n(m, ϑ̂n) ≥ dn(m, ϑ̂n) +

Q1√
n

}
;

Γ2 =
{
ζn(m, ϑ̂n) < dn(m, ϑ̂n)− Q2√

n

}
;

Γ3 =
{
|Rn| ≥

√
N

2
d̃n(m, ϑ̂n); d̃n(m, ϑ̂n) >

Q3√
n

}
,

where the positive constants Q1, Q2 and Q3 are chosen so that for all m ∈M
and for all n large enough,

Pm{Γi} ≤ β/8, i = 1, 2, 3.(27)

Such Q1, Q2 and Q3 exist in view of Lemmas 2–4.
Note also that for all n and λ large enough,

sup
m∈Mn(λ)

Pm{Γ4} ≤ β/8,(28)

where
Γ4 = {d̃n(m, ϑ̂n) ≤ Q3/

√
n}.

This follows from the definition of Mn(λ) and from Lemma 3.
Assume that λ is large enough to have (28) and λ > Q2. Note that if

λ > Q2, we have in Γ2: dn(m, ϑ̂n) −Q2/
√
n > 0 for all m ∈ M. Then, due

to (20), (26), (27) and (28), we obtain

(29) Pm{∆n = 0} = Pm{Tn < tα} = Pm

{
An +Wn +Rn√

Bn
< tα

}

≤ Pm

{√
N ζn(m, ϑ̂n) +Wn√

Bn
− 1

2

√
N

B∗
d̃n(m, ϑ̂n)< tα

}
+Pm{Γ3}+Pm{Γ4}

≤ Pm

{
Wn√
Bn

+
1
2

√
N

B∗
dn(m, ϑ̂n)−Q4 < tα

}
+

4∑

i=1

Pm{Γi}

≤ Pm

{
Wn√
Bn

< Q5

}
+
β

2
,

where Q4 = (Q1/2 +Q2)/
√
B∗ and Q5 = −1

2

√
N
nB∗λ+Q4 + tα. Let λ be so

large that Q5 < 0. Then, in view of (20), we get

Pm{Wn/
√
Bn < Q5} ≤ Em(Pm{|Wn| ≥

√
B∗|Q5| | FN−1

1 }).
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Applying here the Chebyshev inequality to the conditional probability and
using the FN−1

1 -measurability of ϑ̂n and (14), (16), we infer that the last
probability in (29) is less than β/2. This yields the result of the theorem.

5.3. Proofs of Lemmas 1–4. The following proposition will be used in
the proofs.

Proposition 2. Let {Yt} be the Markov chain (4) starting at t = t0
with Y0 = y0 where t0 is an integer and y0 ∈ R1. Assume A1–A3. Let the
function g : R1 → R1 satisfy

|g(x)| ≤ g0(1 + x2), ∀x ∈ R1,(30)

where g0 is a finite constant. Then there exist finite constants C1 =
C1(c, d, p(·), g0, y0) and C2 = C2(c, d, p(·), g0) such that

sup
m∈M

sup
t

Em|Yt|4+δ ≤ C1(31)

and

(32) sup
m∈M

Pm

{∣∣∣∣
1

card τn

∑

t∈τn
(g(Yt)−Emg(Yt))

∣∣∣∣ ≥
v√
n

}
≤ C2

v2 (|y0|4+δ +1)

for any integer n ≥ 1, any v > 0 and any subset τn ⊆ {t0, . . . , n} such that
card τn ≥ [n/2].

The proof of Proposition 2 is given in the Appendix.

Proof of Lemma 1. It is straightforward to see that under H0, A1
and A2,

lim
t→∞

EϑY
2
t =

σ2

1− ϑ = y∗, sup
ϑ∈[a,b]

sup
t

EϑY
4
t <∞,(33)

sup
ϑ∈[a,b]

sup
N≥4

Eϑ

∣∣∣∣
√
n

(
1
N

N−1∑

t=3

Y 2
t−2 − y∗

)∣∣∣∣
2

<∞.(34)

Next, under the null hypothesis we have, from (3) and (4),

Zt = ϑZt−1 + νt(ϑ), t = 2, . . . , n,(35)

which, together with A1 and A2, easily implies

sup
ϑ∈[a,b]

sup
t

EϑZ
2
t <∞.(36)

Furthermore,
N−1∑

t=3

Zt−1Zt−2 =
N−1∑

t=3

(ϑYt−2 + εt−1 + ξt−1)(Yt−2 + ξt−2)(37)

= ϑ

N−1∑

t=3

Y 2
t−2 + Sn,
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where

Sn =
N−1∑

t=3

[Yt−2(ϑξt−2 + εt−1 + ξt−1) + ξt−2(εt−1 + ξt−1)].

Using A1, A2, (33) and the fact that ϑξt−2 + εt−1 + ξt−1 is independent of
F t−2

1 we find

sup
ϑ∈[a,b]

EϑS
2
n = O(n), n→∞.(38)

Similarly, A1, A2, (36) and the fact that νt(ϑ) is independent of F t−2
1 imply

sup
ϑ∈[a,b]

Eϑ

∣∣∣
N−1∑

t=3

Zt−2νt(ϑ)
∣∣∣
2

= O(n), n→∞.(39)

Now, (34), (37), (38) and Chebyshev’s inequality yield

(40) Pϑ

(
1
N

N−1∑

t=3

Zt−1Zt−2 ≤ ay∗/2
)

≤ Pϑ

(
Sn
N

+ ϑ

(
1
N

N−1∑

t=3

Y 2
t−2 − y∗

)
≤ −ay∗/2

)

≤ Pϑ(Sn ≥ Nay∗/4) + Pϑ

(∣∣∣∣
1
N

N−1∑

t=3

Y 2
t−2 − y∗

∣∣∣∣ ≥ ay∗/4
)
≤ K1

n

for any N ≥ 4 and ϑ ∈ [a, b], where K1 is a constant which does not depend
on ϑ.

Using (35) we get

ϑn = ϑ+
∑N−1

t=3 Zt−2νt(ϑ)
∑N−1

t=3 Zt−1Zt−2
.

This representation, together with (39), (40) and Chebyshev’s inequality,
gives

(41) Pϑ(|√n (ϑ̂n − ϑ)| ≥ u) ≤ Pϑ(|√n (ϑn − ϑ)| ≥ u)

≤ Pϑ

(
1
N

N−1∑

t=3

Zt−1Zt−2 ≤ ay∗/2
)

+ Pϑ

(
2
ay∗

∣∣∣∣
1
N

N−1∑

t=3

Zt−2νt(ϑ)

∣∣∣∣ ≥
u√
n

)

≤ K2

(
1
n

+
1
u2

)

for any u > 0, any N ≥ 4, any ϑ ∈ [a, b], and some K2 > 0 independent



Testing linearity 401

of n, ϑ. Observing that |ϑ̂n − ϑ| ≤ 1 and using (41) we get

Eϑ|
√
n (ϑ̂n − ϑ)|3/2 =

n3/4�

0

Pϑ(|√n (ϑ̂n − ϑ)|3/2 ≥ x) dx

≤ 1 +
n3/4�

1

Pϑ(|√n (ϑ̂n − ϑ)| ≥ x2/3) dx

≤ 1 +K2

n3/4�

1

(
1
n

+
1
x4/3

)
dx ≤ 1 + 3K2.

Proof of Lemma 2. Set g1(x) = m2(x), g2(x) = xm(x), g3(x) = x2, and

Ij =
1
N

n∑

t=N+1

gj(Yt−1), j = 1, 2, 3.

Clearly, for m ∈M the functions g = gj satisfy (30). Also, we have

(42) sup
0<ϑ<1

|ζn(m,ϑ)− dn(m,ϑ)|

≤ |I1 −EmI1|+ 2|I2 −EmI2|+ 2|I3 −EmI3|.
This and (32) with g = gj , j = 1, 2, 3, t0 = 0 and τn = {N, . . . , n} yield
Lemma 2.

Proof of Lemma 3. Acting as in (42) and applying (32) to the Markov
chain (4) starting at t0 = N − 1 with y0 = YN−1 and τn = {N, . . . , n} we
find

Pm{ sup
ϑ∈[a,b]

√
n |ζn(m,ϑ)− d̃n(m,ϑ)| > C | FN−1

1 }

≤ Pm

{
2

3∑

j=1

|Ij −Em(Ij | FN−1
1 )| > C

∣∣∣ FN−1
1

}

= Pm

{
2

3∑

j=1

|Ij −Em(Ij |YN−1)| > C
∣∣∣ YN−1

}

≤ C3

C2 (|YN−1|4+δ + 1),

where C3 = C3(c, d, p(·)) is a constant. Taking expectations and using (31)
we obtain

Pm{ sup
ϑ∈[a,b]

√
n |ζn(m,ϑ)− d̃n(m,ϑ)| > C} ≤ C3

C2 (C1 + 1),

which together with Lemma 2 gives Lemma 3.
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Proof of Lemma 4. Since ϑ̂n is FN−1
1 -measurable we have

(43) Pm

{
d̃n(m, ϑ̂n) >

Q√
n

; |Rn| ≥
√
N

2
d̃n(m, ϑ̂n)

}

= Em

(
Pm

{
d̃n(m, ϑ̂n) >

Q√
n

; |Rn| ≥
√
N

2
d̃n(m, ϑ̂n)

∣∣∣∣FN−1
1

})

= Em

(
I

{
d̃n(m, ϑ̂n)>

Q√
n

}
Pm

{
|Rn| ≥

√
N

2
d̃n(m, ϑ̂n)

∣∣∣∣FN−1
1

})
.

Note that ν̂t is conditionally independent of (m(Yt−1) − ϑ̂nYt−1), t =
N + 1, . . . , n, for fixed FN−1

1 , and Em((m(Yt−1) − ϑ̂nYt−1)ν̂t | F j1) = 0 for
N − 1 ≤ j ≤ t− 2. This entails

(44) Em(R2
n | FN−1

1 ) ≤ Em

(
1
N

n∑

t=N+1

(m(Yt−1)− ϑ̂nYt−1)2ν̂2
t

∣∣∣∣FN−1
1

)

+
2
N

n∑

t=N+2

|Em{(m(Yt−1)− ϑ̂nYt−1)ν̂t(m(Yt−2)− ϑ̂nYt−2)ν̂t−1 | FN−1
1 }|

≤ 9
N

Em(ν̂2
t | FN−1

1 )Em

( n∑

t=N+1

(m(Yt−1)− ϑ̂nYt−1)2
∣∣∣FN−1

1

)

≤ C4Em

(
1
N

n∑

t=N+1

(m(Yt−1)− ϑ̂nYt−1)2
∣∣∣∣FN−1

1

)

where C4 is a finite constant depending on σ2, η2 only.
Applying the Chebyshev inequality to the last conditional probability

in (43) and using (44) we get

Pm

{
d̃n(m, ϑ̂n) >

Q√
n

; |Rn| ≥
√
N

2
d̃n(m, ϑ̂n)

}

≤ 4C4

N
Em

(
I

{
d̃n(m, ϑ̂n) >

Q√
n

}

× Em{N−1∑n
t=N+1(m(Yt−1)− ϑ̂nYt−1)2 | FN−1

1 }
d̃2
n(m, ϑ̂n)

)

=
4C4

N
Em

(
[d̃n(m, ϑ̂n)]−1I

{
d̃n(m, ϑ̂n) >

Q√
n

})
≤ 4C4

Q

√
n

N
.

This completes the proof of the lemma.

6. A simulation study. In this section, we provide simulation evidence
of the finite sample behavior of the test statistic derived in Section 3.
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We consider the following function m:

m(x) = ϑx+
λ

n1/4
sin(2πx),

where λ > 0 is a parameter which determines the deviation from linearity.
Clearly, |m(x)| ≤ |x| |ϑ| + λ/n1/4, and therefore m ∈ M(c, d) for some
c ∈ (0, 1), d > 0, if |ϑ| < 1.

We generated 1000 replications of the series

Zt = Yt + ξt,

Yt = ϑYt−1 +
λ

n1/4
sin(2πYt−1) + εt, t = 1, . . . , n,

(45)

where ξt and εt are independent i.i.d. N (0, 1) random variables, n = 10000,
6561, 4096 and ϑ = 0.95. The numbers n were chosen to obtain simple
values for the sensitivity coefficient λ/n1/4. We have not included a constant
shift ω into (45), so that we directly calculate parameter estimates and
test statistics without the iterative procedure of Section 4. The constants
σ2, η2, µ, ν needed for computation of Mn and Bn are explicitly known in
view of the normality of the errors. We do not split the sample, i.e. apply
the summation until t = n in (6) and use

Tn =
1√
nBn

n∑

t=2

{(Zt − ϑ̂nZt−1)2 −Mn}

instead of (7).
Summary statistics of the Tn test statistic are given in Table 1. The

estimates ϑ̂n were always very close to the true value of 0.95, so they are
not reported.

Table 1. Summary statistics of simulated test statistics Tn. The first rows of each row-
triple gives the value of λ, the second the mean of Tn for 1000 replications, the third the
standard deviation.

n 10000 6561 4096

λ 0.000 0.000 0.000

mean −0.048 0.019 0.014

std.dev. 1.502 1.551 1.490

λ 0.500 0.450 0.400

mean 0.383 0.365 0.357

std.dev. 1.553 1.569 1.418

λ 1.000 0.900 0.800

mean 1.801 1.418 1.052

std.dev. 1.521 1.520 1.492

n 10000 6561 4096

λ 1.500 1.350 1.200

mean 4.251 3.445 2.747

std.dev. 1.545 1.664 1.643

λ 2.000 1.800 1.600

mean 8.486 6.868 5.377

std.dev. 1.903 1.864 1.823

λ 2.500 2.250 2.000

mean 15.406 12.445 9.881

std.dev. 3.306 3.974 3.332
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The distributions of Tn for n = 4096 and n = 10000 are depicted in
Figures 1 and 2, respectively, for λ = 0 to λ = 1.5. The distributions move
to the right when λ increases, which shows the consistency of the test. We
also present the power functions for the levels α = 0.05 and α = 0.1 in
Figure 3 (for n = 4096) and Figure 4 (for n = 10000). We see that the
power converges fast to 1 as λ grows.

t-statistics, n=4096
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Fig. 1. The distribution of Tn for n = 4096. From left to right: λ = 0, 0.5, 1, 1.5.

t-statistics, n=10000
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Fig. 2. The distribution of Tn for n = 10000. From left to right: λ = 0, 0.5, 1, 1.5.
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Power functions, n=4096
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Fig. 3. Power functions of Tn for n = 4096. The abscissa represents the parameter λ.
Under the null hypothesis, λ = 0. The black curve is the power function for α = 0.05, the
grey curve is the power function for α = 0.1.

Power functions, n=10000

0 0.5 1 1.5 2 2.5
x

0.
2

0.
4

0.
6

0.
8

1
y

Fig. 4. Power functions of Tn for n = 10000. The abscissa represents the parameter λ.
Under the null hypothesis, λ = 0. The black curve is the power function for α = 0.05, the
grey curve is the power function for α = 0.1.
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7. Application to the HFDF96 data set. We extracted two stock
price indices, the Dow Jones Industrial Average and the Standard & Poors
500, and the DEM/USD exchange rate from the HFDF96 data set, provided
by Olsen & Associates. The data are half-hourly sampled index values. For
the stock indices, we skipped the intervals corresponding to non-trading
hours at the New York Stock Exchange. For DEM/USD, we skipped those
intervals for which the time of the last quote was more than half an hour
behind. This left us with 3680 observations for the stock indices and 14234
observations for DEM/USD. The time series are depicted in Figures 5, 6
and 7.

DJIA, 1996
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Fig. 5. The Dow Jones Index

S&P500, 1996
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Fig. 6. The S&P500 Index
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DEM/USD 1996
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Fig. 7. The DEM/USD exchange rate

First, we estimated ϑ under the null hypothesis as described above,
and obtained ϑ0n = 0.9004 for DEM/USD, ϑ0n = 1.0153 for DJIA, and
ϑ0n = 0.9241 for S&P500. These results confirm previous results of SV
models for high frequency financial data (see e.g. Mahieu and Schotman
(1997)). The AR parameter is usually found to be close to one, implying
a high persistence of shocks in volatility. For DJIA we have even ϑ0n > 1,
which could mean a nonstationary volatility, and therefore a nonstationary
return process. To rigorously apply our theoretical results we should project
this ϑ0n on an interval [a, b] with 0 < a < b < 1. However, the choice of a and
b is not clear in practice. Also we believe that, for such a large sample size,
the value ϑ0n > 1 is not due to a random error and reflects the fact that the
system is indeed nonstationary. Therefore, we keep the value ϑ0n = 1.0153
in computations.

Let us turn to the test statistic T̃n in (13). In our real data situation,
the moments of the random errors are unknown. Therefore, the values Bn
and Mn cannot be computed, but one can try to estimate them. We use the
following estimates M̂n and B̂n for Mn and Bn, respectively:

M̂n =
1

n− 1

n∑

t=2

(z̃t − ϑ0nZt−1)2, B̂n =
1

n− 1

n∑

t=2

(z̃t − ϑ0nZt−1)4.

It is clear that now there is no sense to use the test statistic T̂n which is
obtained by replacing Mn and Bn in (13) by M̂n and B̂n because, obviously,
T̂n = 0. To avoid this problem, we divide the sample (Z1, . . . , Zn) into k
groups (Z1, . . . , Zn1), (Zn1+1, . . . , Zn2), . . . , (Znk−1+1, . . . , Zn) of equal size

and study the behavior of k test statistics T (j)
n , j = 1, . . . , k, defined as
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follows:

T (j)
n =

√
k

nB̂n

nj∑

t=nj−1+1

{(z̃t − ϑ0nZt−1)2 − M̂n}.

In particular, one can take k = 2. However, the use of a larger number
of subsamples appears to be reasonable because in this case we have an
additional information on how many times the hypothesis is accepted or
rejected. On the other hand, k should not be too large, since then the number
of observations in the subsamples may become too small. Thus, we obtain
k test statistics, and k decisions to accept or reject the null hypothesis at
level α. Also, we can estimate ϑ for each subsample. It should be noted that
most of these estimates were very close to the estimates reported above for
the entire sample.

Table 2 gives the number of rejections for selected k. Ideally, under the
null hypothesis we would expect to reject αk times. Especially for the stock
indices this holds closely for k < 100. Note that for k = 100 there are only
36 observations in each subsample for the stock indices. For DEM/USD, we
reject slightly more often than one would expect under linearity. However,
recall the still moderate sizes of the subsamples and the slow rate of the
test.

Table 2. Number of rejections for k subsamples, each of size n/k, for two levels, α = 0.05
and α = 0.1

DEM/USD DJIA S&P500

k α=0.05 α=0.1 α=0.05 α=0.1 α=0.05 α=0.1

2 0 0 0 0 0 0

3 0 0 0 0 1 1

4 0 0 1 1 0 0

5 1 1 1 1 0 0

6 0 0 1 1 2 2

10 1 1 1 1 0 2

12 1 1 1 1 1 2

20 2 3 1 1 1 3

50 5 7 2 3 4 6

100 12 15 10 13 9 9

To summarize, the hypothesis of a linear AR(1) structure in log volatility
is confirmed by our results. This is surprising, at least for the stock indices,
since in the ARCH literature very often nonlinearities were found for stock
volatility. But recall that our sample period 1996 does not cover any major
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crashes of the markets, so volatility exhibits a rather smooth behavior. It
would be interesting to apply the test to other time periods.

Appendix

Proof of Proposition 2. Let us prove (31) first. For m ∈ M(c, d), the
process Yt satisfies the recursive inequalities

|Yt| ≤ c|Yt−1|+ d+ |εt|.

Since c ∈ (0, 1), this easily entails

|Yt| ≤ |y0|ct +
d

1− c +
t−1∑

k=0

ck|εt−k|,

and therefore

Em{|Yt|4+δ} ≤ 23+δ
{(
|y0|+

d

1− c

)4+δ

+ E
(( t−1∑

k=0

ck|εt−k|
)4+δ)}

.(46)

Set Xk = ck|εt−k|. Since E|εt−k|4+δ <∞ and 0 < c < 1 there exists a finite
constant C∗ > 0 such that

max
( ∞∑

k=0

E|Xk|,
∞∑

k=0

E|Xk|2,
∞∑

k=0

E|Xk|4+δ
)
≤ C∗.

Using this, the convexity inequality and Rosenthal’s inequality (Petrov
(1995), p. 59), we obtain

E
(∣∣∣

t−1∑

k=0

Xk

∣∣∣
4+δ)

≤ 23+δ
[
E
(∣∣∣

t−1∑

k=0

(Xk −EXk)
∣∣∣
4+δ)

+
( t−1∑

k=0

E|Xk|
)4+δ]

≤ 23+δ
[
c(δ)

( t−1∑

k=0

E|Xk −EXk|4+δ +
( t−1∑

k=0

E|Xk −EXk|2
)2+δ/2)

+ C4+δ
∗
]

<∞,

where c(δ) > 0 is a constant depending only on δ. This, together with (46),
yields

Em{|Yt|4+δ} ≤ C5(1 + |y0|4+δ),(47)

where C5 > 0 depends only on c, d, p(·). This proves (31).
Let us prove (32). Set Vt = g(Yt)− Em{g(Yt)}. From Davydov’s (1968)

inequality,
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(48) Em

{(∑

t∈τn
(g(Yt)−Em{g(Yt)})

)2}
=
∑

t,l∈τn
Cov(Vt, Vl)

≤ 2
∑

t,l∈τn
(αt,l)δ/(4+δ)[Em(|Vt|2+δ/2)Em(|Vl|2+δ/2)]1/(2+δ/2),

where
αt,l = 2 sup

A×B∈σ(Yt)×σ(Yl)
|Cov(I{A}, I{B})|

is the α-mixing coefficient between the σ-fields generated by the random
variables Yt and Yl under the measure Pm, and I{A} is the indicator function
of the set A.

Now we evaluate the α-mixing coefficient. It is easy to show that there
exist finite positive constants c′, d′, a′ such that the function

f(x) = max(c′|x| − d′, a′)
is a Lyapunov function for the Markov chain Yt, i.e.

E(f(Yt) |Yt−1 = x) ≤ c′′f(x)− γ0, ∀|x| ≥ x0,

for some 0 < c′′ < 1, γ0 > 0, x0 > 0. As follows from Meyn and Tweedie
(1992) (see also Doukhan (1995), p. 92, Remark 2), under the assumptions
A1–A3 we have

sup
m∈M

αt,l ≤ C6(1 + f(y0))%|t−l| ≤ C7(1 + |y0|)%|t−l|(49)

where C6 = C6(c, d, p(·)), C7 = C7(c, d, p(·)) and % = %(c, d, p(·)) < 1 are
finite constants.

Using (30) and (47), we get

Em(|Vt|2+δ/2) ≤ 22+δ/2Em(|g(Yt)|2+δ/2) ≤ |g0|2+δ/223+δ(1 + Em|Yt|4+δ)

≤ C8(1 + |y0|4+δ),

where C8 = C8(c, d, p(·), g0) is a finite constant. This together with (48) and
(49) entails

Em

{(∑

t∈τn
(g(Yt)−Em{g(Yt)})

)2}

≤ C9(1 + |y0|)δ/(4+δ)(1 + |y0|4+δ)4/(4+δ)
∑

t,l∈τn
%|t−l|δ/(4+δ)

≤ C10(1 + |y0|4+δ)
∑

t,l∈τn
%|t−l|δ/(4+δ),

where the constants C9, C10 do not depend on y0. Since % < 1, the off-
diagonal terms in the last sum are exponentially decreasing, and this sum is
of order card τn. Finally, we obtain (32) by applying Chebyshev’s inequality.



Testing linearity 411

References

Y. A. Davydov (1968), Convergence of distributions generated by stationary stochastic
processes, Theory Probab. Appl. 13, 691–696.

P. Doukhan (1995), Mixing , Lecture Notes in Statist. 85, Springer, New York.

J.-C. Duan (1995), The GARCH option pricing model , Math. Finance 5, 13–32.

R. Engle (1982), Autoregressive conditional heteroskedasticity with estimates of the vari-
ance of U.K. inflation, Econometrica 50, 987–1008.

C. Gouriéroux (1997), ARCH Models and Financial Applications, Springer, New York.

C. Gouriéroux and A. Monfort (1992), Qualitative threshold ARCH models, J. Economet-
rics 52, 159–199.

C. Gouriéroux, A. Monfort and C. Tenreiro (1995), Kernel M-estimators and functional
residuals plots, CREST DP 9546.

L. de Haan (1990), Fighting the ARCH-enemy with mathematics, Statist. Neerlandica 44,
45–68.

C. Hafner (1998), Nonlinear Time Series Analysis with Applications to Foreign Exchange
Rate Volatility , Physica-Verlag, Heidelberg.
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