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OSCILLATION AND GLOBAL ATTRACTIVITY IN
A DISCRETE SURVIVAL RED BLOOD CELLS MODEL

Abstract. We consider the discrete survival red blood cells model

(∗) Nn+1 −Nn = −δnNn + Pne
−aNn−k ,

where δn and Pn are positive sequences. In the autonomous case we show
that (∗) has a unique positive steady state N ∗, we establish some sufficient
conditions for oscillation of all positive solutions about N ∗, and when k = 1
we give a sufficient condition for N∗ to be globally asymptotically stable. In
the nonatonomous case, assuming that there exists a positive solution {N ∗n},
we present necessary and sufficient conditions for oscillation of all positive
solutions of (∗) about {N∗n}. Our results can be considered as discrete ana-
logues of the recent results by Saker and Agarwal [12] and solve an open
problem posed by Kocic and Ladas [8].

1. Introduction. Most dynamic population evolution models are de-
scribed by delay differential equations. Analytically, differential delay equa-
tions are difficult to handle and therefore many articles have examined dif-
ference equations as models. In order to describe the survival red blood cells
in animals Ważewska-Czyżewska and Lasota [14] proposed the equation

(1.1) N ′(t) = −δN(t) + Pe−aN(t−τ).

Here N(t) is the number of red blood cells at time t, δ is the rate of death of
the cells, P and a describe the generation of the cells per unit time, and τ
is the time needed to produce blood cells. For oscillation of (1.1) we refer to
the monograph [4]. Very recently, Saker and Agarwal [12] considered (1.1)
with periodic coefficients and studied its oscillation and global attractivity.
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We remark that in recent years discrete population dynamics has become
a very popular subject. In fact, several different models have been studied
in [1–4, 6–11, 15–16]. Following this trend, in this paper we shall consider
the discrete survival red blood cells model [8]

(1.2) Nn+1 −Nn = −δNn + Pe−aNn−k ,

where

(1.3) P, a ∈ (0,∞), δ ∈ (0, 1), n ∈ N.
The state variable Nn in (1.2) represents the number of mature red blood
cells in cycle n as a closed system of the mature cells surviving from previous
cycles plus the cells that have survived from the previous k cycle. In partic-
ular, Pe−aNn−k represents the number of mature cells that were produced
in the (n− k)th cycle and survived to maturity in the nth cycle.

By a solution of (1.2), we mean a sequence {Nn} which is defined for
n ≥ −k and which satisfies (1.2) for n ≥ 0. Together with (1.2) we consider
the initial condition

(1.4) Ni = ai for i = −k, . . . , 0.
Then it is easily seen that the initial value problem (1.2), (1.4) has a unique
positive solution {Nn}∞n=1.

The variation of the environment plays an important role in many bi-
ological and ecological dynamical systems. In particular, the effects of a
periodically varying environment are important for evolutionary theory as
the selective forces in systems in a fluctuating environment differ from those
in a stable environment. Thus, the assumption of periodicity of the parame-
ters in the system (in a way) incorporates the periodicity of the environment
(e.g., seasonal effects of weather, food supplies, mating habits, etc.). A mod-
ification of (1.2) according to the environmental variation is given by the
nonautonomous delay difference equation

(1.5) Nn+1 −Nn = −δnNn + Pne
−aNn−k ,

where

(1.6) δn and Pn are positive sequences.

We will consider (1.5) together with the initial condition

(1.7) Ni = ai for i = −k, . . . , 0.
Again, it is clear that the initial value problem (1.5), (1.7) has a unique
solution {Nn}∞n=1.

The plan of this paper is as follows: In Section 2, for the autonomous case
we first show that there exists a unique positive steady state N ∗ of (1.2),
and prove that (1.2) with (1.3) has a positive solution which is bounded
and persistent; we also provide sufficient conditions for the oscillation of all
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positive solutions about N∗, and when k = 1 we present sufficient conditions
for the global attractivity of N∗. In Section 3, for the nonautonomous case,
assuming that (1.5) has a positive solution {N ∗n}, we present necessary and
sufficient conditions for the oscillation of all positive solutions of (1.5) about
that solution. Our results can be considered as discrete analogues of the
results in [12] and solve an open problem posed by Kocic and Ladas [8,
open problem 4.6.1].

2. Autonomous case. In this section we study the oscillatory and
asymptotic behavior of positive solutions of (1.2) when N−k, N−k+1, . . . , N0

are nonnegative constants.
Let I be an interval of positive real numbers, and let f : I × I → I be a

continuous function. Consider the difference equation

(2.1) Nn+1 = f(Nn, Nn−k), n = 1, 2, . . .

We say that N∗ is an equilibrium of (2.1) if

N∗ = f(N∗, N∗),

that is, the constant sequence {Nn}∞n=−k with Nn = N∗ for all n ≥ −k is a
solution of (2.1).

Now, we prove that (1.2) has a unique equilibrium N ∗. Observe that the
equilibrium points of (1.2) are the solutions of the equation

N∗ = Pe−aN
∗

+ (1− δ)N∗.
Set

f(x) = Pe−ax + (1− δ)x− x = Pe−ax − δx.
Then f(0) = P > 0 and f(∞) = −∞, so there exists x∗ > 0 such that
f(x∗) = 0. Now since f ′(x) = −aPe−ax − δ < 0 for all x > 0 we have
f ′(x∗) < 0, from which it follows that f(x) = 0 has exactly one solution x∗,
and then (1.2) has a unique equilibrium point N ∗.

We say that a sequence {Nn} is bounded and persistent if there exist
positive constants C and D such that

C ≤ Nn ≤ D for n = 0, 1, . . .

A difference equation

xn+1 = F (xn, xn−1, . . . , xn−k)

is said to be permanent if there exist numbers C and D with

0 < C ≤ D <∞
such that for any initial conditions x−k, x−k+1, . . . , x0 ∈ (0,∞) there exists
a positive integer n1 which depends on the initial conditions such that

C ≤ xn ≤ D for n ≥ n1.
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The importance of the permanence for biological systems was thoroughly
reviewed by Hutson and Schmitt [5].

In the following, we show that every solution of (1.2) is bounded and
persistent.

Theorem 2.1. Assume that (1.3) holds and assume that the initial con-
ditions N−k, N−k+1, . . . , N0 are nonnegative constants. Then the solution
{Nn}∞n=1 is positive, bounded and persistent.

Proof. First assume that N−k, N−k+1, . . . , N0 are nonnegative con-
stants. Then

(2.2) Nn+1 = (1− δ)Nn + Pe−aNn−k > 0,

which proves the nonnegativity result by induction. Now assume that {Nn}
is not bounded. Then there exists a subsequence {Nni} such that limi→∞Nni
=∞ and Nni+1 −Nni > 0. Using (1.2) we get

0 < −δNni + Pe−aNni−k ,

and so
Nni < P/δ.

Taking the limit of both sides we have limi→∞Nni < ∞, which contra-
dicts the assumption that {Nn} is unbounded. Thus the solution of (1.2) is
bounded.

Now we prove the persistence. Assume that

M = max{N−k, N−k+1, . . . , N0, N
∗, P/δ}.

If f(x) is the function used before, then f(M) < f(N ∗) = 0, and so
(P/δ)e−aM < M . Set

F (N) =
P

δ
e−aN for N ∈ (0,M ].

Clearly F (N) is decreasing on (0,M ], and so it has a maximum at N = 0,
and F (0) = P/δ ≤ M. Thus F (N) ≤ M for all N∈ (0,M ]. Note that
N0 ∈ (0,M ] and so

N1 = (1− δ)N0 + Pe−aN0 < N0 + δ

(
P

δ
e−aN0

)
< N0 + δM < 2M.

It follows by induction that Nn < 2M for n = 1, 2, . . . , which implies
Nn−k < 2M for n = k + 1, k + 2, . . . Finally, note that

Nn+1 = (1− δ)Nn + Pe−aNn−k > Pe−aNn−k > Pe−2aM .

Then
Pe−2aM < Nn < 2M for n ≥ n1 = k + 1, k + 2, . . .

Thus every positive solution of (1.2) is bounded and persistent.



Red blood cells model 445

The following theorem provides some sufficient conditions for oscillation
of all positive solutions of (1.2) about N ∗.

A solution {Nn} of (1.1) is said to oscillate about the equilibrium N∗

if the differences Nn − N∗ are neither eventually positive nor eventually
negative.

Theorem 2.2. Assume that (1.3) holds, and

(2.3) Pae−aN
∗
>

(
k

k + 1

)k+1

(1− δ)k+1.

Then every solution of (1.2) oscillates about N∗.

Proof. Assume for contradiction that (1.2) has a solution which does not
oscillate about N∗, and let

(2.4) Nn = N∗ +
1
a
zn.

Without loss of generality we assume that Nn > N∗ and this implies that
zn > 0. (The case Nn < N∗ implies that zn < 0 for which the proof is
similar. In fact, we will see below that if zn is a negative solution of (2.5)
then Un = −zn is a positive solution of (2.5).) From the transformation
(2.4) it is clear that Nn oscillates about N∗ if and only if zn oscillates about
zero. The transformation (2.4) turns (1.2) into

zn+1 − zn + δzn + Pae−aN
∗
(1− e−zn−k) = 0,

or

(2.5) zn+1 − zn + δf1(zn) + Pae−aN
∗
f2(zn−k) = 0,

where
f1(u) = u, f2(u) = 1− e−u.

Note that

(2.6) uf1(u) > 0 for u 6= 0, lim
u→0

f1(u)
u

= 1,

and

(2.7) uf2(u) > 0 for u 6= 0, lim
u→0

f2(u)
u

= 1.

Also we claim that

f1(u) ≤ u for u > 0,(2.8)

f2(u) ≤ u for u > 0.(2.9)

The proof of (2.8) is simple. The proof of (2.9) follows from the observation
that f2(0) = 0, and that

d

du
[f2(u)− u] = −

(
1− 1

eu

)
< 0 for u > 0.
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The linearized equation associated with (2.5) is

(2.10) yn+1 − yn + δyn + Pae−aN
∗
yn−k = 0,

and every solution of (2.10) oscillates if (2.3) holds (see [9, Lemma 1]).
The proof is now an elementary consequence of the linearized oscillation
theorem established by Ladas and Qian [10] according to which if (2.6)–(2.9)
hold, then every solution of (2.5) oscillates if and only if every solution of
(2.10) oscillates. Thus, in conclusion every positive solution of (1.2) oscillates
about N∗.

Now, we study the global asymptotic stability ofN ∗ for (1.2) when k = 1.
The equilibrium N∗ of (1.2) is called stable if for every ε > 0, there

exists δ > 0 such that if N−1, N0 ∈ I and |N0−N∗|+ |N−1−N∗| < δ, then
|Nn −N∗| < ε for all n ≥ −1.

The equilibrium N∗ of (1.2) is called locally asymptotically stable if it
is stable and there exists γ > 0 such that if N−1, N0 ∈ I and |N0 − N∗| +
|N−1 −N∗| < γ, then

lim
n→∞

Nn = N∗.

We say that N∗ is a global attractor if for every N−1, N0 ∈ I we have
limn→∞Nn = N∗. Further, N∗ is called globally asymptotically stable if N∗

is stable and also a global attractor.
A solution {Nn} of (1.2) is said to be periodic of prime period a, or of

minimal period a, if it is periodic of period a, where a is the least positive
integer for which Nn+a = Nn for n = 0, 1, . . .

Let f be a C3 function in some interval I. The Schwarzian derivative
Sf(x) of f at a point x ∈ I, where f ′(x) 6= 0, is given by

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

.

Theorem 2.3. Assume that (1.3) holds, k = 1 and

(2.11) Pae−aN
∗
< δ.

Then the unique steady state N∗ of (1.2) is locally asymptotically stable.

Proof. It suffices to prove that the zero solution of the linearized equation
of (1.2) is locally asymptotically stable. The linearized equation associated
with (1.2) when k = 1 is

(2.12) yn+1 − (1− δ)yn + Pae−aN
∗
yn−1 = 0,

and the difference equation (2.12) is asymptotically stable if (2.11) holds
(see [3, Theorem A]).

Now, we will give sufficient conditions for N ∗ to be globally asymptoti-
cally stable.
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Theorem 2.4. Assume that (1.3) and (2.11) hold , with N−1, N0 > 0.
Then N∗ is globally asymptotically stable.

Proof. When k = 1, (1.2) can be rewritten in the form

(2.13) Nn+1 = f(Nn, Nn−1) = αNn + Pe−aNn−1 ,

with N−1, N0 > 0. In Theorem 2.3 we saw that N∗ is locally asymptotically
stable. To prove that N∗ is globally asymptotically stable we will prove that
N∗ is a global attractor of all positive solutions of (2.13). To prove this we
will apply Theorem 2.3 of [6]. In our case

f(u, v) = αu+ Pe−av,

F (v) = f(f(N∗, v), v) = α2N∗ + (αP + P )e−av,

and α = 1− δ > 0. Note that

(h1) f ∈ C[(0,∞)× (0,∞), (0,∞)],
(h2) f(u, v) is nondecreasing in u and decreasing in v,
(h3) f(u, v)/u is nonincreasing in u,
(h4) (2.13) has a unique steady state N∗.

It remains to prove that F has no periodic points of prime period 2.
Since F (N∗) = N∗, in view of Lemma A of [6] it is sufficient to show that
all solutions of the difference equation

(2.14) yn+1 = F (yn), n = 0, 1, . . . ,

converge to N∗. This will be accomplished by showing that the Schwarzian
derivative of F is negative together with the observation that because of
(2.11) the equilibrium N∗ of (2.14) is locally asymptotically stable. To this
end observe that

SF (v) = − 1
2a

2 < 0.

The proof is now an elementary consequence of [6, Theorem 2.3] accord-
ing to which if (h1)–(h4) hold, and the function F (v) = f(f(N ∗, v), v) has
no periodic points of prime period 2, then N ∗ is globally asymptotically
stable.

3. Nonautonomous case. In this section we study the oscillation be-
havior of all positive solutions of (1.5). A solution {Nn} of (1.5) is said to
oscillate about the sequence {N∗n} if the differences Nn − N∗n are neither
eventually positive nor eventually negative.

Theorem 3.1. Let {N∗n} be a positive solution of (1.5), and assume
that (1.6) holds. Then every positive solution of (1.5) oscillates about {N ∗n}
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if and only if every solution of the linear equation

(3.1) yn+1 − yn + δnyn + Pnae
−aN∗yn−k = 0

oscillates.

Proof. Let {Nn} be a positive solution of (1.5). Set

(3.2) Nn = N∗n +
1
a
zn.

From the transformation (3.2) it is clear that Nn oscillates about N∗ if and
only if zn oscillates about zero. The transformation (3.2) turns (1.5) into

zn+1 − zn + δnzn + Pnae
−aN∗(1− e−zn−k) = 0,

or

(3.3) zn+1 − zn + δnf1(zn) + Pnae
−aN∗f2(zn−k) = 0,

where
f1(u) = u, f2(u) = 1− e−u.

Note that

uf1(u) > 0 for u 6= 0, lim
u→0

f1(u)
u

= 1,(3.4)

and

uf2(u) > 0 for u 6= 0, lim
u→0

f2(u)
u

= 1.(3.5)

Also we claim that

f1(u) ≤ u for u > 0,(3.6)

f2(u) ≤ u for u > 0.(3.7)

The proof of (3.6) is simple. The proof of (3.7) follows from the observation
that f2(0) = 0 and that

d

du
[f2(u)− u] = −

(
1− 1

eu

)
< 0 for u > 0.

The proof is now an elementary consequence of [10, Theorem 3] according
to which if (3.4)–(3.7) hold then every solution of (1.5) oscillates if and only
if every solution of (3.1) oscillates.

Remark 3.1. Theorem 3.1 shows that the oscillation of (3.1) implies
the oscillation of (1.5). Therefore we can use the results of [13] to obtain
oscillation criteria for (1.5). The details are left to the reader.
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