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WEAKLY SEQUENTIALLY CONTINUOUS MAPS AND
EXISTENCE PRINCIPLES FOR ELLIPTIC EQUATIONS

Abstract. We present a Furi–Pera type theorem for weakly sequentially
continuous maps. As an application we establish new existence principles
for elliptic Dirichlet problems.

1. Introduction. In Section 2 we present new fixed point results for
weakly sequentially continuous maps. In particular we extend results in [2, 5,
12] and we also obtain a Furi–Pera type theorem [9] for weakly sequentially
continuous maps in separable reflexive Banach spaces. A variation of this
result can be found in [12] (where one of the conditions was stated incorrectly
but applied correctly). In Section 3 we show how the results in Section 2
can be used to obtain existence principles for the elliptic Dirichlet problem

(1.1)
{
∆y + f(t, y) = 0 on Ω,

y = 0 on ∂Ω;

here Ω will be a bounded domain in Rn, n ≥ 3, with a C1,1 boundary
∂Ω. In this paper we are interested in strong solutions to (1.1) and our
results extend and complement those in [3, 4, 11]. In [3, 4, 11] a fixed point
theorem [2] for self-maps is used to obtain existence results for (1.1) and
as a result some restrictions have to be placed on f in order to guarantee
that the appropriate operator maps a particular convex set back into itself.
However using the fixed point theory in Section 2 we are able to remove this
restriction so a more general result can be formulated.
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For notational purposes [1, 10] for a nonnegative integer k and a real
number p ∈ (n/2,∞) we denote by W k,p(Ω) the space of all real-valued
functions defined on Ω whose weak partial derivatives up to order k lie in
Lp(Ω), equipped with the usual norm. W 1,p

0 (Ω) stands for the closure of
C∞0 (Ω) in the space W 1,p(Ω). Also in Section 3, | · |Lp denotes the usual Lp

norm.

2. Fixed point theory. In this section we present the fixed point theory
which will be needed in Section 3. First we state a fixed point result due to
Arino, Gautier and Penot [2].

Theorem 2.1. Let E be a metrizable locally convex linear topological
space and let C be a weakly compact , convex subset of E. Then any weakly
sequentially continuous map F : C → C has a fixed point.

Our next result replaces the weak compactness of the space C with a
weak compactness assumption on the operator F .

Theorem 2.2. Let E be a Banach space with C a closed , convex subset
of E. Then any weakly compact , weakly sequentially continuous map F :
C → C has a fixed point.

Proof. There exists a weakly compact subset K of C with F (C)⊆K⊆C.
The Krein–Šmulian theorem [6, p. 434] guarantees that co(K) is weakly
compact. Notice also that F : co(K) → co(K), so Theorem 2.1 guarantees
that there exists x ∈ co(K) with x = F (x).

Remark 2.1. In Theorem 2.2, E Banach can be replaced by any metriz-
able locally convex linear topological space where the Krein–Šmulian theo-
rem holds; for examples see [7, p. 553; 8, p. 82].

In applications, to construct a set C so that F takes C back into C is
very difficult and sometimes impossible. As a result it makes sense to discuss
maps F : C → E. Our first result in this direction is the so called nonlinear
alternative of Leray–Schauder.

In the proof we will need the following well known result [2].

Theorem 2.3. Let E be a metrizable locally convex linear topological
space with D a weakly compact subset of E. If F : D → E is a weakly
sequentially continuous map, then F : D → E is a weakly continuous map.

Theorem 2.4. Let E be a Banach space, C a closed convex subset of
E, U a weakly open subset of C, 0 ∈ U and Uw weakly compact (here Uw

denotes the weak closure of U in C). Suppose F : Uw → C is a weakly
sequentially continuous map with the following property :

(2.1) x 6= λFx for every x ∈ ∂U and λ ∈ (0, 1);
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here ∂U denotes the weak boundary of U in C. Then F has a fixed point
in Uw.

Proof. Suppose F does not have a fixed point in ∂U (otherwise we are
finished), so x 6= λFx for every x ∈ ∂U and λ ∈ [0, 1]. Consider

A = {x ∈ Uw : x = tF (x) for some t ∈ [0, 1]}.
Now A 6= ∅ since 0 ∈ U . Also Theorem 2.3 guarantees that F : Uw → C
is weakly continuous. Thus A is weakly closed and in fact weakly compact
since Uw is weakly compact.

Also A ∩ ∂U = ∅ so there exists (since (E,w), the space E endowed
with the weak topology, is completely regular) a weakly continuous map
µ : Uw → [0, 1] with µ(∂U) = 0 and µ(A) = 1. Let

J(x) =
{
µ(x)F (x), x ∈ Uw,

0, x ∈ C \ Uw.
Clearly J : C → C is a weakly compact, weakly sequentially continuous
map. Theorem 2.2 guarantees that there exists x ∈ C with x = J(x). Notice
that x ∈ U since 0 ∈ U . As a result x = µ(x)F (x), so x ∈ A. Thus µ(x) = 1
and so x = F (x).

Next we present a Furi–Pera theorem for weakly sequentially continuous
maps. This result can be found in [12]; we note that one of the condi-
tions there is stated incorrectly and that the proof there has to be adjusted
slightly.

Theorem 2.5. Let E be a separable and reflexive Banach space, and let
C and Q be closed bounded convex subsets of E with Q ⊆ C and 0 ∈ Q.
Suppose F : Q → C is a weakly sequentially continuous map and assume
the following condition is satisfied :

(2.2) if {(xj , λj)}∞j=1 is a sequence in Q × [0, 1] with xj ⇀ x ∈ ∂Q and
λj → λ, and if x = λF (x) for 0 ≤ λ < 1, then there exists j0 ∈
{1, 2, . . .} with λj0F (xj0) ∈ Q; here ∂Q denotes the weak boundary
of Q relative to C and ⇀ denotes weak convergence.

Then F has a fixed point in Q.

Remark 2.2. A special case of (2.2) (which is all we need in Section 3)
is the following condition:

(2.3) if {(xj , λj)}∞j=1 is a sequence in Q× [0, 1] with xj ⇀ x and λj → λ,
and if x = λF (x) for 0 ≤ λ < 1, then there exists j0 ∈ {1, 2, . . .}
with λj0F (xj0) ∈ Q.

Proof of Theorem 2.5. Let r : E → Q be a weakly continuous retraction
(see [12]) and let

B = {x ∈ E : x = Fr(x)}.
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Note that B ⊆ C since F : Q → C. It is easy to see that B 6= ∅ is weakly
closed and weakly compact (note that C is weakly compact since C is closed
and convex (so weakly closed) and bounded in the norm topology). It re-
mains to show B ∩ Q 6= ∅. Suppose B ∩ Q = ∅. Also since E is separable
we know from [6] that the weak topology on C is metrizable; let d? denote
the metric. With respect to (C, d?) note that Q is closed, B is compact,
B ∩Q = ∅ so there exists ε > 0 with

d?(B,Q) = inf{d?(x, y) : x ∈ B, y ∈ Q} > ε.

For i ∈ {1, 2, . . .} let

Ui = {x ∈ C : d?(x,Q) < ε/i}.
Fix i ∈ {1, 2, . . .}. Now Ui is d?-open in C, so Ui is weakly open in C. Also

Uwi = Ud
?

i = {x ∈ C : d?(x,Q) ≤ ε/i}, ∂Ui = {x ∈ C : d?(x,Q) = ε/i}.
Now B ∩ Uwi = ∅ (since d?(B,Q) > ε) and Theorem 2.4 (with F = Fr
and U = Ui) guarantees that there exist λi ∈ (0, 1) and yi ∈ ∂Ui with
yi = λiFr(yi). We can do this argument for each i ∈ {1, 2, . . .}. Notice in
particular since yi ∈ ∂Ui that

(2.4) λiFr(yi) 6∈ Q for each i ∈ {1, 2, . . .}.
Now look at

D = {x ∈ E : x = λFr(x) for some λ ∈ [0, 1]}.
Since D is weakly compact (so weakly sequentially compact by the Eberlein–
Šmulian theorem) and

d?(yj , Q) = ε/j, |λj | ≤ 1 for j ∈ {1, 2, . . .},
we may assume without loss of generality that

λj → λ?, yj ⇀ y? ∈ Qw ∩ C \Qw = ∂Q.

Also since yj = λjFr(yj) we have y? = λ?Fr(y?) (recall Fr : C → C is
weakly continuous). If λ?=1 then y?=Fr(y?), which contradicts B ∩Q=∅.
Thus 0 ≤ λ? < 1. But in this case (2.2), with

xj = r(yj) and x = y? = r(y?),

implies there exists j0 ∈ {1, 2, . . . .} with λj0Fr(yj0) ∈ Q. This contradicts
(2.4). Thus B ∩ Q 6= ∅. As a result there exists x ∈ Q with x = Fr(x) =
F (x).

3. Applications. In this section we present two existence principles for
strong solutions to

(3.1)
{
∆y + f(t, y) = 0 on Ω,

y = 0 on ∂Ω.
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Our results improve those in [13]; we note that the set Q in [13] was chosen
incorrectly so the argument in [13] has to be adjusted slightly as indicated
in this paper.

Throughout this section Ω will be a bounded domain in Rn, n ≥ 3, with
a C1,1 boundary ∂Ω. For our first two results f : Ω × R → R will be an
L∞-Carathéodory function; by this we mean

(a) t 7→ f(t, x) is measurable for every x ∈ R,
(b) x 7→ f(t, x) is continuous for a.e. t ∈ Ω,
(c) for each r > 0, there exists hr ∈ L∞(Ω) with |f(t, x)| ≤ hr(t) for a.e.

t ∈ Ω and every x ∈ R with |x| ≤ r.
Also for our first two results let q ∈ (n/2,∞) be fixed and let

X∞(Ω) = {u ∈W 2,q(Ω) ∩W 1,q
0 (Ω) : ∆u ∈ L∞(Ω)}.

A function y : Ω → R is said to be a strong solution to (3.1) (in the L∞

sense) if y ∈ X∞(Ω) with ∆y + f(t, y) = 0 for a.e. t ∈ Ω and y satisfies the
boundary condition.

Our existence principles for (3.1) will be based on Theorem 2.5, and they
improve results in [3, 4, 11].

Theorem 3.1. Let f : Ω×R→ R be an L∞-Carathéodory function and
assume there exists a constant M0 (independent of λ) with |∆y|∞ ≤M0 for
any solution y ∈ X∞(Ω) to

{
∆y + λf(t, y) = 0 on Ω,

y = 0 on ∂Ω,

for 0 < λ < 1. Then (3.1) has at least one strong solution.

Proof. Let

A0 =





1
2nπ

[Γ (1 + n/2)|Ω|]2/n if |Ω| > 1,

1
2nπ

[Γ (1 + n/2)]2/n if |Ω| ≤ 1,

where |Ω| is the Lebesgue measure of Ω and Γ is the Gamma function. Since
f is L∞-Carathéodory, there exists hA0(M0+1) ∈ L∞(Ω) with

(3.2) |f(t, u)| ≤ hA0(M0+1)(t) for a.e. t ∈ Ω and every u ∈ R with |u| ≤
A0(M0 + 1).

We will apply Theorem 2.5 with E = Lq(Ω),

Q = {u ∈ Lq(Ω) : u ∈ L∞(Ω) and |u|∞ ≤M0 + 1},
C = {u ∈ Lq(Ω) : |u(t)| ≤ φ(t) for a.e. t ∈ Ω},

where φ(t) = max{M0 + 1, hA0(M0+1)(t)}.
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First note that Q and C are bounded, convex subsets of E. Next we
show Q is closed. To see this let un ∈ Q (n ∈ N = {1, 2, . . .}) with un → u
in Lq(Ω). This implies |un(t)| ≤ M0 + 1 for a.e. t ∈ Ω for each n ∈ N. In
addition since un → u in Lq(Ω) there exists a subsequence S of N with

un(t)→ u(t) for a.e. t ∈ Ω as n→∞ in S.

Consequently, |u(t)| ≤M0 +1 for a.e. t ∈ Ω, so |u|∞ ≤M0 +1. Thus x ∈ Q,
so Q is closed. Similarly C is closed. Note also that Q ⊆ C and 0 ∈ Q.

Let ψ : X∞(Ω)→ L∞(Ω) be defined by ψ(u) = −∆u. Now [10, Theorem
9.15, p. 241] guarantees that ψ is a one-to-one mapping from W 2,q(Ω) ∩
W 1,q

0 (Ω) onto Lq(Ω). For u ∈ Q and a.e. t ∈ Ω let

Fu(t) = f(t, ψ−1(u)(t)).

We will use Theorem 2.5 to show F has a fixed point in Q. Of course we
need to check that F : Q → C is weakly sequentially continuous and that
(2.3) holds.

First we show F : Q→ C. If y ∈ Q then |y|∞ ≤M0 +1 and this together
with [3, p. 32, 15] implies for a.e. s ∈ Ω that

|ψ−1(y(s))| ≤ |ψ−1(y)|∞ ≤ A0|y|∞ ≤ A0(M0 + 1).

This together with (3.2) gives

|Fy(s)| = |f(s, ψ−1(y)(s))| ≤ hA0(M0+1)(s) for a.e. s ∈ Ω,
and so Fy ∈ C. Thus F : Q→ C.

To show F : Q → C is weakly sequentially continuous, let xn ∈ Q,
n ∈ N, with xn ⇀ x in Lq(Ω). Now [10, Lemma 9.17, p. 242] guarantees
that ψ−1 is a continuous linear operator from Lq(Ω) intoW 2,q(Ω) (so weakly
continuous), and so we have ψ−1(xn) ⇀ ψ−1(x) in W 2,q(Ω). The Rellich–
Kondrashov theorem [1, Theorem 6.2, p. 144] guarantees (note q > n/2)
that the imbedding W 2,q(Ω) → C(Ω) is completely continuous, so there
exists a subsequence S of N with

ψ−1(xn)→ ψ−1(x) in C(Ω) as n→∞ in S.

Now f is L∞-Carathéodory, so

Fxn(t)→ Fx(t) a.e. in Ω as n→∞ in S,

and
|Fxn(t)| ≤ φ(t) for a.e. t ∈ Ω.

The Lebesgue dominated convergence theorem implies

(3.3) lim
n→∞

Fxn = Fx in Lq(Ω),

so Fxn ⇀ Fx in Lq(Ω). Thus F : Q→ C is weakly sequentially continuous.
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It now remains to check (2.3). Take a sequence {(xj , λj)}∞j=1 in Q× [0, 1]
with λj → λ and xj ⇀ x with x = λFx, 0 ≤ λ < 1. Since xj ⇀ x, as in
(3.3) there exists a subsequence S of N with Fxj → Fx in Lq(Ω) as j →∞
in S. Thus there exists a subsequence S1 of S with

Fxj(t)→ Fx(t) for a.e. t ∈ Ω as j →∞ in S1.

Now Egorov’s theorem [14, p. 975] implies

(3.4) Fxj → Fx almost uniformly on Ω as j →∞ in S1.

Since x = λFx, we see that u = ψ−1(x) satisfies ∆u+ λf(t, u) = 0 a.e. on
Ω and u = 0 on ∂Ω. By hypothesis, |∆u|∞ ≤ M0 and so |x|∞ ≤ M0. Now
given ε > 0 (say ε < 1/3) we know from (3.4) that there exists j0 ∈ S1 with

|Fxj(t)| ≤ |Fx(t)|+ ε for j ≥ j0 (j ∈ S1) for a.e. t ∈ Ω.
As a result for a.e. t ∈ Ω and j ≥ j0 (j ∈ S1) we have (note that Q is weakly
closed, so x ∈ Q and Fx ∈ C since xj ⇀ x)

|λjFxj(t)| ≤ |λj − λ| |Fx(t)|+ |λFx(t)|+ ε

≤ |λj − λ|φ(t) + |x(t)|+ ε ≤ |λj − λ| |φ|∞ +M0 + ε.

Now since λj → λ there exists j1 ∈ S1 (j1 ≥ j0) with

|λjFxj(t)| ≤M0 + 1 for a.e. t ∈ Ω (j ≥ j1 and j ∈ S1),

and so
|λjFxj |∞ ≤M0 + 1 for j ≥ j1 (j ∈ S1).

As a result λjFxj ∈ Q for j ∈ S1 sufficiently large, so (2.3) holds. Now
Theorem 2.5 guarantees that there exists u ∈ Q with u = Fu. Then the
function y(t) = ψ−1(u)(t), t ∈ Ω, is a strong solution to (3.1).

Remark 3.1. In the proof of Theorem 3.1 we could have taken C to be

{u ∈ Lq(Ω) : u ∈ L∞(Ω) and |u|∞ ≤M1}
where M1 = max{M0 + 1, |hA0(M0+1)|∞}.

Remark 3.2. The ideas in Theorem 3.1 (the details are left to the
reader) extend to the problem

{
Ly + f(t, y) = 0 on Ω,

y = 0 on ∂Ω,

where L is a linear second order elliptic differential operator.

Our final existence result concerns the case when f : Ω × R → R is an
Lp-Carathéodory function (here p ∈ (n/2,∞)); by this we mean

(a) t 7→ f(t, x) is measurable for every x ∈ R,
(b) x 7→ f(t, x) is continuous for a.e. t ∈ Ω,
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(c) for each r > 0, there exists hr ∈ Lp(Ω) with |f(t, x)| ≤ hr(t) for a.e.
t ∈ Ω and every x ∈ R with |x| ≤ r.

Let Xp(Ω) = W 2,p(Ω) ∩W 1,p
0 (Ω). A function y : Ω → R is said to be a

strong solution to (3.1) (in the Lp sense) if y ∈ Xp(Ω) with ∆y+f(t, y) = 0
for a.e. t ∈ Ω and y satisfies the boundary condition.

We use Theorem 2.5 to prove our next result. We could also use the
usual Leray–Schauder alternative (with the strong topology). When one uses
the strong topology one needs to check the compactness of the map (this
is currently easy since there are many available results in the literature).
However, in our opinion, the weakly sequentially continuous approach is
easier and quicker since one does not need to check the compactness of
the map (i.e. once the appropriate results are available in the literature for
weakly sequentially continuous maps the result will also be immediate).

Theorem 3.2. Let p ∈ (n/2,∞) and let f : Ω × R → R be an Lp-
Carathéodory function. Assume there exists a constant M0 (independent
of λ) with |∆y|Lp(Ω) ≤M0 for any solution y ∈ Xp(Ω) to

{
∆y + λf(t, y) = 0 on Ω,

y = 0 on ∂Ω,

for 0 < λ < 1. Then (3.1) has at least one strong solution.

Proof. Let

B0 = |Ω|2/n−1/p Γ (1 + n/2)2/n

n(n− 2)π

[
Γ
(
1 + p

p−1

)
Γ
(

n
n−2 −

p
p−1

)

Γ
(

n
n−2

)
]1−1/p

.

Now there exists hB0(M0+1) ∈ Lp(Ω) with

(3.5) |f(t, u)| ≤ hB0(M0+1)(t) for a.e. t ∈ Ω and every u ∈ R with |u| ≤
B0(M0 + 1).

We will apply Theorem 2.5 with E = Lp(Ω),

Q = {u ∈ Lp(Ω) : |u|Lp(Ω) ≤M0 + 1},
C = {u ∈ Lp(Ω) : |u(t)| ≤ φ(t) for a.e. t ∈ Ω},

where
φ(t) = max{M0 + 1, hB0(M0+1)(t)}.

Let ψ : Xp(Ω)→ Lp(Ω) be defined by ψ(u) = −∆u and for u ∈ Q and a.e.
t ∈ Ω let

Fu(t) = f(t, ψ−1(u)(t)).

We first show F : Q→ C. To see this let y ∈ Q, so |y|Lp(Ω) ≤M0 + 1. Now
[11, p. 60] implies for a.e. s ∈ Ω that

|ψ−1(y(s))| ≤ |ψ−1(y)|∞ ≤ B0|y|Lp(Ω) ≤ B0(M0 + 1),
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so
|Fy(s)| ≤ hB0(M0+1)(s) for a.e. s ∈ Ω.

Thus Fy ∈ C, so F : Q→ C.
To see that F : Q → C is weakly sequentially continuous, let xn ∈ Q,

n ∈ N, with xn ⇀ x in Lp(Ω). As in Theorem 3.1 there exists a subsequence
S of N with

ψ−1(xn)→ ψ−1(x) in C(Ω) as n→∞ in S.

Thus
Fxn(t)→ Fx(t) a.e. in Ω as n→∞ in S,

and
|Fxn(t)| ≤ φ(t) for a.e. t ∈ Ω.

The Lebesgue dominated convergence theorem implies

(3.6) lim
n→∞

Fxn = Fx in Lp(Ω),

so Fxn ⇀ Fx in Lp(Ω). Thus F : Q→ C is weakly sequentially continuous.
It now remains to check (2.3). Take a sequence {(xj , λj)}∞j=1 in Q× [0, 1]

with λj → λ and xj ⇀ x with x = λFx, 0 ≤ λ < 1. Since xj ⇀ x, the
argument used to prove (3.6) guarantees that there is a subsequence S of N
with Fxj → Fx in Lp(Ω) as j → ∞ in S. Now given ε > 0 (say ε < 1/3),
there exists j0 ∈ S with

|Fxj |Lp(Ω) ≤ |Fx|Lp(Ω) + ε for j ≥ j0 (j ∈ S).

This together with x = λFx, and so |x|Lp(Ω) ≤M0, yields

|λjFxj |Lp(Ω) ≤ |λj − λ| |Fx|Lp(Ω) + |x|Lp(Ω) + ε

≤ |λj − λ| |φ|Lp(Ω) +M0 + ε

for j ≥ j0 and j ∈ S. Now since λj → λ there exists j1 ∈ S (j1 ≥ j0) with

|λjFxj |Lp(Ω) ≤M0 + 1 for j ≥ j1 and j ∈ S1.

As a result λjFxj ∈ Q for j ∈ S sufficiently large, so (2.3) holds. We may
apply Theorem 2.5.
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