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ESTIMATION OF THE DRIFT FUNCTION FOR ITOPROCESSES AND A CLASS OF SEMIMARTINGALESVIA HISTOGRAM SIEVE

Abstrat. A histogram sieve estimator of the drift funtion in Ito pro-esses and some semimartingales is onstruted. It is proved that the esti-mator is pointwise and L1 onsistent and its �nite-dimensional distributionsare asymptotially normal. Our approah extends the results of Le±kow andRó»a«ski (1989a).1. Introdution. Sine Grenander (1981) the method of sieves hasturned out to be a very useful approah in nonparametri estimation. Manyauthors have applied di�erent sieves for estimation of time dependent fun-tions whih are funtional parameters of stohasti proesses suh as pointproesses belonging to a multipliative intensity model (for results on sieveestimation of the intensity funtion in the multipliative intensity model seeKarr (1987), Le±kow and Ró»a«ski (1989b), Ró»a«ski and Zagda«ski (2001)),di�usion proesses, Ito proesses and more generally, semimartingale regres-sion models; all these models are known to be widely used for desribing thebehaviour of dynamial systems.Geman and Hwang (1982), using a sieve based on an orthonormal system,obtained a onsistent estimator of an unknown funtional parameter α in L2norm in the model
dX(t) = α(t)dt + dW (t), t ∈ [−1/2, 1/2],where W (t) is a Wiener proess. This result was generalized by Nguyen andPham (1982) who onsidered the model
dX(t) = α(t)X(t)dt + dW (t), X(0) = x0.2000 Mathematis Subjet Classi�ation: Primary 62M09; Seondary 62G05.Key words and phrases: sieve method of estimation, Ito proesses, semimartingales,onsisteny, asymptotial normality, nonparametri estimation.[21℄



22 R. Ró»a«ski and A. Zagda«skiUsing a sieve based on Fourier expansion the authors proved L2 onsistenyfor an estimator of the unknown funtion α. Further, Le±kow and Ró»a«ski(1989a) using a histogram sieve onstruted a onsistent and asymptotiallynormal estimator of the unknown funtion α in the more general di�usionmodel
dX(t) = α(t)a(t, X(t))dt + dW (t).It should also be noted that the method of Fourier expansion in L2 was usedby MKeague (1986) in a more general semimartingale regression model.Further, Stone and Huang (2003) have applied another sieve, polynomialsplines, to nonparametri estimation of the drift oe�ient η(·, ·) in a di�u-sion type proess Y (t), where
dY (t) = η(t, X(t))dt + σ(t)dW (t)with known random di�usion oe�ient σ(t) and observable stohasti o-variate proess X(t). They have obtained the rates of onvergene for splineestimates. All the estimators onstruted in the above mentioned papers arebased on n independent identially distributed (or with some onditions ofmixing) opies of a stohasti proess (model), whih an be rather restri-tive when one needs to take into onsideration some dependene struturebetween observations.In the present paper, we onsider the problem of histogram sieve estima-tion of the drift funtion α for Ito proesses and more generally for a lassof semimartingale models. We prove that the histogram sieve estimator ofthe funtion α is onsistent, L1 onsistent and asymptotially normal. Inontrast to the above mentioned papers, the estimator we onstrut is basedon a sequene of n proesses (Ito proesses or semimartingales) satisfyingConditions (A1), (A2), (A3), (B1), (A4) de�ned in Setions 3 and 4. Theinterpretation and meaning of these onditions, espeially of Condition (B1),depends on the model desribing a dynamial system. One an easily inter-pret the onditions in models desribed by the Langevin equation. It is alsoworth noting that if Conditions I�III from Le±kow and Ró»a«ski (1989a)are satis�ed then after some transformation of the proesses observed weget a model for whih the onditions from our paper hold. The histogramsieve estimator whih we onstrut retains its properties in the semimartin-gale regression model onsidered by MKeague (1986), satisfying Condition(A1′).The paper is organized as follows: Setion 2 ontains a short desriptionof the method of sieves and the histogram sieve, Setion 3 presents thegeneral results for Ito proesses and their proofs, and Setion 4 is devoted toanalogous results for some semimartingale models. In Setion 5 we presentsome examples and simulation results.



Estimation of drift funtion for Ito proesses 232. Sieve maximum likelihood estimation. Let us start from a shortdesription of Grenander's (1981) method of sieves.A family S(n) of subsets of a spae A ⊂ L1 is alled a sieve if S(n) isinreasing in n and ⋃
n S(n) is dense in A. We assume that the family S(n)is a histogram sieve, that is,(2.1) S(n) =

{
α ∈ A : α(s) =

m(n)∑

l=1

xl1Bl,m(n)
(s) for all s ∈ [0, 1]

}
,where 1Bl,m(n)

denotes the indiator of
Bl,m(n) =

(
l − 1

m(n)
,

l

m(n)

] for l = 2, . . . , m(n),

B1,m(n) =

[
0,

1

m(n)

]
,and ∑

l x
2
l > 0. The sequene {m(n)} expresses the speed of growth of thesieve S(n).The maximum likelihood estimator α̂n based on the sieve S(n) is de�nedthrough the equation(2.2) Ln(α̂n) = max

α∈S(n)
Ln(α).For the histogram sieve we an easily derive an exat expression for α̂n.In Setion 4, we onstrut a histogram sieve estimator in another way.Namely, instead of the maximum likelihood sieve estimator we derive anestimator whih is a solution of an estimating equation in the set of thehistogram sieve for a suitably hosen estimating funtion.3. Histogram sieve estimator3.1.Model formulation. In this setion we present the general form of themodel onsidered. Let (Ω,F , P ) denote a probability spae with �ltration

{Fn,t}. We onsider an Ito proess Xn(t), t ∈ [0, 1], whih is a strong solutionof the following stohasti di�erential equation:(3.1) dXn(t) = α(t)Dn(t)dt + Vn(t)dWn(t), Xn(0) = 0.The following assumptions will be imposed:(A.1) Wn(t) is the standard Wiener proess, adapted to the �ltration
{Fn,t}.(A.2) Dn(·) and Vn(·) are nonantiipating proesses relative to {Fn,t}.(A.3) P{
T1
0 |α(t) Dn(t)| dt < ∞} = 1 and P{

T1
0 V 2

n (t) dt < ∞} = 1.(A.4) |Vn(t)| > 0 P -a.s.(A.5) α(t) is bounded on [0, 1].



24 R. Ró»a«ski and A. Zagda«ski3.2. Histogram estimator for di�usion proesses. Let us start by on-struting a histogram sieve estimator for a di�usion proess whih is a spe-ial ase of model (3.1). In this setion we will assume that Xn is a strongsolution of the equation(3.2) dXn(t) = α(t)Dn(t, Xn)dt + Vn(t, Xn)dWn(t), Xn(0) = 0.Furthermore, we will assume that the following onditions hold:(A.6) (a) |Vn(t, x) − Vn(t, y)|2 ≤ L1

t\
0

|xs − ys|2 dK(s) + L2|xt − yt|2,
(b) V 2

n (t, x) ≤ L1

t\
0

(1 + x2
s) dK(s) + L2(1 + x2

t ),where L1, L2 are some positive onstants, K(·) is nondereasing andright-ontinuous, 0 ≤ K(s) ≤ 1, and x, y ∈ C([0, 1]).(A.7) For any 0 ≤ t ≤ 1, the equation
Vn(t, Xn)Ct(ω) = α(t)Dn(t, Xn)has a P -a.s. bounded solution (relative to Ct(ω)), whih may bewritten as
Ct(ω) = V +

n (t, Xn)α(t)Dn(t, Xn),where
V +

n (t, Xn) =

{
1/Vn(t, Xn) for Vn(t, Xn) 6= 0,

0 for Vn(t, Xn) = 0.(A.8) P

{ 1\
0

(
α(s)Dn(s, Xn)

Vn(s, Xn)

)2

ds < ∞
}

= 1.

(A.9) E

(
exp

(
−

1\
0

Ct(ω) dWt −
1

2

1\
0

C2
t (ω) dt

))
= 1.Condition (A.6) guarantees the existene and uniqueness of strong solutionof the stohasti di�erential equation

dYn(t) = Vn(t, Yn)dWn(t).It is known (Liptser and Shiryayev (1981), Theorem 7.18) that underassumptions (A.1)�(A.9) the measure µn
α generated by the proess Xn isdominated by the measure µYn orresponding to the proess Yn de�ned by

dYn(t) = Vn(t, Yn)dWn(t). The density of µn
α with respet to µYn is(3.3) dµn

α

dµYn

= exp

(1\
0

α(t)
Dn(t, Xn)

V 2
n (t, Xn)

dXn(t) − 1

2

1\
0

α2(t)
D2

n(t, Xn)

V 2
n (t, Xn)

dt

)
.Denote the logarithm of the above density by Ln(α).



Estimation of drift funtion for Ito proesses 25For simpliity of notation, we will write Dn(t), Vn(t) instead of Dn(t, Xn),
Vn(t, Xn). Our aim is to onstrut an estimator for the unknown funtionaldrift parameter α(t). This problem is addressed via Grenander's (1981)method of sieves applied for the histogram sieve as de�ned in Setion 2.Standard omputations for the likelihood equation (2.2) with the density ofthe form (3.3) yield the exat expression for α̂n:Lemma 3.1. The maximum likelihood estimator α̂n based on the his-togram sieve S(n) is(3.4) α̂n(s) =

m(n)∑

l=1

T
Bl,m(n)

Dn(t)
V 2

n (t)
dXn(t)T

Bl,m(n)

D2
n(t)

V 2
n (t)

dt
1Bl,m(n)

(s) 1Cl,m(n)
(s),where

Cl,m(n) =

{ \
Bl,m(n)

D2
n(t)

V 2
n (t)

dt > 0

}
, l = 1, . . . , m(n).

Let s ∈ [0, 1] be �xed and hoose l(n, s) ∈ {1, . . . , m(n)} suh that s ∈
Bl(n,s),m(n). If we put Bm(n)(s) = Bl(n,s),m(n) then the estimator α̂n(s) maybe rewritten in the following ompat form:(3.5) α̂n(s) =

T
Bm(n)(s)

Dn(t)
V 2

n (t)
dXn(t)T

Bm(n)(s)
D2

n(t)
V 2

n (t)
dt

1Cm(n)(s).3.2.1. Consisteny and asymptoti normality. Consider the followingonditions:(B.1) There exists a positive and ontinuous funtion y : [0, 1] → R+ suhthat
sup

t∈[0,1]

∣∣∣∣
D2

n(t)

V 2
n (t)

1

n
− y(t)

∣∣∣∣
P−→

n→∞
0.

( P−→
n→∞

denotes as usual onvergene in probability).(B.2) The funtion α(s) is ontinuous on [0, 1].(B.3) The speed of growth of the sieve is m(n) = n1/2.(B.4) There exists β > 1/2 and a positive onstant C(α) suh that
∀s,t∈[0,1] |α(s) − α(t)| ≤ C(α)|t − s|β ,in other words the Hölder ondition holds.Under assumptions (B.1)�(B.4) we prove the following theorems on onsis-teny and asymptoti distribution of the histogram sieve estimator α̂n(s).Theorem 3.1. If onditions (B.1) to (B.3) hold then the maximum like-lihood estimator α̂n(s) de�ned in (3.4) and (3.5) is pointwise onsistent foreah s ∈ [0, 1], that is, α̂n(s) onverges to α(s) in probability for any s ∈ [0, 1]as n → ∞.



26 R. Ró»a«ski and A. Zagda«skiTheorem 3.2. Let {s1, . . . , sp} be an arbitrary �nite olletion of pointsfrom the interval [0, 1]. If onditions (B.1) to (B.4) are ful�lled then thesequene of random vetors
n1/4(α̂n(s1) − α(s1), . . . , α̂n(sp) − α(sp))onverges in distribution, as n → ∞, to the p-dimensional normal distri-bution with zero expetation and diagonal ovariane matrix with diagonalentries σi = 1/y(si), i = 1, . . . , p.

Remark. It is worth pointing out that assumption (B.3) an be var-ied. Namely, we an replae the sequene m(n) =
√

n, whih determinesthe speed of growth of the sieve, by any sequene m(n) tending to in�nitymore slowly than √
n. This assumption still ensures the onsisteny of theestimator α̂n(t).In order to prove results on asymptoti distribution we need to imposesome additional assumption on the smoothness of the estimated funtion

α(t) and use the normalizing sequene (n/m(n))1/2. For instane, assumingthat α is di�erentiable at s and n1/2/m(n) → ∞, n/m(n)3 → 0 we deduethat α̂n(s) is asymptotially normal N (α(s), m(n)2/ny(s)).Moreover, if we impose the additional onditions (B.5)�(B.6) below, it ispossible to obtain L1 onsisteny of the derived estimator.(B.5) The funtion ∣∣D2
n(t)

V 2
n (t)

1
n

∣∣ is bounded away from zero, i.e. there exists
σ > 0 suh that inft∈[0,1]

∣∣D2
n(t)

V 2
n (t)

1
n

∣∣ > σ P -almost everywhere.(B.6) The funtion y(t) de�ned in ondition (B.1) satis�es
E

∣∣∣∣
D2

n(t)

V 2
n (t)

1

n
− y(t)

∣∣∣∣ −→
n→∞

0 ∀t∈[0,1],and E D2
n(t)

V 2
n (t)

is ontinuous in t for every n.Theorem 3.3. Assume that onditions (B.1)�(B.3), (B.5) and (B.6) aresatis�ed. Then the histogram sieve estimator α̂n(s) is L1 onsistent , i.e.
1\
0

|α̂n(s) − α(s)| ds
P−→

n→∞
0.

3.2.2. ProofsProof of Theorem 3.1. To prove the onsisteny of α̂n(s) write
(3.6) α̂n(s) − α(s)

=

1√
n

T
Bm(n)(s)

D2
n(t)

V 2
n (t)

(α(t) − α(s)) dt + 1√
n

T
Bm(n)(s)

Dn(t)
Vn(t) dWn(t)

1√
n

T
Bm(n)(s)

D2
n(t)

V 2
n (t)

dt
.



Estimation of drift funtion for Ito proesses 27Consider the sequene of martingales
Mn(t) =

1√
n

t\
0

Dn(u)

Vn(u)
dWn(u),whih is also a sequene of random elements of D([0, 1]) (the spae of right-ontinuous funtions having left sided limits with Skorokhod topology). ByRebolledo's theorem (Rebolledo (1980)) the sequene Mn(·) is onvergent indistribution in D([0, 1]) to an element M̃(·) whih is a ontinuous Gaussianmartingale with independent inrements for whih EM̃2(t) =

Tt
0 y(u) du.Further, using Theorem 5.5 from Billingsley (1968) on weak onvergeneof a sequene of ontinuous mappings of random elements we obtain

Mn(Bm(n)(s)) = Mn(tm(n)+1(s)) − Mn(tm(n)(s))
D−→

n→∞
0,where

Bm(n)(s) = (tm(n)(s), tm(n)+1(s)], tm(n)(s) ր s, tm(n)+1(s) ց s.By onditions (B.1)�(B.3),
1√
n

\
Bm(n)(s)

D2
n(t)

V 2
n (t)

dt
P−→

n→∞
y(s)

and
1√
n

\
Bm(n)(s)

D2
n(t)

V 2
n (t)

(α(t) − α(s)) dt
P−→

n→∞
0,

whih implies that (3.6) onverges to zero in probability.Proof of Theorem 3.2. We will �rst show the onvergene of one-dimen-sional distributions. One an write
(3.7) n1/4(α̂n(s) − α(s))

=
n1/4

(
1√
n

T
Bm(n)(s)

D2
n(t)

V 2
n (t)

(α(t)−α(s)) dt
)
+n1/4

(
1√
n

T
Bm(n)(s)

Dn(t)
Vn(t) dWn(t)

)

1√
n

T
Bm(n)(s)

D2
n(t)

V 2
n (t)

dt
.

We have shown that the denominator of (3.7) onverges in probability to
y(s). Note that by (B.4) the �rst term in the numerator of (3.7) onvergesto zero in probability.By Rebolledo's theorem the sequene Mn(·) is onvergent in distributionin D([0, 1]) to an element M̃(·) whih is a ontinuous Gaussian martingalewith independent inrements. Denote by Qn, Q the measures generated by
Mn(·) and M̃(·) in D([0, 1]) respetively.



28 R. Ró»a«ski and A. Zagda«skiLet A denote the following lass of subsets of D([0, 1]):
A =

{
A ⊂ D([0, 1]) : A =

⋂

k

{x : x(tk(s)) ≤ xk} ∩
⋂

l

{x : x(tl(s)) ≤ yl}
}
,where {tk(s)} and {tl(s)} are �nite or in�nite subsets of the sets {tm(n)(s)}and {tm(n)+1(s)} respetively, with arbitrary real numbers {xk}, {yl}. FromTheorem 3 in Topsøe (1967) it follows that A is a Q-uniformity lass. Thus

sup
A∈A

|Qn(A) − Q(A)| −→
n→∞

0.It is easy to see that the σ-algebra σ(A) generated by the lass A is also a
Q-uniformity lass.Let Fn and Gn denote the distribution funtions of Mn(Bm(n)(s)) and
M̃(Bm(n)(s)) respetively. Sine σ(Mn(tm(n)(s)); Mn(tm(n)+1(s)), n ≥ 1) isontained in σ(A), whih is a Q-uniformity lass, we obtain(3.8) sup

x
|Fn(x) − Gn(x)| −→

n→∞
0.Obviously, n1/4M̃(Bm(n)(s))

D→U as n → ∞, where U is a random variablenormally distributed with zero expetation and variane y(s). Thus, from(3.8) it follows that also n1/4Mn(Bm(n)(s))
D→U as n → ∞.Now, we have proved that the numerator of (3.7) onverges in distribu-tion to the random variable U and the denominator of (3.7) onverges inprobability to y(s).This shows the asymptotial normality of (3.7) with zero expetation andvariane 1/y(s).Now we will show the onvergene of the two-dimensional distributions.We an write

[n1/4(α̂n(s1) − α(s1)), n
1/4(α̂n(s2) − α(s2))]

=

[n1/4
(

1√
n

T
Bm(n)(s1)

D2
n(t)

V 2
n (t)

(α(t) − α(s1)) dt
)

1√
n

T
Bm(n)(s1)

D2
n(t)

V 2
n (t)

dt
,

n1/4
(

1√
n

T
Bm(n)(s2)

D2
n(t)

V 2
n (t)

(α(t) − α(s2)) dt
)

1√
n

T
Bm(n)(s2)

D2
n(t)

V 2
n (t)

dt

]

+

[n1/4
(

1√
n

T
Bm(n)(s1)

Dn(t)
Vn(t) dWn(t)

)

1√
n

T
Bm(n)(s1)

D2
n(t)

V 2
n (t)

dt
,

n1/4
(

1√
n

T
Bm(n)(s2)

Dn(t)
Vn(t) dWn(t)

)

1√
n

T
Bm(n)(s2)

D2
n(t)

V 2
n (t)

dt

]
.

By earlier onsiderations the �rst term of the above sum is onvergent to
0 in probability.



Estimation of drift funtion for Ito proesses 29In order to show the asymptotial normality of the seond term we in-trodue the following notations:
Yn,i = n1/4

(
1√
n

\
Bm(n)(si)

Dn(t)

Vn(t)
dWn(t)

)
,

Zn,i =
1√
n

\
Bm(n)(si)

D2
n(t)

V 2
n (t)

dt, i = 1, 2.

Using the same arguments as for the one-dimensional ase, inluding Re-bolledo's theorem and P -uniformity one an show that for all t = (t1, t2),
〈t, Yn〉 = t1Yn,1 + t2Yn,2

D−→
n→∞

t1Y0,1 + t2Y0,2,where Y0,1 and Y0,2 are independent random variables, normally distributedwith zero expetation and variane y(s1) and y(s2) respetively. By theCramer�Wold devie this shows the asymptotial normality of the vetor
[Yn,1, Yn,2].De�ne Rn,i = ti/Zn,i, i = 1, 2. We may write

〈
t,

[
Yn,1

Zn,1
,
Yn,2

Zn,2

]〉
= Rn,1Yn,1 + Rn,2Yn,2 = 〈Rn, Yn〉.Applying Slutsky's lemma we observe that

〈Rn, Yn〉 D−→
n→∞

t1
y(s1)

Y0,1 +
t2

y(s2)
Y0,2and using again the Cramer�Wold devie we get the onvergene for thetwo-dimensional ase.The proof of the onvergene for the p-dimensional ase goes along thesame lines.Proof of Theorem 3.3. Assumption (B.5) allows us to write

E|α̂n(s) − α(s)|

≤ σ−1n−1/2E

∣∣∣∣
\

Bm(n)(s)

D2
n(t)

V 2
n (t)

(α(t) − α(s)) dt +
\

Bm(n)(s)

Dn(t)

Vn(t)
dWn(t)

∣∣∣∣.From ondition (B.6) we see that there exists a positive onstant C1 suhthat for any t ∈ [0, 1] and n ∈ N,
E

D2
n(t)

V 2
n (t)

≤ C1n.Applying now the Hölder ondition (B.7) and Cauhy inequality we observethat E|α̂n(t) − α(t)| ≤ σ−1(C(α)C1n
−β/2 +

√
C1 n−1/4). Therefore, we get

lim
n→∞

E|α̂n(t) − α(t)| = 0.



30 R. Ró»a«ski and A. Zagda«skiUsing the dominated onvergene theorem and Fubini's theorem we obtain
lim

n→∞
E

1\
0

|α̂n(s) − α(s)| ds = 0,whih by the Chebyshev inequality onludes the proof of the theorem.3.3. Histogram estimator for Ito proesses. In this setion we extend theresults obtained in Setion 3.2 to a more general lass of Ito proesses.In order to take advantage of the results obtained for di�usion proessesit is neessary to put some restrition on Dn(t) and α(t) in addition toassumptions (A.1)�(A.5) given in Setion 3.1.Namely, we will assume that
(A.10)

1\
0

E|α(t)Dn(t)| dt < ∞.By assumption (A.10) we may represent the Ito proess given by (3.1) in thefollowing form (see Liptser and Shiryayev (1981), Theorem 7.17):(3.9) dXn(t) = α(t)D̃n(Xn, t)dt + Vn(Xn, t)dW̃n(t), Xn(0) = 0,where
D̃n(Xn, t) = E(Dn(t) | FXn

t )and FXn
t = σ{Xn(s) : s ≤ t}. Moreover, by (A.4) the Wiener proess W̃n(t)is adapted to the �ltration (FXn

t ), 0 ≤ t ≤ 1.Replaing Dn(t, Xn(t)) by D̃n(t, Xn(t)) and formulating the assumptionsanalogous to (A.6)�(A.9) one may obtain the followingLemma 3.2. The maximum likelihood estimator α̂n based on the his-togram sieve S(n) is
(3.10) α̂n(s) =

m(n)∑

l=1

T
Bl,m(n)

D̃n(t)
V 2

n (t)
dXn(t)T

Bl,m(n)

D̃2
n(t)

V 2
n (t)

dt
1Bl,m(n)

(s) 1Cl,m(n)
(s).

Along the same lines as in Setion 3.2.1 it is possible to obtain results ononsisteny and asymptoti normality of the estimator (3.10).4. General semimartingale model. The results of Setion 3 for di�u-sion and Ito proesses an be generalized to semimartingale models. In thisase we assume that the proess Xn(t) admits the following representation:(4.1) Xn(t) =

t\
0

α(s)Dn(s) ds +

t\
0

Vn(s) dMn(s), Xn(0) = 0.Instead of (A.1) and (A.2) assume that



Estimation of drift funtion for Ito proesses 31(A.1′) Mn is a adlag martingale for whih the preditable variation pro-ess satis�es d〈Mn〉(t) = q(t)dt, where q is a ontinuous funtion.(A.2′) Dn(t) and Vn(t) are adapted to the �ltration {Fn,t} and D2
n(t)

q(t)V 2
n (t)

isloally integrable with respet to t.Writing M ′
n(t) = 1√

n

Tt
0

Dn(v)
Vn(v) dMn(v) we assume that for the martingale

M ′
n(t) the following ondition holds:(A.3′) ∀t∈[0,1], ε>0 〈M ′

ε,n〉(t)
P→ 0 as n → ∞, where M ′

ε,n is a loally squareintegrable martingale ontaining all the jumps of the martingale M ′
nlarger than ε in absolute value.Unfortunately, in suh a general semimartingale model with disontin-uous realizations it is di�ult to derive the form of the likelihood fun-tion analogous to (3.3). Instead, we will follow the ideas of Hutton andNelson (1986) and onstrut a histogram sieve estimator whih is a so-lution of an estimating equation in the set of the histogram sieve for anappropriately hosen estimating funtion. Let S(n) be a histogram sieveas in (2.1). For α(s) =

∑m(n)
l=1 xl1Bl,m(n)

(s), de�ne the estimating funtion
Q̇n(θm(n)) = (Q̇n,1(θm(n)), . . . , Q̇n,l(θm(n)), . . . , Q̇n,m(n)(θm(n))) as

Q̇n,l(θm(n)) =

1\
0

1Bl,m(n)
(t)

Dn(t)

q(t)V 2
n (t)

dXn(t)(4.2)
−

1\
0

1Bl,m(n)
(t)

( m(n)∑

k=1

xk1Bk,m(n)
(t)

) D2
n(t)

q(t)V 2
n (t)

dt

=
\

Bl,m(n)

Dn(t)

q(t)V 2
n (t)

dXn(t) − xl

\
Bl,m(n)

D2
n(t)

q(t)V 2
n (t)

dt,

where θm(n) = (x1, . . . , xm(n)) and l = 1, , . . . , m(n). It is easily seen that thesolution θ̂m(n) = (x̂1, . . . , x̂m(n)) of the estimating equation
Q̇n(θm(n)) = 0has the form

x̂l,n =

T
Bl,m(n)

Dn(t)
q(t)V 2

n (t)
dXn(t)T

Bl,m(n)

D2
n(t)

q(t)V 2
n (t)

dt
.

Thus, the histogram sieve estimator derived through the estimating funtion(4.2) may be written in the form
α̂n(t) =

m(n)∑

l=1

x̂l,n 1Bl,m(n)
(t) 1Cl,m(n)

(t),
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Cl,m(n) =

{ \
Bl,m(n)

D2
n(t)

q(t)V 2
n (t)

dt > 0

}
, l = 1, . . . , m(n).

For �xed s ∈ [0, 1] we obtain
(4.3) α̂n(s) =

T
Bm(n)(s)

Dn(t)
q(t)V 2

n (t)
dXn(t)T

Bm(n)(s)
D2

n(t)
q(t)V 2

n (t)
dt

1Cm(n)(s),in the same way as in (3.5).In what follows, we assume that all onditions (A.1′), (A.2′), (A.3′) and(A.4) hold and that for Dn(t) and Vn(t) satisfying these onditions some ofassumptions (B.1)�(B.6) are ful�lled.Along the same lines as in the previous setion we obtain the followingtheorems.Theorem 4.1. If onditions (B.1)�(B.3) hold then the histogram sieveestimator α̂n(s) de�ned in (4.3) is pointwise onsistent for eah s ∈ [0, 1].Theorem 4.2. Let {s1, . . . , sp} be an arbitrary �nite olletion of pointsfrom the interval [0, 1]. If onditions (B.1)�(B.4) are ful�lled then the se-quene of random vetors
n1/4(α̂n(s1) − α(s1), . . . , α̂n(sp) − α(sp))onverges in distribution, as n → ∞, to the p-dimensional normal distri-bution with zero expetation and diagonal ovariane matrix with diagonalentries σi = q(si)/y(si), i = 1, . . . , p.Theorem 4.3. Assume that onditions (B.1)�(B.3), (B.5) and (B.6) aresatis�ed. Then the histogram sieve estimator α̂n(s) is L1 onsistent , i.e.

1\
0

|α̂n(s) − α(s)|ds
P−→

n→∞
0.

5. Examples and simulation results. (i) Let Zn(t) denote a sequeneof di�usion proesses satisfying the following stohasti di�erential equation:
dZn(t) = α(t) dt +

σ√
n

dWn(t), Zn(0) = 0, t ∈ [0, 1].In this ase, estimation of the unknown drift funtion α(t) is asymptotiallyequivalent to estimation of the regression funtion in the model
Yi = α(ti) + σεi, i = 1, . . . , n,where ti = i/n and εi is an i.i.d. sequene with Eεi = 0 and Var εi = 1.



Estimation of drift funtion for Ito proesses 33(ii) Let Yk(t), k = 1, . . . , n, be a sequene of independent opies of adi�usion proess Y (t) for whih
dY (t) = α(t)a(t, Y (t))dt + dW (t),where Y (0) = Ỹ is a random variable and W (t) is a Wiener proess. Assumethat the proess Y (t) satis�es Conditions I�III from Le±kow and Ró»a«ski(1989a). De�ne a sequene Xn(t) of semimartingales by

dXn(t) =
n∑

k=1

a(t, Yk(t))dYk(t)

= α(t)
( n∑

k=1

a2(t, Yk(t))
)

dt +

n∑

k=1

a(t, Yk(t))dWk(t).Then the proess Xn(t) an be written in the form of a semimartingalemodel onsidered in Setion 4. Moreover, if Conditions I�III from Le±kowand Ró»a«ski (1989a) hold then Conditions (A1′), (A2′), (A3′), (A4), (B1)are satis�ed.Simulations. In order to gain insight into the behaviour of the histogramsieve estimator we arried out some omputer experiments. In our simulationstudy we onsidered Examples (i) and (ii) desribed above. The data weregenerated aording to the following models:
(M1) dZn(t) = α(t)dt +

σ√
n

dWn(t), Zn(0) = 0, σ = 1,

(M2) dXn(t) =
n∑

k=1

Yk(t)dYk(t),where Yk are independent opies of a di�usion proess Y (t) for whih
dYk(t) = α(t)Yk(t)dt + dWk(t), Yk(0) ∼ N(0, 1).For both models two di�erent drift funtions were used: α(t) = sin(4πt) and

α(t) = t2.Figures 1�4 show the histogram sieve estimator of the drift funtion (dot-ted line) for models M1 and M2, obtained for n = 500 and m(n) =
√

n.We have also drawn 95% pointwise on�dene intervals (dashed lines)based on asymptoti normality and variane estimator. Performane of theonstruted intervals was investigated in terms of overage probabilitiesbased on 1000 Monte Carlo trials. Simulations were arried out for threedi�erent hoies of the sequene m(n), namely m(n) =
√

n, m(n) = n4/9and m(n) = n2/5. Note that the latter two satisfy the onditions given inRemark in Setion 3.Tables 1�6 ontain overage perentages with estimated standard errorsin parentheses (in perentages). These results were obtained for seletedentral points of the subintervals de�ning the partition of the interval [0,1℄.
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Fig. 1. Histogram sieve estimator for M1 and α(t) = sin(4πt)
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Fig. 2. Histogram sieve estimator for M1 and α(t) = t
2
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Fig. 3. Histogram sieve estimator for M2 and α(t) = sin(4πt)
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Fig. 4. Histogram sieve estimator for M2 and α(t) = t
2

Table 1. Empirial overage for model M1 and m(n) =
√

n

t α(t) = sin(4πt) α(t) = t
20.0227 93.9%(0.757) 95.8%(0.634)0.0680 95.7%(0.641) 93.3%(0.791)0.1133 94.8%(0.702) 95.9%(0.627)0.1593 95.3%(0.669) 94.8%(0.702)0.2047 94.1%(0.745) 94.1%(0.745)0.2500 95.8%(0.634) 96.1%(0.612)0.2953 94.6%(0.715) 95.3%(0.669)0.3407 94.9%(0.696) 94.3%(0.733)0.3867 94.4%(0.727) 95.7%(0.641)0.4320 94.4%(0.727) 95.3%(0.669)0.4773 94.8%(0.702) 94.8%(0.702)0.5227 95.2%(0.676) 94.4%(0.727)0.5680 94.0%(0.751) 94.7%(0.708)0.6133 94.9%(0.696) 94.7%(0.708)0.6593 95.4%(0.662) 96.0%(0.620)0.7047 95.1%(0.683) 95.1%(0.683)0.7500 94.2%(0.739) 94.4%(0.727)0.7953 95.9%(0.627) 94.1%(0.745)0.8407 94.4%(0.727) 95.4%(0.662)0.8867 95.5%(0.656) 95.2%(0.676)0.9320 95.0%(0.689) 95.9%(0.627)0.9773 95.1%(0.683) 94.7%(0.708)



36 R. Ró»a«ski and A. Zagda«skiTable 2. Empirial overage for model M1 and m(n) = n
4/9

t α(t) = sin(4πt) α(t) = t
2

0.0313 94.5%(0.721) 95.6%(0.649)

0.0940 94.1%(0.745) 95.7%(0.641)

0.1560 96.2%(0.605) 95.3%(0.669)

0.2187 95.0%(0.689) 94.8%(0.702)

0.2813 95.2%(0.676) 94.9%(0.696)

0.3440 95.1%(0.683) 95.0%(0.689)

0.4060 94.3%(0.733) 94.6%(0.715)

0.4687 95.1%(0.683) 94.4%(0.727)

0.5313 93.6%(0.774) 94.5%(0.721)

0.5940 95.7%(0.641) 94.3%(0.733)

0.6560 95.6%(0.649) 95.8%(0.634)

0.7187 95.9%(0.627) 95.2%(0.676)

0.7813 95.7%(0.641) 93.3%(0.791)

0.8440 95.0%(0.689) 95.7%(0.641)

0.9060 93.8%(0.763) 93.8%(0.763)

0.9687 95.2%(0.676) 94.2%(0.739)

Table 3. Empirial overage for model M1 and m(n) = n
2/5

t α(t) = sin(4πt) α(t) = t
2

0.0413 94.8%(0.702) 94.6%(0.715)

0.1253 94.1%(0.745) 95.5%(0.656)

0.2080 94.9%(0.696) 95.4%(0.662)

0.2920 94.8%(0.702) 94.6%(0.715)

0.3753 93.4%(0.785) 95.0%(0.689)

0.4580 95.1%(0.683) 94.7%(0.708)

0.5413 93.8%(0.763) 94.7%(0.708)

0.6247 93.7%(0.768) 95.4%(0.662)

0.7080 95.3%(0.669) 94.2%(0.739)

0.7913 95.4%(0.662) 93.9%(0.757)

0.8747 92.6%(0.828) 94.4%(0.727)

0.9580 93.7%(0.768) 95.4%(0.662)We observe that the performane of the on�dene intervals for modelsM1 and M2 with sinusoidal drift funtion α(t) = sin(4πt) is not satisfatorywhen we hoose m(n) = n2/5 tending to in�nity too slowly. Other hoies ofthe sequene m(n) yield rather similar overages lose to the nominal.



Estimation of drift funtion for Ito proesses 37Table 4. Empirial overage for model M2 and m(n) =
√

n

t α(t) = sin(4πt) α(t) = t
2

0.0233 94.0%(0.751) 94.4%(0.727)

0.0683 95.4%(0.662) 95.5%(0.656)

0.1133 93.4%(0.785) 94.0%(0.751)

0.1583 95.4%(0.662) 95.6%(0.649)

0.2050 94.9%(0.696) 95.1%(0.683)

0.2500 94.7%(0.708) 94.6%(0.715)

0.2950 93.5%(0.780) 93.2%(0.796)

0.3417 94.8%(0.702) 94.9%(0.696)

0.3867 95.8%(0.634) 95.5%(0.656)

0.4317 95.2%(0.676) 95.2%(0.676)

0.4767 95.5%(0.656) 95.4%(0.662)

0.5233 95.8%(0.634) 96.0%(0.620)

0.5683 93.9%(0.757) 94.4%(0.727)

0.6133 95.2%(0.676) 95.6%(0.649)

0.6583 95.0%(0.689) 95.2%(0.676)

0.7050 95.8%(0.634) 95.8%(0.634)

0.7500 96.9%(0.548) 96.5%(0.581)

0.7950 94.6%(0.715) 94.7%(0.708)

0.8417 94.8%(0.702) 94.4%(0.727)

0.8867 94.7%(0.708) 95.0%(0.689)

0.9317 94.3%(0.733) 94.3%(0.733)

0.9767 94.6%(0.715) 95.0%(0.689)

For the remaining models (with paraboli drift funtion) the results ofempirial overage obtained for all sequenes m(n) onsidered are quitesimilar and hoosing m(n) di�erent from √
n generally does not improveoverage signi�antly. Nevertheless, the overage probabilities obtained for

m(n) =
√

n seem to exhibit more variability aross di�erent points of theinterval [0, 1] than for other hoies of m(n).Additionally, it is worth noting that for all ases onsidered, smaller m(n)yields narrower on�dene intervals.One an also analyse the auray of the histogram sieve estimator withrespet to some measure of goodness of �t suh as mean integrated abso-lute error MIAE = E
T1
0 |α̂(u) − α(u))| du, or mean integrated squared error

MISE = E
T1
0(α̂(u)−α(u))2 du. We reall that L1 onsisteny was proved inSetion 3 (Theorem 3.3).



38 R. Ró»a«ski and A. Zagda«skiTable 5. Empirial overage for model M2 and m(n) = n
4/9

t α(t) = sin(4πt) α(t) = t
2

0.0317 95.0%(0.689) 95.1%(0.683)

0.0933 95.7%(0.641) 96.0%(0.620)

0.1567 95.0%(0.689) 94.5%(0.721)

0.2183 94.0%(0.751) 94.2%(0.739)

0.2817 94.5%(0.721) 94.4%(0.727)

0.3433 95.0%(0.689) 95.6%(0.649)

0.4067 95.0%(0.689) 95.0%(0.689)

0.4683 95.8%(0.634) 96.1%(0.612)

0.5317 95.4%(0.662) 95.5%(0.656)

0.5933 94.1%(0.745) 95.3%(0.669)

0.6567 95.4%(0.662) 95.2%(0.676)

0.7183 95.5%(0.656) 95.6%(0.649)

0.7817 94.9%(0.696) 95.3%(0.669)

0.8433 94.9%(0.696) 95.3%(0.669)

0.9067 94.8%(0.702) 95.3%(0.669)

0.9683 94.3%(0.733) 94.6%(0.715)Table 6. Empirial overage for model M2 and m(n) = n
2/5

t α(t) = sin(4πt) α(t) = t
2

0.0417 95.3%(0.669) 95.8%(0.634)

0.1250 92.8%(0.817) 94.0%(0.751)

0.2083 94.9%(0.696) 95.0%(0.689)

0.2917 93.8%(0.763) 94.6%(0.715)

0.3750 93.1%(0.801) 94.2%(0.739)

0.4583 94.6%(0.715) 95.3%(0.669)

0.5417 94.2%(0.739) 94.8%(0.702)

0.6250 93.2%(0.796) 94.4%(0.727)

0.7083 95.1%(0.683) 95.0%(0.689)

0.7917 94.8%(0.702) 94.5%(0.721)

0.8750 93.0%(0.807) 95.5%(0.656)

0.9583 94.3%(0.733) 95.1%(0.683)

A losely related issue is hoosing an optimal sequene m(n) (determiningthe speed of growth of the sieve) whih minimizes a given riterion. A detaileddisussion of these problems is beyond the sope of this paper and will begiven elsewhere. We restrit ourselves to presenting some numerial results.
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α(t) n m(n)

√

n n
4/9

n
2/5

sin(4πt) 500 0.192 0.191 0.208

1000 0.156 0.151 0.163

t
2 500 0.167 0.144 0.125

1000 0.142 0.118 0.102

Table 8. Empirial MIAE for model M2
α(t) n m(n)

√

n n
4/9

n
2/5

sin(4πt) 500 0.161 0.169 0.193

1000 0.129 0.131 0.150

t
2 500 0.131 0.112 0.099

1000 0.111 0.093 0.081

Table 9. Empirial MISE for model M1
α(t) n m(n)

√

n n
4/9

n
2/5

sin(4πt) 500 0.058 0.057 0.068

1000 0.038 0.036 0.041

t
2 500 0.044 0.033 0.025

1000 0.032 0.022 0.016

Table 10. Empirial MISE for model M2
α(t) n m(n)

√

n n
4/9

n
2/5

sin(4πt) 500 0.041 0.045 0.059

1000 0.026 0.027 0.035

t
2 500 0.028 0.020 0.016

1000 0.020 0.014 0.010

Tables 7�10 ontain results of empirial MIAE and MISE based on 1000Monte Carlo realizations obtained for models M1 and M2 and for three dif-ferent hoies of the sequene m(n). Roughly speaking, both riteria behave



40 R. Ró»a«ski and A. Zagda«skiin a similar manner with respet to the hoie of m(n). Namely, for bothmodels and drift funtion α(t) = t2 we observe that MIAE as well as MISE isdereasing when m(n) dereases. On the other hand, for the sinusoidal driftfuntion the behaviour is not so regular. Namely, for M1 and α(t) = sin(4πt)the best result is attained for the sequene m(n) = n4/9 whereas for M2 thevalues of both riteria are minimal when m(n) =
√

n.
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