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WEAK CONVERGENCE OF MUTUALLY INDEPENDENT

XB
n AND XA

n UNDER WEAK CONVERGENCE OF
Xn ≡ XB

n −XA
n

Abstrat. For eah n ≥ 1, let {vn,k, k ≥ 1} and {un,k, k ≥ 1} be mutuallyindependent sequenes of nonnegative random variables and let eah of themonsist of mutually independent and identially distributed random variableswith means vn and un, respetively. Let XB
n (t) = (1/cn)

∑[nt]
j=1(vn,j − vn),

XA
n (t) = (1/cn)

∑[nt]
j=1(un,j − un), t ≥ 0, and Xn = XB

n − XA
n . The mainresult gives onditions under whih the weak onvergene Xn
D
→ X, where

X is a Lévy proess, implies XB
n

D
→ XB and XA

n
D
→ XA, where XB and XAare mutually independent Lévy proesses and X = XB −XA.1. Introdution. Let X = {X(t), t ≥ 0} be a Lévy proess (see [3℄)without Gaussian omponent and with sample paths in the spae D[0,∞).Then the harateristi funtion of X(t) has the form E exp(iuX(t)) =

exp(tψb,ν(u)), where
ψb,v(u) = iub+

\
|x|≥r

(eiux − 1) ν(dx) +
\

0<|x|<r

(eiux − 1 − iux) ν(dx),(1)
the drift b is a real number, the spetral measure ν is a positive measure on
(−∞,∞) suh that ν({0}) = 0 and it integrates the funtion min(1, x2) on
(−∞,∞), while r is a positive number suh that the points −r and r areontinuity points of the spetral measure ν. The funtion ψb,ν(u) is alledthe harateristi exponent of the proess X. It is well known (see Theorem6.1 in [3℄) that E|X(1)| < ∞, if and only if T|x|>1 |x| ν(dx) < ∞. In suh a
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42 W. Szzotkasituation the harateristi exponent ψb,v(u) an be written in the form
ψb,v(u) = iub(r) +

∞\
−∞

(eiux − 1 − iux) ν(dx)(2)
where b(r) = b+

T
|x|>r

x ν(dx) and b(r) = EX(1). Hene, if EX(t) = 0, then
b = −

T
|x|>r

x ν(dx).A Lévy proess an be onsidered as the limiting proess of the proesses
Xn(t) = c−1

n

∑[nt]
j=1 ζn,j, t ≥ 0, n ≥ 1, where ζn,k are r.v.'s. Below we reallsome speial ase of Prokhorov's lassial result providing onditions for suha onvergene in the ase when for eah n ≥ 1, {ζn,k, k ≥ 1} is a sequene ofindependent and identially distributed (brie�y iid) r.v.'s with distributionfuntion Fn. First we introdue the de�nition of Prokhorov's ondition for

{Fn} with a spetral measure ν de�ned by means of real nondereasing andright ontinuous funtions M and N on (−∞, 0) and (0,∞), respetively,suh that M(x) ≥ 0, −N(x) ≥ 0 and limx→−∞M(x) = limx→∞N(x) = 0.Namely, the spetral measure ν on (−∞,∞) is de�ned by its values on theintervals (a, b] in the following way: ν(a, b] = M(b) −M(a) for −∞ < a ≤
b < 0, ν(a, b] = N(b) −N(a) for 0 < a < b <∞ and ν({0}) = 0.Definition 1. A sequene {Fn} of distribution funtions satis�es theProkhorov ondition (brie�y, ondition P) with drift br and spetral measure
ν if the following onditions hold:P1 nFn(ycn) → M(y) and n(1 − Fn(xcn)) → −N(x) as n → ∞, forall ontinuity points y < 0 and x > 0 of the funtions M and N,respetively,P2 lim

x→∞
sup

n
n(1 − Fn(xcn) + Fn(−xcn)) = 0,P3 br := lim

n→∞

n

cn

\
|x|≤rcn

x dFn(x) and |br| <∞,

P4 lim
ε→0

lim sup
n→∞

n

c2n

\
|x|<εcn

x2 dFn(x) = 0.

Proposition 1 ([2℄). For eah n ≥ 1, let {ζn,k, k ≥ 1} be a sequeneof iid random variables with distribution funtion Fn and let X be a Lévyproess with the harateristi exponent given by (1) with the pair (br, ν).Then Xn
D
→ X in D[0,∞) equipped with the J1 Skorokhod topology if andonly if {Fn} satis�es ondition P with drift br and spetral measure ν.The main result of the paper deals with a speial ase of a Lévy pro-ess X from Proposition 1 and speial r.v.'s ζn,k. Namely, we assume that
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EX(1) = 0, i.e. (br, ν) satis�es
P5

\
|x|>1

|x| ν(dx) <∞ and br = −
\

|x|>r

x ν(dx).Then
br = −

−r\
−∞

x dM(x) −

∞\
r

x dN(x)(3)
= rM(−r) + rN(r) +

−r\
−∞

M(x) dx+

∞\
r

N(x) dx.For ζn,k we assume that for eah n ≥ 1,

ζn,k := (vn,k − Evn,k) − (un,k −Eun,k),where {vn,k, k ≥ 1} and {un,k, k ≥ 1} are mutually independent sequenesof nonnegative r.v.'s with �nite expetations vn := Evn,k, un := Eun,k andeah of them is a sequene of iid r.v.'s with distribution funtions FB
n (x) :=

P (vn,k − vn ≤ x) and FA
n (x) := P (un,k − un ≤ x), respetively. Below werefer to the following onditions:P6 vn/cn → 0 and un/cn → 0 as n→ ∞,P7 lim

n→∞

−r\
−∞

nFn(xcn) dz =

−r\
−∞

M(x) dx.The main result of the paper, Theorem 1, says the following. If {Fn} sat-is�es onditions P1�P4 with (br, ν) satisfying ondition P5 and additionallyonditions P6�P7 hold, then the sequenes {FB
n } and {FA

n } satisfy onditionsP1�P4 with the pairs (bBr , ν
B) and (bAr , ν

A), respetively, where br = bBr −bArand the spetral measures νB and νA are de�ned by their values on the in-tervals (a, b) in the following way: νB(a, b) = ν(a, b), νA(a, b) = ν(−b,−a)for 0 < a < b and νB(a, b) = νA(a, b) = 0 for a < b < 0.With the notation
XB

n (t) =
1

cn

[nt]∑

j=1

(vn,j − vn), XA
n (t) =

1

cn

[nt]∑

j=1

(un,j − un), t ≥ 0,

and Xn = XB
n −XA

n the main result an be expressed in the following way.If Xn
D
→ X, where X is a Lévy proess with pair (br, ν) and onditionsP5�P7 hold, then XB

n
D
→ XB, XA

n
D
→ XA and XB and XA are mutuallyindependent Lévy proesses with appropriate pairs (bBr , ν

B), (bAr , ν
A) and

X = XB −XA.It is obvious that if {FB
n } and {FA

n } satisfy onditions P1�P4 with pairs
(bBr , ν

B) and (bAr , ν
A), respetively, then Xn ≡ XB

n −XA
n

D
→ XB −XA.



44 W. Szzotka2. Main resultTheorem 1 (Main result). Let {Fn} satisfy ondition P with drift br andspetral measure ν satisfying ondition P5 and let onditions P6 and P7 hold.Then {FB
n } and {FA

n } satisfy ondition P with drifts bBr , bAr , respetively ,suh that br = bBr − bAr and with spetral measures νB and νA, respetively ,de�ned as νB(a, b) = ν(a, b), νA(a, b) = ν(−b,−a) for 0 < a < b and
νB(−b,−a) = νA(−b,−a) = 0 for 0 < a < b.Set vn = vn,1, un = un,1 and ṽn = vn − vn, ũn = un − un.Lemma 1. If {Fn} satis�es ondition P1 with funtions N and M , andP6 holds , then {FB

n } and {FA
n } satisfy ondition P1 with funtions NB, MBand NA, MA, respetively , suh that NB = N, MB ≡ 0 and NA(x) =

−M(−x) for x > 0, MA ≡ 0.Proof. Let ε > 0 and n(ε) be suh that vn/cn < ε and un/cn < ε for
n ≥ n(ε). Then for all x > 0 suh that x− ε > 0 we have

P (ṽn > xcn) ≥ P (ṽn − ũn > xcn + un) ≥ P (ṽn − ũn > cn(x+ ε))and
P (ṽn > xcn)P (ũn ≤ εcn) = P (ṽn > xcn, ũn ≤ εcn)

≤ P (ṽn > xcn + ũn − εcn, ũn ≤ εcn) ≤ P (ṽn − ũn > cn(x− ε)).Hene for n ≥ n(ε) and all x > 0 suh that x− ε > 0 we get
(4) 1 − Fn(cn(x+ ε)) ≤ 1 − FB

n (xcn) ≤ (1 − Fn(cn(x− ε)))(FA
n (εcn))−1.This and ondition P1 for {Fn} and onvergene in probability ũn/cn

p
→ 0give the inequalities

−N(x+ ε) ≤ lim inf
n

n(1−FB
n (xcn)) ≤ lim sup

n
n(1−FB

n (xcn)) ≤ −N(x− ε)if x+ε and x−ε > 0 are ontinuity points of N. Hene if x > 0 is a ontinuitypoint of N then
lim
n
n(1 − FB

n (xcn)) = −N(x) ≡ −NB(x).(5)Now, if y < 0 and y + ε < 0, then for n ≥ n(ε) we have
P (ṽn ≤ ycn) = P (vn ≤ cn(y + vn/cn)) ≤ P (vn ≤ cn(y + ε)) = 0.Hene we get
lim
n
nFB

n (ycn) = lim
n
nP (ṽn ≤ ycn) = 0 ≡MB(y) for all y < 0.(6)This means that {FB

n } satis�es ondition P1 with funtions NB and MBequal to NB ≡ N and MB ≡ 0, respetively.



Weak onvergene of mutually independent proesses 45In a similar way we get the inequalities
P (ũn > cnx) ≥ P (ũn − ṽn > cn(x+ ε)) = P (ṽn − ũn < −cn(x+ ε))

= Fn(−cn(x+ ε)−)and
P (ũn > xcn)P (ṽn ≤ εcn) ≤ P (ṽn − ũn < −cn(x− ε)) = Fn(−cn(x− ε)−),for n ≥ n(ε), x − ε > 0, where Fn(x−) is the left hand limit of Fn at x.Hene for n ≥ n(ε) and x− ε > 0 we get
(7) Fn(−cn(x+ ε)−) ≤ 1 − FA

n (xcn) ≤ Fn(−cn(x− ε)−)(FB
n (εcn))−1.But by ondition P1 for {Fn} we have nFn(xcn−) →M(x) whenever x < 0is a ontinuity point of M. This together with (7) and ondition P1 for {Fn}gives

M(−x−ε) ≤ lim inf
n

n(1−FA
n (xcn)) ≤ lim sup

n
n(1−FA

n (xcn)) ≤M(−x+ε)provided −x− ε and −x+ ε are ontinuity points of M. Hene if x > 0 is aontinuity point of M then
lim
n
n(1 − FA

n (xcn)) = M(−x) ≡ −NA(x).Now, reasoning in a similar way as for the sequene {FB
n } in (6) we get

lim
n→∞

nFA
n (ycn) = 0 ≡MA(y) for y < 0.All this implies that {FA

n } satis�es ondition P1 with funtions NA(x) ≡
−M(−x) for x > 0 and MA ≡ 0.Lemma 2. If {Fn} satis�es onditions P1�P2 and P6, then {FB

n } and
{FA

n } satisfy ondition P2.Proof. Condition P2 for {FB
n } and {FA

n } follows from ondition P2 for
{Fn} and from inequalities (4) and (7), respetively.Lemma 3. Let ξ be a r.v. with distribution funtion F and Eξ = 0. Thenfor any c > 0,

1

c
EξI(|ξ| ≤ rc) = −r(1 − F (rc)) + rF (−rc)(8)

+

−r\
−∞

F (cx) dx−

∞\
r

(1 − F (cx)) dx.



46 W. SzzotkaProof. Notie that
EξI(|ξ| ≤ r) = −EξI(|ξ| > r) = −

∞\
r

x dF (x) −

−r\
−∞

x dF (x)

= −r(1 − F (r)) −

∞\
r

(1 − F (x)) dx+ rF (−r) +

−r\
−∞

F (x) dx.Replaing ξ by ξ/c we get the assertion of the lemma.Lemma 4. If {Fn} satis�es ondition P1 then for eah m ≥ r,
lim
n

−r\
−m

nFn(xcn) dx =

−r\
−m

M(x) dx(9)and
lim
n

m\
r

n(1 − Fn(xcn)) dx = −

m\
r

N(x) dx.(10)Proof. Let fn(x) := nP (ṽn − ũn ≤ xcn) for x < 0. Then eah fn isnondereasing on (−∞, 0) and by ondition P1 we have fn(x) → M(x) forall x < 0 that are ontinuity points of M. Hene for all x < −r and some
δ > 0 we have

0 ≤ fn(x) ≤ fn(−r) ≤M(−r) + δ ≡ f0(x) and −r\
−m

f0(x) dx <∞.Therefore by Lebesgue's dominated onvergene theorem we get
lim
n

−r\
−m

fn(x) dx =

−r\
−m

lim
n
fn(x) dx =

−r\
−m

M(x) dxfor all m ≥ r, whih gives the �rst assertion.To prove the seond assertion note that the funtions gn(x) :=nP (ṽn−ũn

> xcn) for x > 0 are noninreasing and gn(x) → −N(x) for all x > 0 thatare ontinuity points of N. Hene for x ∈ (r,m) and some δ > 0 we have
0 ≤ gn(x) ≤ gn(r) ≤ −N(r) + δ ≡ g0(x) and m\

r

g0(x) dx <∞.Therefore by Lebesgue's dominated onvergene theorem we get
lim
n

m\
r

gn(x) dx =

m\
r

lim
n
gn(x) dx = −

m\
r

N(x) dxfor all m ≥ r, whih gives the seond assertion and �nishes the proof of theLemma.



Weak onvergene of mutually independent proesses 47Lemma 5. If {Fn} satis�es onditions P1�P3 and P5, then for r1, r2 ≥ r,
(11) lim

n

(−r1\
−∞

nFn(xcn) dx−

∞\
r2

n(1 − Fn(xcn)) dx
)

=

−r1\
−∞

M(x) dx+

∞\
r2

N(x) dx.Moreover if ondition P7 holds , then
lim
n

∞\
r2

n(1 − Fn(xcn)) dx = −

∞\
r2

N(x) dx.Proof. Putting ξ = ṽn − ũn and c = cn in Lemma 3 we get
bn,r :=

n

cn
E(ṽn − ũn)I(|ṽn − ũn| ≤ rcn)(12)

= −rn(1 − Fn(rcn) + rnFn(−rcn)

+

−r\
−∞

nFn(xcn) dx−

∞\
r

n(1 − Fn(xcn)) dx.Using P3 and P1 we get
br = rN(r) + rM(−r) + lim

n

( −r\
−∞

nFn(xcn) dx−

∞\
r

n(1 − Fn(xcn)) dx
)
,and this in view of Lemma 4 gives, for r1, r2 ≥ r,

−r1\
−∞

M(x) dx+

∞\
r2

N(x) dx = lim
n

(−r1\
−∞

nFn(xcn) dx−

∞\
r2

n(1 − Fn(xcn)) dx
)
,whih �nishes the proof of the �rst assertion of the lemma. The seondassertion follows immediately from the �rst and from assumption P7.Lemma 6. Let {Fn} satisfy onditions P1�P3 and P5�P7. Then {FB

n }and {FA
n } satisfy ondition P3 with bBr = rNB(r) +

T∞
r
NB(x) dx and bAr =

rNA(r) +
T∞
r
NA(x) dx, respetively.Proof. Using Lemma 3 for ξ = ṽn and c = cn we get
bBn,r :=

n

cn
EṽnI(|ṽn| ≤ rcn)(13)

= −rn(1 − FB
n (rcn)) + rnFB

n (−rcn)

−

∞\
r

n(1 − FB
n (xcn)) dx+

−r\
−∞

nFB
n (xcn) dx.Let ε > 0 be suh that r − ε > 0 and n(ε) be suh that vn/cn < ε and

un/cn < ε for n ≥ n(ε), whih is guaranteed by P6. Then for x ≤ −r we



48 W. Szzotkahave
FB

n (xcn) = P (ṽn ≤ xcn) = P (vn ≤ cn(x+ vn/cn)) = 0.Hene for n ≥ n(ε) we get
bBn,r = −rn(1 − FB

n (rcn)) −

∞\
r

n(1 − FB
n (xcn)) dx.(14)By inequality (4) we get

n(1 − FB
n (xcn)) ≤ n(1 − Fn(cn(x− ε)))(FA

n (εcn))−1.Applying this together with the onvergenes FA
n (εcn) → 1 and

lim
n

∞\
r

n(1 − Fn(xcn)) dx =

∞\
r

lim
n
n(1 − Fn(xcn)) dx = −

∞\
r

N(x) dxand the Lebesgue dominated onvergene theorem to the sequene {FB
n },whih satis�es ondition P1, we obtain the onvergene

bBr := lim
n
bBn,r = rNB(r) +

∞\
r

NB(x) dx.In a similar way we get the onvergene
bAr := lim

n
bAn,r = rNA(r) +

∞\
r

NA(x) dx.Lemma 7. If {Fn} satis�es onditions P1�P7 then {FB
n } and {FA

n } sat-isfy ondition P4.Proof. Notie that for any mutually independent random variables v and
u and any number δ > 0 we have
(
vI(|v| ≤ δ)I(|u| ≤ δ) − uI(|u| ≤ δ)I(|v| ≤ δ)

)2
≤ (v − u)2I(|v − u| ≤ 2δ)and

(15) E
(
vI(|v| ≤ δ)I(|u| ≤ δ) − uI(|u| ≤ δ)I(|v| ≤ δ)

)2

≤ E(v − u)2I(|v − u| ≤ 2δ).But the left hand side of (15) equals
(16) Ev2I(|v| ≤ δ)P (|u| ≤ δ) + Eu2I(|u| ≤ δ)P (|v| ≤ δ)

− 2EvI(|v| ≤ δ)EuI(|u| ≤ δ).Putting v = ṽn, u = ũn and δ = cnε for ε > 0 in (15) and (16) we get
(17) Eṽ2

nI(|ṽn| ≤ cnε)P (|ṽn| ≤ cnε) + Eũ2
nI(|ũn| ≤ cnε)P (|ũn| ≤ cnε)

− 2EṽnI(|ṽn| ≤ cnε)EũnI(|ũn| ≤ cnε) ≤ E(ṽn − ũn)2I(|ṽn − ũn| ≤ 2εcn).By the assumptions and Lemma 6 we know that {FB
n } and {FA

n } satisfyondition P3. Hene
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n

cn
EṽnI(|ṽn| ≤ εcn) = O(1) and n

cn
EũnI(|ũn| ≤ εcn) = O(1),whih implies

lim
n

1

cn
EṽnI(|ṽn| ≤ εcn) = lim

n

1

cn
EũnI(|ũn| ≤ εcn) = 0.All this implies

lim
ε→0

lim sup
n

nE
ṽn

cn
I(|ṽn| ≤ εcn)E

ũn

cn
I(|ũn| ≤ εcn) = 0.Together with (17) and P4 for {Fn}, this gives

lim
ε→0

lim sup
n

n

c2n
Eṽ2

nI(|ṽn| ≤ εcn) = 0and
lim
ε→0

lim sup
n

n

c2n
Eũ2

nI(|ũn| ≤ εcn) = 0,whih means that {FB
n } and {FA

n } satisfy ondition P4.Proof of Theorem 1. The assertion follows from Lemmas 1�7.Aknowledgements. I wish to express my thanks to the referee for allhis helpful omments.
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