W. SZCZOTKA (Wrocław)

WEAK CONVERGENCE OF MUTUALLY INDEPENDENT X_n^B and X_n^A under weak convergence of $X_n \equiv X_n^B - X_n^A$

Abstract. For each $n \geq 1$, let $\{v_{n,k}, k \geq 1\}$ and $\{u_{n,k}, k \geq 1\}$ be mutually independent sequences of nonnegative random variables and let each of them consist of mutually independent and identically distributed random variables with means \overline{v}_n and \overline{u}_n , respectively. Let $X_n^B(t) = (1/c_n) \sum_{j=1}^{[nt]} (v_{n,j} - \overline{v}_n)$, $X_n^A(t) = (1/c_n) \sum_{j=1}^{[nt]} (u_{n,j} - \overline{u}_n)$, $t \geq 0$, and $X_n = X_n^B - X_n^A$. The main result gives conditions under which the weak convergence $X_n \xrightarrow{\mathcal{D}} X$, where X is a Lévy process, implies $X_n^B \xrightarrow{\mathcal{D}} X^B$ and $X_n^A \xrightarrow{\mathcal{D}} X^A$, where X^B and X^A are mutually independent Lévy processes and $X = X^B - X^A$.

1. Introduction. Let $X = \{X(t), t \ge 0\}$ be a Lévy process (see [3]) without Gaussian component and with sample paths in the space $D[0, \infty)$. Then the characteristic function of X(t) has the form $E \exp(iuX(t)) = \exp(t\psi_{b,\nu}(u))$, where

(1)
$$\psi_{b,\nu}(u) = iub + \int_{|x| \ge r} (e^{iux} - 1)\nu(dx) + \int_{0 < |x| < r} (e^{iux} - 1 - iux)\nu(dx),$$

the drift b is a real number, the spectral measure ν is a positive measure on $(-\infty, \infty)$ such that $\nu(\{0\}) = 0$ and it integrates the function $\min(1, x^2)$ on $(-\infty, \infty)$, while r is a positive number such that the points -r and r are continuity points of the spectral measure ν . The function $\psi_{b,\nu}(u)$ is called the characteristic exponent of the process X. It is well known (see Theorem 6.1 in [3]) that $E|X(1)| < \infty$, if and only if $\int_{|x|>1} |x| \nu(dx) < \infty$. In such a

²⁰⁰⁰ Mathematics Subject Classification: 60F05, 60F15.

Key words and phrases: weak convergence, Lévy process.

W. Szczotka

situation the characteristic exponent $\psi_{b,v}(u)$ can be written in the form

(2)
$$\psi_{b,\nu}(u) = iub(r) + \int_{-\infty}^{\infty} (e^{iux} - 1 - iux) \nu(dx)$$

where $b(r) = b + \int_{|x|>r} x \nu(dx)$ and b(r) = EX(1). Hence, if EX(t) = 0, then $b = -\int_{|x|>r} x \nu(dx)$.

A Lévy process can be considered as the limiting process of the processes $X_n(t) = c_n^{-1} \sum_{j=1}^{[nt]} \zeta_{n,j}, t \ge 0, n \ge 1$, where $\zeta_{n,k}$ are r.v.'s. Below we recall some special case of Prokhorov's classical result providing conditions for such a convergence in the case when for each $n \ge 1$, $\{\zeta_{n,k}, k \ge 1\}$ is a sequence of independent and identically distributed (briefly iid) r.v.'s with distribution function F_n . First we introduce the definition of Prokhorov's condition for $\{F_n\}$ with a spectral measure ν defined by means of real nondecreasing and right continuous functions M and N on $(-\infty, 0)$ and $(0, \infty)$, respectively, such that $M(x) \ge 0, -N(x) \ge 0$ and $\lim_{x\to-\infty} M(x) = \lim_{x\to\infty} N(x) = 0$. Namely, the spectral measure ν on $(-\infty, \infty)$ is defined by its values on the intervals (a, b] in the following way: $\nu(a, b] = M(b) - M(a)$ for $-\infty < a \le b < 0, \nu(a, b] = N(b) - N(a)$ for $0 < a < b < \infty$ and $\nu(\{0\}) = 0$.

DEFINITION 1. A sequence $\{F_n\}$ of distribution functions satisfies the *Prokhorov condition* (briefly, *condition* P) with drift b_r and spectral measure ν if the following conditions hold:

- P1 $nF_n(yc_n) \to M(y)$ and $n(1 F_n(xc_n)) \to -N(x)$ as $n \to \infty$, for all continuity points y < 0 and x > 0 of the functions M and N, respectively,
- P2 $\lim_{x \to \infty} \sup_{n} n(1 F_n(xc_n) + F_n(-xc_n)) = 0,$
- P3 $b_r := \lim_{n \to \infty} \frac{n}{c_n} \int_{|x| \le rc_n} x \, dF_n(x) \text{ and } |b_r| < \infty,$
- P4 $\lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{n}{c_n^2} \int_{|x| < \varepsilon c_n} x^2 dF_n(x) = 0.$

PROPOSITION 1 ([2]). For each $n \geq 1$, let $\{\zeta_{n,k}, k \geq 1\}$ be a sequence of iid random variables with distribution function F_n and let X be a Lévy process with the characteristic exponent given by (1) with the pair (b_r, ν) . Then $X_n \xrightarrow{\mathcal{D}} X$ in $D[0, \infty)$ equipped with the J_1 Skorokhod topology if and only if $\{F_n\}$ satisfies condition P with drift b_r and spectral measure ν .

The main result of the paper deals with a special case of a Lévy process X from Proposition 1 and special r.v.'s $\zeta_{n,k}$. Namely, we assume that

$$EX(1) = 0, \text{ i.e. } (b_r, \nu) \text{ satisfies}$$

P5
$$\int_{|x|>1} |x| \,\nu(dx) < \infty \text{ and } b_r = -\int_{|x|>r} x \,\nu(dx).$$

Then

(3)
$$b_r = -\int_{-\infty}^{-r} x \, dM(x) - \int_{r}^{\infty} x \, dN(x)$$
$$= rM(-r) + rN(r) + \int_{-\infty}^{-r} M(x) \, dx + \int_{r}^{\infty} N(x) \, dx$$

For $\zeta_{n,k}$ we assume that for each $n \ge 1$,

$$\zeta_{n,k} := (v_{n,k} - Ev_{n,k}) - (u_{n,k} - Eu_{n,k}),$$

where $\{v_{n,k}, k \geq 1\}$ and $\{u_{n,k}, k \geq 1\}$ are mutually independent sequences of nonnegative r.v.'s with finite expectations $\overline{v}_n := Ev_{n,k}$, $\overline{u}_n := Eu_{n,k}$ and each of them is a sequence of iid r.v.'s with distribution functions $F_n^B(x) :=$ $P(v_{n,k} - \overline{v}_n \leq x)$ and $F_n^A(x) := P(u_{n,k} - \overline{u}_n \leq x)$, respectively. Below we refer to the following conditions:

P6
$$\overline{v}_n/c_n \to 0$$
 and $\overline{u}_n/c_n \to 0$ as $n \to \infty$,
P7 $\lim_{n \to \infty} \int_{-\infty}^{-r} nF_n(xc_n) dz = \int_{-\infty}^{-r} M(x) dx.$

The main result of the paper, Theorem 1, says the following. If $\{F_n\}$ satisfies conditions P1–P4 with (b_r, ν) satisfying condition P5 and additionally conditions P6–P7 hold, then the sequences $\{F_n^B\}$ and $\{F_n^A\}$ satisfy conditions P1–P4 with the pairs (b_r^B, ν^B) and (b_r^A, ν^A) , respectively, where $b_r = b_r^B - b_r^A$ and the spectral measures ν^B and ν^A are defined by their values on the intervals (a, b) in the following way: $\nu^B(a, b) = \nu(a, b), \nu^A(a, b) = \nu(-b, -a)$ for 0 < a < b and $\nu^B(a, b) = \nu^A(a, b) = 0$ for a < b < 0.

With the notation

$$X_n^B(t) = \frac{1}{c_n} \sum_{j=1}^{[nt]} (v_{n,j} - \overline{v}_n), \quad X_n^A(t) = \frac{1}{c_n} \sum_{j=1}^{[nt]} (u_{n,j} - \overline{u}_n), \quad t \ge 0,$$

and $X_n = X_n^B - X_n^A$ the main result can be expressed in the following way. If $X_n \xrightarrow{\mathcal{D}} X$, where X is a Lévy process with pair (b_r, ν) and conditions P5–P7 hold, then $X_n^B \xrightarrow{\mathcal{D}} X^B$, $X_n^A \xrightarrow{\mathcal{D}} X^A$ and X^B and X^A are mutually independent Lévy processes with appropriate pairs (b_r^B, ν^B) , (b_r^A, ν^A) and $X = X^B - X^A$.

It is obvious that if $\{F_n^B\}$ and $\{F_n^A\}$ satisfy conditions P1–P4 with pairs (b_r^B, ν^B) and (b_r^A, ν^A) , respectively, then $X_n \equiv X_n^B - X_n^A \xrightarrow{\mathcal{D}} X^B - X^A$.

2. Main result

THEOREM 1 (Main result). Let $\{F_n\}$ satisfy condition P with drift b_r and spectral measure ν satisfying condition P5 and let conditions P6 and P7 hold. Then $\{F_n^B\}$ and $\{F_n^A\}$ satisfy condition P with drifts b_r^B , b_r^A , respectively, such that $b_r = b_r^B - b_r^A$ and with spectral measures ν^B and ν^A , respectively, defined as $\nu^B(a,b) = \nu(a,b)$, $\nu^A(a,b) = \nu(-b,-a)$ for 0 < a < b and $\nu^B(-b,-a) = \nu^A(-b,-a) = 0$ for 0 < a < b.

Set $v_n = v_{n,1}$, $u_n = u_{n,1}$ and $\tilde{v}_n = v_n - \overline{v}_n$, $\tilde{u}_n = u_n - \overline{u}_n$.

LEMMA 1. If $\{F_n\}$ satisfies condition P1 with functions N and M, and P6 holds, then $\{F_n^B\}$ and $\{F_n^A\}$ satisfy condition P1 with functions N^B , M^B and N^A , M^A , respectively, such that $N^B = N$, $M^B \equiv 0$ and $N^A(x) = -M(-x)$ for x > 0, $M^A \equiv 0$.

Proof. Let $\varepsilon > 0$ and $n(\varepsilon)$ be such that $\overline{v}_n/c_n < \varepsilon$ and $\overline{u}_n/c_n < \varepsilon$ for $n \ge n(\varepsilon)$. Then for all x > 0 such that $x - \varepsilon > 0$ we have

$$P(\widetilde{v}_n > xc_n) \ge P(\widetilde{v}_n - \widetilde{u}_n > xc_n + \overline{u}_n) \ge P(\widetilde{v}_n - \widetilde{u}_n > c_n(x + \varepsilon))$$

and

$$P(\widetilde{v}_n > xc_n)P(\widetilde{u}_n \le \varepsilon c_n) = P(\widetilde{v}_n > xc_n, \widetilde{u}_n \le \varepsilon c_n)$$

$$\le P(\widetilde{v}_n > xc_n + \widetilde{u}_n - \varepsilon c_n, \widetilde{u}_n \le \varepsilon c_n) \le P(\widetilde{v}_n - \widetilde{u}_n > c_n(x - \varepsilon)).$$

Hence for $n \ge n(\varepsilon)$ and all x > 0 such that $x - \varepsilon > 0$ we get

(4)
$$1 - F_n(c_n(x+\varepsilon)) \le 1 - F_n^B(xc_n) \le (1 - F_n(c_n(x-\varepsilon)))(F_n^A(\varepsilon c_n))^{-1}.$$

This and condition P1 for $\{F_n\}$ and convergence in probability $\widetilde{u}_n/c_n \xrightarrow{p} 0$ give the inequalities

$$-N(x+\varepsilon) \le \liminf_{n} n(1-F_n^B(xc_n)) \le \limsup_{n} n(1-F_n^B(xc_n)) \le -N(x-\varepsilon)$$

if $x + \varepsilon$ and $x - \varepsilon > 0$ are continuity points of N. Hence if x > 0 is a continuity point of N then

(5)
$$\lim_{n} n(1 - F_n^B(xc_n)) = -N(x) \equiv -N^B(x).$$

Now, if y < 0 and $y + \varepsilon < 0$, then for $n \ge n(\varepsilon)$ we have

$$P(\tilde{v}_n \le yc_n) = P(v_n \le c_n(y + \overline{v}_n/c_n)) \le P(v_n \le c_n(y + \varepsilon)) = 0.$$

Hence we get

(6)
$$\lim_{n} nF_{n}^{B}(yc_{n}) = \lim_{n} nP(\widetilde{v}_{n} \leq yc_{n}) = 0 \equiv M^{B}(y) \text{ for all } y < 0.$$

This means that $\{F_n^B\}$ satisfies condition P1 with functions N^B and M^B equal to $N^B \equiv N$ and $M^B \equiv 0$, respectively.

In a similar way we get the inequalities

$$P(\widetilde{u}_n > c_n x) \ge P(\widetilde{u}_n - \widetilde{v}_n > c_n (x + \varepsilon)) = P(\widetilde{v}_n - \widetilde{u}_n < -c_n (x + \varepsilon))$$
$$= F_n(-c_n (x + \varepsilon) -)$$

and

$$P(\widetilde{u}_n > xc_n)P(\widetilde{v}_n \le \varepsilon c_n) \le P(\widetilde{v}_n - \widetilde{u}_n < -c_n(x - \varepsilon)) = F_n(-c_n(x - \varepsilon)),$$

for $n \ge n(\varepsilon)$, $x - \varepsilon > 0$, where $F_n(x-)$ is the left hand limit of F_n at x. Hence for $n \ge n(\varepsilon)$ and $x - \varepsilon > 0$ we get

(7)
$$F_n(-c_n(x+\varepsilon)-) \le 1 - F_n^A(xc_n) \le F_n(-c_n(x-\varepsilon)-)(F_n^B(\varepsilon c_n))^{-1}$$

But by condition P1 for $\{F_n\}$ we have $nF_n(xc_n-) \to M(x)$ whenever x < 0 is a continuity point of M. This together with (7) and condition P1 for $\{F_n\}$ gives

$$M(-x-\varepsilon) \le \liminf_n n(1-F_n^A(xc_n)) \le \limsup_n n(1-F_n^A(xc_n)) \le M(-x+\varepsilon)$$

provided $-x - \varepsilon$ and $-x + \varepsilon$ are continuity points of M. Hence if x > 0 is a continuity point of M then

$$\lim_{n} n(1 - F_n^A(xc_n)) = M(-x) \equiv -N^A(x).$$

Now, reasoning in a similar way as for the sequence $\{F_n^B\}$ in (6) we get

$$\lim_{n \to \infty} n F_n^A(yc_n) = 0 \equiv M^A(y) \quad \text{for } y < 0.$$

All this implies that $\{F_n^A\}$ satisfies condition P1 with functions $N^A(x) \equiv -M(-x)$ for x > 0 and $M^A \equiv 0$.

LEMMA 2. If $\{F_n\}$ satisfies conditions P1–P2 and P6, then $\{F_n^B\}$ and $\{F_n^A\}$ satisfy condition P2.

Proof. Condition P2 for $\{F_n^B\}$ and $\{F_n^A\}$ follows from condition P2 for $\{F_n\}$ and from inequalities (4) and (7), respectively.

LEMMA 3. Let ξ be a r.v. with distribution function F and $E\xi = 0$. Then for any c > 0,

(8)
$$\frac{1}{c} E\xi I(|\xi| \le rc) = -r(1 - F(rc)) + rF(-rc) + \int_{-\infty}^{-r} F(cx) \, dx - \int_{r}^{\infty} (1 - F(cx)) \, dx.$$

Proof. Notice that

$$E\xi I(|\xi| \le r) = -E\xi I(|\xi| > r) = -\int_{r}^{\infty} x \, dF(x) - \int_{-\infty}^{-r} x \, dF(x)$$
$$= -r(1 - F(r)) - \int_{r}^{\infty} (1 - F(x)) \, dx + rF(-r) + \int_{-\infty}^{-r} F(x) \, dx.$$

Replacing ξ by ξ/c we get the assertion of the lemma.

LEMMA 4. If $\{F_n\}$ satisfies condition P1 then for each $m \ge r$,

(9)
$$\lim_{n} \int_{-m}^{-r} nF_n(xc_n) \, dx = \int_{-m}^{-r} M(x) \, dx$$

and

(10)
$$\lim_{n} \int_{r}^{m} n(1 - F_n(xc_n)) \, dx = -\int_{r}^{m} N(x) \, dx$$

Proof. Let $f_n(x) := nP(\tilde{v}_n - \tilde{u}_n \leq xc_n)$ for x < 0. Then each f_n is nondecreasing on $(-\infty, 0)$ and by condition P1 we have $f_n(x) \to M(x)$ for all x < 0 that are continuity points of M. Hence for all x < -r and some $\delta > 0$ we have

$$0 \le f_n(x) \le f_n(-r) \le M(-r) + \delta \equiv f_0(x) \quad \text{and} \quad \int_{-m}^{-r} f_0(x) \, dx < \infty.$$

Therefore by Lebesgue's dominated convergence theorem we get

$$\lim_{n} \int_{-m}^{-r} f_n(x) \, dx = \int_{-m}^{-r} \lim_{n} f_n(x) \, dx = \int_{-m}^{-r} M(x) \, dx$$

for all $m \ge r$, which gives the first assertion.

To prove the second assertion note that the functions $g_n(x) := nP(\tilde{v}_n - \tilde{u}_n > xc_n)$ for x > 0 are nonincreasing and $g_n(x) \to -N(x)$ for all x > 0 that are continuity points of N. Hence for $x \in (r, m)$ and some $\delta > 0$ we have

$$0 \le g_n(x) \le g_n(r) \le -N(r) + \delta \equiv g_0(x)$$
 and $\int_r^m g_0(x) dx < \infty$.

Therefore by Lebesgue's dominated convergence theorem we get

$$\lim_{n} \int_{r}^{m} g_{n}(x) \, dx = \int_{r}^{m} \lim_{n} g_{n}(x) \, dx = -\int_{r}^{m} N(x) \, dx$$

for all $m \ge r$, which gives the second assertion and finishes the proof of the Lemma. \blacksquare

LEMMA 5. If $\{F_n\}$ satisfies conditions P1–P3 and P5, then for $r_1, r_2 \ge r$,

(11)
$$\lim_{n} \left(\int_{-\infty}^{-r_1} nF_n(xc_n) \, dx - \int_{r_2}^{\infty} n(1 - F_n(xc_n)) \, dx \right) \\ = \int_{-\infty}^{-r_1} M(x) \, dx + \int_{r_2}^{\infty} N(x) \, dx.$$

Moreover if condition P7 holds, then

$$\lim_{n} \int_{r_2}^{\infty} n(1 - F_n(xc_n)) \, dx = -\int_{r_2}^{\infty} N(x) \, dx.$$

Proof. Putting $\xi = \tilde{v}_n - \tilde{u}_n$ and $c = c_n$ in Lemma 3 we get

(12)
$$b_{n,r} := \frac{n}{c_n} E(\widetilde{v}_n - \widetilde{u}_n) I(|\widetilde{v}_n - \widetilde{u}_n| \le rc_n)$$
$$= -rn(1 - F_n(rc_n) + rnF_n(-rc_n))$$
$$+ \int_{-\infty}^{-r} nF_n(xc_n) dx - \int_{r}^{\infty} n(1 - F_n(xc_n)) dx$$

Using P3 and P1 we get

$$b_r = rN(r) + rM(-r) + \lim_n \left(\int_{-\infty}^{-r} nF_n(xc_n) \, dx - \int_{-\infty}^{\infty} n(1 - F_n(xc_n)) \, dx \right),$$

and this in view of Lemma 4 gives, for $r_1, r_2 \ge r$,

$$\int_{-\infty}^{-r_1} M(x) \, dx + \int_{r_2}^{\infty} N(x) \, dx = \lim_n \left(\int_{-\infty}^{-r_1} nF_n(xc_n) \, dx - \int_{r_2}^{\infty} n(1 - F_n(xc_n)) \, dx \right),$$

which finishes the proof of the first assertion of the lemma. The second assertion follows immediately from the first and from assumption P7. \blacksquare

LEMMA 6. Let $\{F_n\}$ satisfy conditions P1–P3 and P5–P7. Then $\{F_n^B\}$ and $\{F_n^A\}$ satisfy condition P3 with $b_r^B = rN^B(r) + \int_r^\infty N^B(x) dx$ and $b_r^A = rN^A(r) + \int_r^\infty N^A(x) dx$, respectively.

Proof. Using Lemma 3 for $\xi = \tilde{v}_n$ and $c = c_n$ we get

(13)
$$b_{n,r}^{B} := \frac{n}{c_n} E \widetilde{v}_n I(|\widetilde{v}_n| \le rc_n)$$
$$= -rn(1 - F_n^B(rc_n)) + rnF_n^B(-rc_n)$$
$$- \int_r^{\infty} n(1 - F_n^B(xc_n)) dx + \int_{-\infty}^{-r} nF_n^B(xc_n) dx.$$

Let $\varepsilon > 0$ be such that $r - \varepsilon > 0$ and $n(\varepsilon)$ be such that $\overline{v}_n/c_n < \varepsilon$ and $\overline{u}_n/c_n < \varepsilon$ for $n \ge n(\varepsilon)$, which is guaranteed by P6. Then for $x \le -r$ we

have

$$F_n^B(xc_n) = P(\tilde{v}_n \le xc_n) = P(v_n \le c_n(x + \overline{v}_n/c_n)) = 0.$$

Hence for $n \ge n(\varepsilon)$ we get

(14)
$$b_{n,r}^B = -rn(1 - F_n^B(rc_n)) - \int_r^\infty n(1 - F_n^B(xc_n)) dx.$$

By inequality (4) we get

$$n(1 - F_n^B(xc_n)) \le n(1 - F_n(c_n(x - \varepsilon)))(F_n^A(\varepsilon c_n))^{-1}.$$

Applying this together with the convergences $F_n^A(\varepsilon c_n) \to 1$ and

$$\lim_{n} \int_{r}^{\infty} n(1 - F_n(xc_n)) \, dx = \int_{r}^{\infty} \lim_{n} n(1 - F_n(xc_n)) \, dx = -\int_{r}^{\infty} N(x) \, dx$$

and the Lebesgue dominated convergence theorem to the sequence $\{F_n^B\}$, which satisfies condition P1, we obtain the convergence

$$b_r^B := \lim_n b_{n,r}^B = rN^B(r) + \int_r^\infty N^B(x) \, dx.$$

In a similar way we get the convergence

$$b_r^A := \lim_n b_{n,r}^A = rN^A(r) + \int_r^\infty N^A(x) \, dx. \blacksquare$$

LEMMA 7. If $\{F_n\}$ satisfies conditions P1–P7 then $\{F_n^B\}$ and $\{F_n^A\}$ satisfy condition P4.

Proof. Notice that for any mutually independent random variables v and u and any number $\delta > 0$ we have

$$\left(vI(|v| \le \delta)I(|u| \le \delta) - uI(|u| \le \delta)I(|v| \le \delta)\right)^2 \le (v-u)^2 I(|v-u| \le 2\delta)$$

and

(15)
$$E(vI(|v| \le \delta)I(|u| \le \delta) - uI(|u| \le \delta)I(|v| \le \delta))^{2} \le E(v-u)^{2}I(|v-u| \le 2\delta).$$

But the left hand side of (15) equals

(16)
$$Ev^2 I(|v| \le \delta) P(|u| \le \delta) + Eu^2 I(|u| \le \delta) P(|v| \le \delta) - 2Ev I(|v| \le \delta) Eu I(|u| \le \delta).$$

Putting $v = \tilde{v}_n$, $u = \tilde{u}_n$ and $\delta = c_n \varepsilon$ for $\varepsilon > 0$ in (15) and (16) we get

$$(17) \quad E\widetilde{v}_n^2 I(|\widetilde{v}_n| \le c_n \varepsilon) P(|\widetilde{v}_n| \le c_n \varepsilon) + E\widetilde{u}_n^2 I(|\widetilde{u}_n| \le c_n \varepsilon) P(|\widetilde{u}_n| \le c_n \varepsilon) - 2E\widetilde{v}_n I(|\widetilde{v}_n| \le c_n \varepsilon) E\widetilde{u}_n I(|\widetilde{u}_n| \le c_n \varepsilon) \le E(\widetilde{v}_n - \widetilde{u}_n)^2 I(|\widetilde{v}_n - \widetilde{u}_n| \le 2\varepsilon c_n)$$

By the assumptions and Lemma 6 we know that $\{F_n^B\}$ and $\{F_n^A\}$ satisfy condition P3. Hence

48

$$\frac{n}{c_n} E \widetilde{v}_n I(|\widetilde{v}_n| \le \varepsilon c_n) = O(1) \quad \text{and} \quad \frac{n}{c_n} E \widetilde{u}_n I(|\widetilde{u}_n| \le \varepsilon c_n) = O(1),$$

which implies

$$\lim_{n} \frac{1}{c_n} E \widetilde{v}_n I(|\widetilde{v}_n| \le \varepsilon c_n) = \lim_{n} \frac{1}{c_n} E \widetilde{u}_n I(|\widetilde{u}_n| \le \varepsilon c_n) = 0.$$

All this implies

$$\lim_{\varepsilon \to 0} \limsup_{n} nE \frac{\widetilde{v}_n}{c_n} I(|\widetilde{v}_n| \le \varepsilon c_n) E \frac{\widetilde{u}_n}{c_n} I(|\widetilde{u}_n| \le \varepsilon c_n) = 0.$$

Together with (17) and P4 for $\{F_n\}$, this gives

$$\lim_{\varepsilon \to 0} \limsup_{n} \frac{n}{c_n^2} E \widetilde{v}_n^2 I(|\widetilde{v}_n| \le \varepsilon c_n) = 0$$

and

$$\lim_{\varepsilon \to 0} \limsup_{n} \frac{n}{c_n^2} E \widetilde{u}_n^2 I(|\widetilde{u}_n| \le \varepsilon c_n) = 0,$$

which means that $\{F_n^B\}$ and $\{F_n^A\}$ satisfy condition P4.

Proof of Theorem 1. The assertion follows from Lemmas 1–7. ■

Acknowledgements. I wish to express my thanks to the referee for all his helpful comments.

References

- P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. [1]
- [2]Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theory Probab. Appl. 1 (1956), 157-214.
- [3] K. Sato, Basic results on Lévy processes, in: Lévy Processes, Theory and Applications, O. E. Barndorff-Nielsen, T. Mikosch, and S. I. Resnik (eds.), Birkhäuser, 2001, 3–37.

Institute of Mathematics University of Wrocław Pl. Grunwaldzki 2/450-384 Wrocław, Poland E-mail: szczotka@math.uni.wroc.pl

> Received on 9.2.2006; revised version on 22.2.2006

(1805)