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CONVERGENCE OF OPTIMAL STRATEGIES INA DISCRETE TIME MARKET WITH FINITE HORIZON

Abstrat. A disrete-time �nanial market model with �nite time hori-zon is onsidered, together with a sequene of investors whose preferenesare desribed by a onvergent sequene of stritly inreasing and stritly on-ave utility funtions. Existene of unique optimal onsumption-investmentstrategies as well as their onvergene to the limit strategy is shown.Introdution. Reently, in a number of papers the following questionwas onsidered: does onvergene of investors' preferenes imply the onver-gene of their optimal strategies? In [2℄ a model with omplete Brownianmarket model was desribed, while in [1℄ a disrete time model with �nitehorizon and utility funtions de�ned on the whole real line was studied.Both papers gave a positive answer to the above problem under suitableassumptions.In the present paper we prove a similar result for a disrete time marketmodel with a �nite horizon. We assume weaker regularity onditions on util-ity funtions: strit onavity and strit monotoniity. The utility funtionsonsidered are de�ned on the positive axis.In the �rst setion we desribe our model of �nanial market. Then weonsider a one-step model and utilizing ideas from [4℄, we establish a fewuseful tehnial results. Finally, we prove the existene of optimal strategiesfor our model and their onvergene together with the onvergene of theinvestors' preferenes.1. Market model. Let (Ω,F , (Ft)0≤t≤T , P) be a disrete-time �lteredprobability spae with �nite time horizon T ∈ N, with F0 = {∅, Ω}. Pries of2000 Mathematis Subjet Classi�ation: 49L20, 91B16, 91B28, 93E20.Key words and phrases: utility maximization, dynami programming, optimal strate-gies. [85℄
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d risky seurities available on the market are represented by a d-dimensional,almost surely positive adapted proess St = (St,1, . . . , St,d)

′, 0 ≤ t ≤ T . For
t = 0, . . . , T − 1 we de�ne

ζt,i =
St+1,i

St,i

, i = 1, . . . , d,and ζt = (ζt,1, . . . , ζt,d)
′. Let Dt(ω) be the smallest linear subspae ontainingthe support of the regular onditional distribution of ζt with respet to Ft(it exists, f. [6, Theorem 2.7.5℄). Throughout the paper we assume thatthere are no redundant assets on the market, thus we have the followingnon-degeneray assumption:Assumption 1.1. Dt is almost surely equal to Rd for 0 ≤ t ≤ T − 1.Let ∆0 = {ν ∈Rd : νi ≥ 0,

∑d
i=1 νi ≤ 1}, and ∆ = {ν ∈∆0 :

∑d
i=1 νi = 1}.We denote by 〈·, ·〉 the usual salar produt in Rd. Denote by Xt the wealthproess at time t before onsumption and possible transations. Let πt,i and

πt,i be the portions of the wealth Xt invested in the ith asset at time tbefore and respetively after onsumption and possible transations. We donot allow short selling or short borrowing, so πt = (πt,1, . . . , πt,d)
′ ∈ ∆ and

πt = (πt,1, . . . , πt,d)
′ ∈ ∆0.At time t = 0, . . . , T −1, the investor who owns initial wealth Xt investedin portfolio πt, onsumes a part αt ∈ [0, 1] of his wealth and hanges hisportfolio omposition to πt, aording to the equation

Xt = Xtαt + Xt

d∑

i=1

πt,i,whih implies that we are interested only in Ft-measurable strategies suhthat (αt, πt) ∈ [0, 1] × ∆0 a.s. and
(1.1) αt +

d∑

i=1

πt,i = 1 a.s.Denote the set of suh strategies by At.At time t + 1, due to prie hanges, the investor's wealth hanges to
(1.2) Xt+1 =

d∑

i=1

Xtπt,iζt,i = Xt〈πt, ζt〉.Equation (1.2) desribes the dynamis of the ontrol system we are dealingwith: Xt is regarded as a state of the system, and (αt, πt) ∈ [0, 1]×∆0 are itsontrol parameters, onstrained by (1.1) desribing the admissible strategies.The initial ondition is given by the endowment x := X0 > 0.



Convergene of optimal strategies 87We onsider a sequene of investors with preferenes desribed by utilityfuntions Un
t : (0,∞) → R, 0 ≤ t ≤ T , n ∈ N := N ∪ {∞}.Assumption 1.2. The funtions Un

t are stritly inreasing and stritlyonave for t ∈ {0, . . . , T} and n ∈ N. Moreover , for all t ∈ {0, . . . , T} and
x ∈ (0,∞),

Un
t (x) → U∞

t (x) as n → ∞.We are interested in maximization of the expeted utility from onsump-tion and terminal wealth, that is, we want to maximize the following rewardfuntional:(1.3) Jn
T (x, (α, π)) = E

( T−1∑

t=0

Un
t (Xtαt) + Un

T (XT )
)
.

For our dynami programming problem to be well posed and �nite, weassume that the following onditions are satis�ed:Assumption 1.3. For all n ∈ N, k ∈ {1, . . . , T} and x > 0,
E(Un

k )+
(
x

k−1∏

t=0

max{ζt,i : i = 1, . . . , d}
)

< ∞,

E(Un
k )−

(
x

k−1∏

t=0

min{ζt,i : i = 1, . . . , d}
)

< ∞.

Remark 1.4. One an onsume all or nothing of the wealth, so we needvalues of utility funtions at 0. We deal with that problem by putting U(0) :=
limx→0+ U(x); if this limit is �nite, the ontinuity and onavity propertiesare kept, and if not (e.g. for a logarithmi funtion), the agent will not hoosesuh a strategy to maximize utility.2. One-step ase. We start with the ase T = 1. Let u, v : (0,∞) → Rbe stritly inreasing funtions, u stritly onave and v onave. Let H bea sub-σ-�eld of F , let ζ = (ζ1, . . . , ζd)

′ be an Rd-valued random variablewith non-degenerate (in the sense of Assumption 1.1) onditional distribu-tion with respet to H, and let E( · |H) denote onditional expetation withrespet to H. Denote by A the set of admissible strategies: H-measurablerandom variables suh that (α, π) ∈ [0, 1] × ∆0 a.s. and α +
∑d

j=1 πj = 1.De�ne the value funtion by
w(x) := ess sup

(α,π)∈A
{u(xα) + E(v(x〈π, ζ〉) |H)}, x > 0.Analogously to Assumption 1.3, we introdue



88 R. KuharskiAssumption 2.1. For all x > 0,
Ev+(x max

i∈{1,...,d}
ζi) < ∞ and Ev−(x min

i∈{1,...,d}
ζi) < ∞.The following tehnial lemmas are ruial:Lemma 2.2. There exists an almost surely ontinuous, stritly onaveand stritly inreasing (with respet to every oordinate) version of

[0,∞)d \ {0} ∋ π 7→ E(v(〈π, ζ〉) |H).Proof. Let κ denote the regular onditional distribution of ζ given H.Then
E(v(〈π, ζ〉) |H) =

\
Rd

v(〈π, x〉) κ(dx) a.s.,and we take the right side as a de�nition of our version. By a routine alu-lation one heks it has the desired properties. We will show onavity. Fix
π1, π2 ∈ [0,∞)d \ {0}, π1 6= π2 and t ∈ (0, 1). Then

tE(v(〈π1, ζ〉) |H) + (1 − t)E(v(〈π2, ζ〉) |H)

=
\

Rd

[tv(〈π1, x〉) + (1 − t)v(〈π2, x〉)] κ(dx)

<
\

Rd

v(〈tπ1 + (1 − t)π2, x〉) κ(dx)

= E(v(〈tπ1 + (1 − t)π2, ζ〉) |H) a.s.The strit inequality is justi�ed by Assumption 1.1.Proposition 2.3. For every x ∈ (0,∞) there exists a unique optimalpair (α̂, π̂) ∈ A suh that(2.1) w(x) = u(xα̂) + E(v(x〈π̂, ζ〉) |H) a.s.Proof. We take the version of onditional expetation with the propertiesstated in Lemma 2.2, and onsider the mapping
Φ : [0, 1] × ∆0 × Ω ∋ (α, π, ω) 7→ u(xα) + E(v(x〈π, ζ〉) |H)(ω) ∈ Rwhih is ontinuous exept on a P-zero set N . Sine the set(2.2) {

(α, π) ∈ [0, 1] × ∆0 : α +

d∑

j=1

πj = 1
}

is ompat, for any ω ∈ Ω \ N there is a pair (α̂(ω), π̂(ω)) attaining thesupremum of Φ.Suppose that there are two suh pairs, say (α1, π1), (α2, π2) ∈ A. Takeany t ∈ (0, 1). Putting α = tα1 + (1 − t)α2, π = tπ1 + (1 − t)π2 we have
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α ∈ (0, 1), π ∈ ∆0 a.s. Sine ∑m

i=1 πi = 1−α, it follows that (α, π) ∈ A and
w(x) = tw(x) + (1 − t)w(x)

= t[u(xα1) + E(v(x〈π1, ζ〉) |H)]

+ (1 − t)[u(xα2) + E(v(x〈π2, ζ〉) |H)]

≤ u(xα) + E(v(tx〈π1, ζ〉 + (1 − t)x〈π2, ζ〉) |H)

= u(xα) + E(v(x〈π, ζ〉) |H) ≤ w(x) a.s.Both u and v are stritly onave, thus the above inequality turns into anequality i� α1 = α2 and 〈π1, ζ〉 = 〈π2, ζ〉 a.s. From the assumption we madeon the support of the distribution of ζ, that implies π1
i = π2

i a.s., i = 1, . . . , d,hene the proof of uniqueness is �nished.The optimal pair (α̂, π̂) is an H-measurable random variable, sine forany open ball B ⊂ Rd+1,
(α̂, π̂)(ω) ∈ B ⇔

∨

(α∗,π∗)∈C∩B

∧

(α,π)∈C\B

Φ(α∗, π∗)(ω) > Φ(α, π)(ω)

where C denotes a ountable dense subset of (2.2), and therefore
{(α̂, π̂) ∈ B} =

⋃

(α∗,π∗)∈C∩B

⋂

(α,π)∈C\B

{Φ(α∗, π∗) > Φ(α, π)} ∈ H.

Lemma 2.4. There is a version of the value funtion w whih is almostsurely stritly inreasing and stritly onave.Proof. For every q ∈ (0,∞)∩Q �x a version of w(q), whih by Assump-tion 2.1 is almost surely �nite. Fix x, y ∈ (0,∞) ∩ Q. It is obvious that if
y < x then w(y) < w(x) a.s. To show strit onavity, �x t ∈ (0, 1) ∩ Qand let (αx, πx), (αy, πy) ∈ A be optimal pairs for x and y respetively. Put
z = tx + (1 − t)y, β = tx/z, α = βαx + (1 − β)αy, π = βπx + (1 − β)πy.Obviously α ∈ [0, 1], β ∈ (0, 1) a.s. Sine ∑d

i=1 πi = 1 − α, we obtain
txπx + (1 − t)yπy = z(βπx + (1 − β)πy) = zπ,and sine u and v are stritly onave and ζ is almost surely positive, wehave

tw(x) + (1 − t)w(y) = t[u(xαx) + E(v(x〈πx, ζ〉) |H)]

+ (1 − t)[u(yαy) + E(v(y〈πy, ζ〉) |H)]

≤ u(zα) + E(v(z〈π, ζ〉 |H)) ≤ w(z) a.s.and moreover this inequality turns into an equality i�
xαx = yαy and x〈πx, ζ〉 = y〈πy, ζ〉 a.s.One again using our assumption on the distribution of ζ, this implies

xπx
i = yπy

i , i = 1, . . . , d,



90 R. Kuharskiand summing those equalities up for i = 1, . . . , d we obtain
x[1 − αx] = y[1 − αy],hene also x = y. This shows in partiular that for all x, y ∈ (0,∞) ∩ Q,

x 6= y, we have
w

(
x + y

2

)
>

w(x) + w(y)

2
a.s.We an now extend this version of w to a funtion whih is almost surelystritly inreasing and stritly ontinuous for all x ∈ (0,∞). Finally, frommonotone onvergene, for �xed x ∈ (0,∞) and a sequene of rationals qn ↑ xwe have

w(x) = lim
n

w(qn) = lim
n

ess sup
(π,α)∈A

{u(qnα) + E(v(qn〈π, ζ〉) |H)}

= ess sup
(π,α)∈A

{u(xα) + E(v(x〈π, ζ〉) |H)}.Proposition 2.5. There exists a seletor of optimal strategies
(0,∞) ∈ x 7→ (α̂, π̂)(x) ∈ Awhih is ontinuous for almost all ω.Proof. We �x a version of onditional expetation with the propertiesstated in Lemma 2.2. The random funtion

w(x, (α, π)) := u(xα) + E(v(x〈π, ζ〉) |H)is then almost surely ontinuous, jointly for all arguments. Suppose thereexists x ∈ (0,∞) and a sequene xn ∈ (0,∞), n ∈ N, suh that xn → x and
(α̂, π̂)(xn) 6→ (α̂, π̂)(x). Sine all (α̂, π̂)(xn) belong to the ompat set (2.2),we may hoose, using Lemma 2 from [3℄, a random subsequene (α̂, π̂)(xnk

)onverging to some (α̃, π̃). Condition (1.1) holds for all k ∈ N, so letting
k → ∞, we get (α̃, π̃) ∈ A. By ontinuity,

lim
k→∞

w(xnk
, (α̂, π̂)(xnk

)) = w(x, (α̃, π̃)) =: w̃,(2.3)
lim

n→∞
w(xn, (α̂, π̂)(x)) = w(x, (α̂, π̂)(x)) =: w,(2.4)and if (α̃, π̃) 6= (α̂, π̂)(x), then w̃ < w. If we �x ε ∈ (0, (w − w̃)/2), then for

k large enough(2.5) w(xnk
, (α̂, π̂)(x)) > w − ε > w̃ + ε,while from (2.3),(2.6) w(xnk

, (α̂, π̂)(xnk
)) < w̃ + ε.Inequalities (2.5) and (2.6) lead to

w(xnk
, (α̂, π̂)(x)) > w(xnk

, (α̂, π̂)(xnk
))ontraditing the optimality of (α̂, π̂)(xnk

).



Convergene of optimal strategies 913. Convergene of optimal strategies. We are now going to use theresults of the previous setion in the general ase. We de�ne the Bellmanfuntions:
V n

T (x) := UT (x),

V n
t (x) := ess sup

(α,π)∈A
{Un

t (αx) + E(V n
t+1(x〈π, ζt〉) | Ft)},(3.1)

for x ∈ (0,∞) and t = 0, . . . , T − 1.Theorem 3.1. For all n ∈ N and t = 0, . . . , T :(i) the funtion V n
t has a version whih is stritly inreasing and stritlyonave almost surely ,(ii) there exists a unique B(0,∞)⊗Ft-measurable funtion (α̂n

t , π̂n
t ) ∈ Atsuh that for all x ∈ (0,∞),

V n
t (x) = Un

t (xα̂n
t (x)) + E(V n

t+1(x〈π̂
n
t (x), ζt〉) | Ft).Proof. Fix n ∈ N and use bakward indution. It is lear that V n

T isstritly onave and stritly inreasing sine Un
T is. Then dereasing t from

T − 1 to 0 and applying Lemma 2.4 and Proposition 2.3 with w := V n
t ,

u := Un
t , v := V n

t+1, A := At, H := Ft and ζ := ζt, we �nd that V n
thas a stritly inreasing and stritly onave version, and there is a uniqueoptimal strategy (α̂n

t , π̂n
t ) := (α̂, π̂) whih is Ft-measurable for all x ∈ (0,∞)and almost surely ontinuous, hene B(0,∞) ⊗ Ft-measurable. This provesthe theorem.In this setion we will make repeated use of the following elementary fat.It may be derived e.g. from pages 90 and 248 of [5℄, but we inlude an easyproof for ompleteness.Lemma 3.2. Let U ⊂ R be an open set and fn : U → R be a sequene ofinreasing funtions suh that fn onverges pointwise on U to a ontinuousfuntion f . Then fn onverges to f uniformly on eah ompat subset of U .Proof. First notie that f is inreasing, being the limit of a sequeneof inreasing funtions. Fix a ompat set C ⊂ U and an arbitrary ε > 0.Without loss of generality, we may assume that C =[a, b] is an interval. On C,the funtion f is uniformly ontinuous, hene we an �nd x0, . . . , xk ∈ C with

a := x0 < x1 < · · · < xk−1 < xk =: b suh that |f(xi) − f(xi−1)| < ε/2 for
i ∈ {1, . . . , k}. Let Ni ∈ N be suh that |fn(xi) − f(xi)| < ε/2 for n ≥ Ni,and de�ne N := max{Ni : i ∈ {0, . . . , k}}. Then for any x ∈ A there is
i ∈ {0, . . . , k − 1} suh that x ∈ [xi, xi+1], and for n ≥ N we have

f(x) − ε ≤ f(xi+1) − ε ≤ fn(xi+1) − ε/2 ≤ fn(x) ≤ fn(xi) + ε/2

≤ f(xi) + ε ≤ f(x) + ε.Sine x ∈ C was arbitrary, the assertion follows.



92 R. KuharskiNow we are ready to prove the onvergene of optimal strategies. Againwe will start with the one-step ase.Proposition 3.3. Assume that for every n ∈ N funtions un, vn arestritly inreasing and stritly onave, and moreover limn→∞ un(x)=u∞(x)and limn→∞ vn(x) = v∞(x) for all x ∈ (0,∞). Let (α̂n, π̂n) denote theoptimal strategy ful�lling (2.1) with u and v replaed by un and vn. Then,for every x ∈ (0,∞),
lim

n→∞
(α̂n, π̂n)(x) = (α̂∞, π̂∞)(x) a.s.Proof. Suppose that, on the ontrary, the onvergene fails for some x ∈

(0,∞). Sine [0, 1]×∆0 is ompat, by the use of Lemma 2 from [3℄ we hoosea random subsequene (nk ∈ N : k ∈ N) suh that limk→∞(α̂nk , π̂nk)(x) =
(α̃, π̃) ∈ A, (α̃, π̃) 6= (α̂∞, π̂∞). De�ne

wn(α, π) := un(xα) + Evn(x〈π, ζ〉 |H), (α, π) ∈ A, n ∈ N,with a ontinuous version of the onditional expetation. Then the funtions
wn depend ontinuously on π and α, the uniform onvergene of un and vnon ompat sets gives(3.2) lim

k→∞
wnk(α̂nk , π̂nk) = w∞(α̃, π̃) a.s.,and by our hypothesis

w̃ := w∞(α̃, π̃) < w∞(α̂∞, π̂∞) =: w.Fix ε ∈ (0, (w − w̃)/2). Sine pointwise onvergene ensures
lim

n→∞
wn(α̂∞, π̂∞) = w,for k large enough we have(3.3) wk(α̂∞, π̂∞) > w − ε > w̃ + ε,while from (3.2) we get(3.4) wnk(α̂nk , π̂nk) < w̃ + ε.Combining (3.3) and (3.4) we obtain wnk(α̂∞, π̂∞) > wnk(α̂nk , π̂nk), ontra-diting the optimality of (α̂nk , π̂nk).Now we an prove the main theorem.Theorem 3.4. Let ((α̂n

t , π̂n
t ) : t = 0, . . . , T − 1) be optimal strategiesmaximizing (1.3) with the orresponding funtions (Un

0 , . . . , Un
T ), n ∈ N.Then for every x ∈ (0,∞),

lim
n→∞

(α̂n
t , π̂n

t )(x) = (α̂∞
t , π̂∞

t )(x) a.s., t = 0, . . . , T − 1.Proof. The assertion follows from the foregoing proposition applied on-seutively to the Bellman funtions (3.1) with un := Un
t and vn := V n

t+1for t = T − 1, . . . , 0. We only need to hek that limn→∞ V n
t (x) = V ∞

t (x)



Convergene of optimal strategies 93for x ∈ (0,∞) and t = T, . . . , 1. For t = T this is obvious sine V n
T = Un

T ,
n ∈ N. If we have proved that (α̂n

t , π̂n
t ) → (α̂∞

t , π̂∞
t ) for some t ≤ T , thenfrom uniform onvergene on ompat sets and the Lebesgue Theorem, forall x ∈ (0,∞),

lim
n→∞

V n
t (x) = lim

n→∞
(Un

t (xα̂n
t (x)) + E(V n

t+1(x〈π̂
n
t (x), ζt〉) | Ft))

= U∞
t (xα̂∞

t (x)) + E(V ∞
t+1(x〈π̂

∞
t (x), ζt〉) | Ft)

= V ∞
t (x).
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