RAFAŁ KUCHARSKI (Warszawa)

CONVERGENCE OF OPTIMAL STRATEGIES IN A DISCRETE TIME MARKET WITH FINITE HORIZON

Abstract. A discrete-time financial market model with finite time horizon is considered, together with a sequence of investors whose preferences are described by a convergent sequence of strictly increasing and strictly concave utility functions. Existence of unique optimal consumption-investment strategies as well as their convergence to the limit strategy is shown.

Introduction. Recently, in a number of papers the following question was considered: does convergence of investors’ preferences imply the convergence of their optimal strategies? In [2] a model with complete Brownian market model was described, while in [1] a discrete time model with finite horizon and utility functions defined on the whole real line was studied. Both papers gave a positive answer to the above problem under suitable assumptions.

In the present paper we prove a similar result for a discrete time market model with a finite horizon. We assume weaker regularity conditions on utility functions: strict concavity and strict monotonicity. The utility functions considered are defined on the positive axis.

In the first section we describe our model of financial market. Then we consider a one-step model and utilizing ideas from [4], we establish a few useful technical results. Finally, we prove the existence of optimal strategies for our model and their convergence together with the convergence of the investors’ preferences.

1. Market model. Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})$ be a discrete-time filtered probability space with finite time horizon $T \in \mathbb{N}$, with $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Prices of

2000 Mathematics Subject Classification: 49L20, 91B16, 91B28, 93E20.

Key words and phrases: utility maximization, dynamic programming, optimal strategies.
d risky securities available on the market are represented by a d-dimensional, almost surely positive adapted process $S_t = (S_{t,1}, \ldots, S_{t,d})'$, $0 \leq t \leq T$. For $t = 0, \ldots, T - 1$ we define
\[
\zeta_{t,i} = \frac{S_{t+1,i}}{S_{t,i}}, \quad i = 1, \ldots, d,
\]
and $\zeta_t = (\zeta_{t,1}, \ldots, \zeta_{t,d})'$. Let $D_t(\omega)$ be the smallest linear subspace containing the support of the regular conditional distribution of ζ_t with respect to \mathcal{F}_t (it exists, cf. [6, Theorem 2.7.5]). Throughout the paper we assume that there are no redundant assets on the market, thus we have the following non-degeneracy assumption:

Assumption 1.1. D_t is almost surely equal to \mathbb{R}^d for $0 \leq t \leq T - 1$.

Let $\Delta_0 = \{ \nu \in \mathbb{R}^d : \nu_i \geq 0, \sum_{i=1}^d \nu_i \leq 1 \}$, and $\Delta = \{ \nu \in \Delta_0 : \sum_{i=1}^d \nu_i = 1 \}$. We denote by $\langle \cdot , \cdot \rangle$ the usual scalar product in \mathbb{R}^d. Denote by X_t the wealth process at time t before consumption and possible transactions. Let $\pi_{t,i}$ and $\overline{\pi}_{t,i}$ be the portions of the wealth X_t invested in the ith asset at time t before and respectively after consumption and possible transactions. We do not allow short selling or short borrowing, so $\pi_{t} = (\pi_{t,1}, \ldots, \pi_{t,d})' \in \Delta$ and $\overline{\pi}_{t} = (\overline{\pi}_{t,1}, \ldots, \overline{\pi}_{t,d})' \in \Delta_0$.

At time $t = 0, \ldots, T - 1$, the investor who owns initial wealth X_t invested in portfolio π_t, consumes a part $\alpha_t \in [0, 1]$ of his wealth and changes his portfolio composition to $\overline{\pi}_{t}$, according to the equation
\[
X_{t} = X_{t_{\alpha} \sum_{i=1}^{d} \overline{\pi}_{t,i} ,}
\]
which implies that we are interested only in \mathcal{F}_t-measurable strategies such that $(\alpha_t, \overline{\pi}_{t}) \in [0, 1] \times \Delta_0$ a.s. and
\[
\alpha_t + \sum_{i=1}^{d} \overline{\pi}_{t,i} = 1 \quad \text{a.s.}
\]
(1.1)

Denote the set of such strategies by \mathcal{A}_t.

At time $t + 1$, due to price changes, the investor’s wealth changes to
\[
X_{t+1} = \sum_{i=1}^{d} X_t \overline{\pi}_{t,i} \zeta_{t,i} = X_t \langle \overline{\pi}_{t}, \zeta_t \rangle.
\]
(1.2)

Equation (1.2) describes the dynamics of the control system we are dealing with: X_t is regarded as a state of the system, and $(\alpha_t, \overline{\pi}_{t}) \in [0, 1] \times \Delta_0$ are its control parameters, constrained by (1.1) describing the admissible strategies. The initial condition is given by the endowment $x := X_0 > 0$.

We consider a sequence of investors with preferences described by utility functions $U^n_t: (0, \infty) \to \mathbb{R}$, $0 \leq t \leq T$, $n \in \mathbb{N} := \mathbb{N} \cup \{\infty\}$.

Assumption 1.2. The functions U^n_t are strictly increasing and strictly concave for $t \in \{0, \ldots, T\}$ and $n \in \mathbb{N}$. Moreover, for all $t \in \{0, \ldots, T\}$ and $x \in (0, \infty)$,

$$U^n_t(x) \to U^\infty_t(x) \quad \text{as } n \to \infty.$$

We are interested in maximization of the expected utility from consumption and terminal wealth, that is, we want to maximize the following reward functional:

\begin{equation}
J_T^n(x, (\alpha, \bar{\pi})) = \mathbb{E} \left(\sum_{t=0}^{T-1} U^n_t(X_t\alpha_t) + U^n_T(X_T) \right).
\end{equation}

For our dynamic programming problem to be well posed and finite, we assume that the following conditions are satisfied:

Assumption 1.3. For all $n \in \mathbb{N}$, $k \in \{1, \ldots, T\}$ and $x > 0$,

$$\mathbb{E}(U^n_k)^+(x \prod_{i=0}^{k-1} \max \{\zeta_{t,i} : i = 1, \ldots, d\}) < \infty,$$

$$\mathbb{E}(U^n_k)^-(x \prod_{i=0}^{k-1} \min \{\zeta_{t,i} : i = 1, \ldots, d\}) < \infty.$$

Remark 1.4. One can consume all or nothing of the wealth, so we need values of utility functions at 0. We deal with that problem by putting $U(0) := \lim_{x \to 0^+} U(x)$; if this limit is finite, the continuity and concavity properties are kept, and if not (e.g. for a logarithmic function), the agent will not choose such a strategy to maximize utility.

2. One-step case.
We start with the case $T = 1$. Let $u, v: (0, \infty) \to \mathbb{R}$ be strictly increasing functions, u strictly concave and v concave. Let \mathcal{H} be a sub-σ-field of \mathcal{F}, let $\zeta = (\zeta_1, \ldots, \zeta_d)'$ be an \mathbb{R}^d-valued random variable with non-degenerate (in the sense of Assumption 1.1) conditional distribution with respect to \mathcal{H}, and let $\mathbb{E}(\cdot | \mathcal{H})$ denote conditional expectation with respect to \mathcal{H}. Denote by \mathcal{A} the set of admissible strategies: \mathcal{H}-measurable random variables such that $(\alpha, \bar{\pi}) \in [0, 1] \times \Delta_0$ a.s. and $\alpha + \sum_{j=1}^d \bar{\pi}_j = 1$.

Define the value function by

$$w(x) := \text{ess sup}_{(\alpha, \bar{\pi}) \in \mathcal{A}} \left\{ u(x\alpha) + \mathbb{E}(v(x\bar{\pi}, \zeta)) \mid \mathcal{H} \right\}, \quad x > 0.$$

Analogously to Assumption 1.3, we introduce
Assumption 2.1. For all \(x > 0 \),
\[
\mathbb{E}v^+(x \max_{i \in \{1, \ldots, d\}} \zeta_i) < \infty \quad \text{and} \quad \mathbb{E}v^-(x \min_{i \in \{1, \ldots, d\}} \zeta_i) < \infty.
\]

The following technical lemmas are crucial:

Lemma 2.2. There exists an almost surely continuous, strictly concave and strictly increasing (with respect to every coordinate) version of
\[
[0, \infty)^d \setminus \{0\} \ni \pi \mapsto \mathbb{E}(v(\langle \pi, \zeta \rangle) \mid \mathcal{H}).
\]

Proof. Let \(\kappa \) denote the regular conditional distribution of \(\zeta \) given \(\mathcal{H} \). Then
\[
\mathbb{E}(v(\langle \pi, \zeta \rangle) \mid \mathcal{H}) = \int v(\langle \pi, x \rangle) \kappa(dx) \quad \text{a.s.,}
\]
and we take the right side as a definition of our version. By a routine calculation one checks it has the desired properties. We will show concavity. Fix \(\pi^1, \pi^2 \in [0, \infty)^d \setminus \{0\}, \pi^1 \neq \pi^2 \) and \(t \in (0, 1) \). Then
\[
t \mathbb{E}(v(\langle \pi^1, \zeta \rangle) \mid \mathcal{H}) + (1 - t) \mathbb{E}(v(\langle \pi^2, \zeta \rangle) \mid \mathcal{H})
\]
\[
= \int [tv(\langle \pi^1, x \rangle) + (1 - t)v(\langle \pi^2, x \rangle)] \kappa(dx)
\]
\[
< \int v(\langle t\pi^1 + (1 - t)\pi^2, x \rangle) \kappa(dx)
\]
\[
= \mathbb{E}(v(\langle t\pi^1 + (1 - t)\pi^2, \zeta \rangle) \mid \mathcal{H}) \quad \text{a.s.}
\]
The strict inequality is justified by Assumption 1.1. \(\blacksquare \)

Proposition 2.3. For every \(x \in (0, \infty) \) there exists a unique optimal pair \((\hat{\alpha}, \hat{\pi}) \in \mathcal{A} \) such that
\[
(2.1) \quad w(x) = u(x\hat{\alpha}) + \mathbb{E}(v(x\langle \hat{\pi}, \zeta \rangle) \mid \mathcal{H}) \quad \text{a.s.}
\]

Proof. We take the version of conditional expectation with the properties stated in Lemma 2.2, and consider the mapping
\[
\Phi: [0, 1] \times \Delta_0 \times \Omega \ni (\alpha, \pi, \omega) \mapsto u(x\alpha) + \mathbb{E}(v(x\langle \pi, \zeta \rangle) \mid \mathcal{H})(\omega) \in \mathbb{R}
\]
which is continuous except on a \(\mathbb{P} \)-zero set \(N \). Since the set
\[
(2.2) \quad \left\{ (\alpha, \pi) \in [0, 1] \times \Delta_0 : \alpha + \sum_{j=1}^d \pi_j = 1 \right\}
\]
is compact, for any \(\omega \in \Omega \setminus N \) there is a pair \((\hat{\alpha}(\omega), \hat{\pi}(\omega)) \) attaining the supremum of \(\Phi \).

Suppose that there are two such pairs, say \((\alpha^1, \pi^1), (\alpha^2, \pi^2) \in \mathcal{A} \). Take any \(t \in (0, 1) \). Putting \(\alpha = t\alpha^1 + (1 - t)\alpha^2, \pi = t\pi^1 + (1 - t)\pi^2 \) we have
\(\alpha \in (0,1), \ \bar{\pi} \in \Delta_0 \) a.s. Since \(\sum_{i=1}^{m} \bar{\pi}_i = 1 - \alpha \), it follows that \((\alpha, \bar{\pi}) \in \mathcal{A} \) and
\[
 w(x) = tw(x) + (1-t)w(x) \\
= t[u(x\alpha^1) + \mathbb{E}(v(x\bar{\pi}^1, \zeta)) | \mathcal{H}] \\
+ (1-t)[u(x\alpha^2) + \mathbb{E}(v(x\bar{\pi}^2, \zeta)) | \mathcal{H}] \\
\leq u(x\alpha) + \mathbb{E}(v(tx\bar{\pi}^1, \zeta) + (1-t)x\bar{\pi}^2, \zeta) | \mathcal{H}) \\
= u(x\alpha) + \mathbb{E}(v(x\bar{\pi}, \zeta)) | \mathcal{H}) \leq w(x) \quad \text{a.s.}
\]

Both \(u \) and \(v \) are strictly concave, thus the above inequality turns into an equality iff \(\alpha^1 = \alpha^2 \) and \(\langle \bar{\pi}^1, \zeta \rangle = \langle \bar{\pi}^2, \zeta \rangle \) a.s. From the assumption we made on the support of the distribution of \(\zeta \), that implies \(\bar{\pi}_i^1 = \bar{\pi}_i^2 \) a.s., \(i = 1, \ldots, d \), hence the proof of uniqueness is finished.

The optimal pair \((\hat{\alpha}, \hat{\pi}) \) is an \(\mathcal{H} \)-measurable random variable, since for any open ball \(B \subset \mathbb{R}^{d+1} \),
\[
(\hat{\alpha}, \hat{\pi})(\omega) \in B \iff \bigvee_{(\alpha^*, \pi^*) \in C \cap B} \bigwedge_{(\alpha, \pi) \in C \setminus B} \Phi(\alpha^*, \pi^*)(\omega) > \Phi(\alpha, \pi)(\omega)
\]

where \(C \) denotes a countable dense subset of \((2.2) \), and therefore
\[
\{ (\hat{\alpha}, \hat{\pi}) \in B \} = \bigcup_{(\alpha^*, \pi^*) \in C \cap B} \bigcap_{(\alpha, \pi) \in C \setminus B} \{ \Phi(\alpha^*, \pi^*) > \Phi(\alpha, \pi) \} \in \mathcal{H}. \quad \blacksquare
\]

Lemma 2.4. There is a version of the value function \(w \) which is almost surely strictly increasing and strictly concave.

Proof. For every \(q \in (0, \infty) \cap \mathbb{Q} \) fix a version of \(w(q) \), which by Assumption 2.1 is almost surely finite. Fix \(x, y \in (0, \infty) \cap \mathbb{Q} \). It is obvious that if \(y < x \) then \(w(y) < w(x) \) a.s. To show strict concavity, fix \(t \in (0,1) \cap \mathbb{Q} \) and let \((\alpha^x, \bar{\pi}^x), (\alpha^y, \bar{\pi}^y) \in \mathcal{A}\) be optimal pairs for \(x \) and \(y \) respectively. Put \(z = tx + (1-t)y, \beta = tx/z, \alpha = \beta \alpha^x + (1-\beta)\alpha^y, \bar{\pi} = \beta \bar{\pi}^x + (1-\beta)\bar{\pi}^y. \)

Obviously \(\alpha \in [0,1], \beta \in (0,1) \) a.s. Since \(\sum_{i=1}^{d} \bar{\pi}_i = 1 - \alpha \), we obtain
\[
tx\bar{\pi}^x + (1-t)y\bar{\pi}^y = z(\beta \bar{\pi}^x + (1-\beta)\bar{\pi}^y) = z\bar{\pi},
\]
and since \(u \) and \(v \) are strictly concave and \(\zeta \) is almost surely positive, we have
\[
 tw(x) + (1-t)w(y) = t[u(x\alpha^x) + \mathbb{E}(v(x\bar{\pi}^x, \zeta)) | \mathcal{H}] \\
+ (1-t)[u(y\alpha^y) + \mathbb{E}(v(y\bar{\pi}^y, \zeta)) | \mathcal{H}] \\
\leq u(z\alpha) + \mathbb{E}(v(z\bar{\pi}, \zeta) | \mathcal{H})) \leq w(z) \quad \text{a.s.}
\]

and moreover this inequality turns into an equality iff
\[
x\alpha^x = y\alpha^y \quad \text{and} \quad x\langle \bar{\pi}^x, \zeta \rangle = y\langle \bar{\pi}^y, \zeta \rangle \quad \text{a.s.}
\]

Once again using our assumption on the distribution of \(\zeta \), this implies
\[
x\bar{\pi}^x_i = y\bar{\pi}^y_i, \quad i = 1, \ldots, d,
\]
and summing those equalities up for \(i = 1, \ldots, d \) we obtain
\[
x[1 - \alpha^x] = y[1 - \alpha^y],
\]
hence also \(x = y \). This shows in particular that for all \(x, y \in (0, \infty) \cap \mathbb{Q} \), \(x \neq y \), we have
\[
w\left(\frac{x + y}{2} \right) > \frac{w(x) + w(y)}{2} \quad \text{a.s.}
\]
We can now extend this version of \(w \) to a function which is almost surely strictly increasing and strictly continuous for all \(x \in (0, \infty) \). Finally, from monotone convergence, for fixed \(x \in (0, \infty) \) and a sequence of rationals \(q_n \uparrow x \) we have
\[
w(x) = \lim_{n \to \infty} w(q_n) = \lim_{n \to \infty} \ess sup_{(\pi, \alpha) \in \mathcal{A}} \{ u(q_n \alpha) + \mathbb{E}(v(q_n \langle \pi, \zeta \rangle) | \mathcal{H}) \}
\]
\[
= \ess sup_{(\pi, \alpha) \in \mathcal{A}} \{ u(x \alpha) + \mathbb{E}(v(x \langle \pi, \zeta \rangle) | \mathcal{H}) \}. \quad \blacksquare
\]

Proposition 2.5. There exists a selector of optimal strategies
\[
(0, \infty) \ni x \mapsto (\tilde{\alpha}, \tilde{\pi})(x) \in \mathcal{A}
\]
which is continuous for almost all \(\omega \).

Proof. We fix a version of conditional expectation with the properties stated in Lemma 2.2. The random function
\[
w(x, (\alpha, \pi)) := u(x \alpha) + \mathbb{E}(v(x \langle \pi, \zeta \rangle) | \mathcal{H})
\]
is then almost surely continuous, jointly for all arguments. Suppose there exists \(x \in (0, \infty) \) and a sequence \(x_n \in (0, \infty), n \in \mathbb{N} \), such that \(x_n \to x \) and \((\tilde{\alpha}, \tilde{\pi})(x_n) \not\sim (\tilde{\alpha}, \tilde{\pi})(x) \). Since all \((\tilde{\alpha}, \tilde{\pi})(x_n) \) belong to the compact set (2.2), we may choose, using Lemma 2 from [3], a random subsequence \((\tilde{\alpha}, \tilde{\pi})(x_{n_k}) \) converging to some \((\tilde{\alpha}, \tilde{\pi}) \). Condition (1.1) holds for all \(k \in \mathbb{N} \), so letting \(k \to \infty \), we get \((\tilde{\alpha}, \tilde{\pi}) \in \mathcal{A} \). By continuity,
\[
\lim_{k \to \infty} w(x_{n_k}, (\tilde{\alpha}, \tilde{\pi})(x_{n_k})) = w(x, (\tilde{\alpha}, \tilde{\pi})) =: \tilde{w},
\]
\[
\lim_{n \to \infty} w(x_n, (\tilde{\alpha}, \tilde{\pi})(x)) = w(x, (\tilde{\alpha}, \tilde{\pi})(x)) =: w,
\]
and if \((\tilde{\alpha}, \tilde{\pi}) \neq (\tilde{\alpha}, \tilde{\pi})(x) \), then \(\tilde{w} < w \). If we fix \(\varepsilon \in (0, (w - \tilde{w})/2) \), then for \(k \) large enough
\[
w(x_{n_k}, (\tilde{\alpha}, \tilde{\pi})(x_{n_k})) > w - \varepsilon > \tilde{w} + \varepsilon,
\]
while from (2.3),
\[
w(x_{n_k}, (\tilde{\alpha}, \tilde{\pi})(x_{n_k})) < \tilde{w} + \varepsilon.
\]
Inequalities (2.5) and (2.6) lead to
\[
w(x_{n_k}, (\tilde{\alpha}, \tilde{\pi})(x)) > w(x_{n_k}, (\tilde{\alpha}, \tilde{\pi})(x_{n_k}))
\]
contradicting the optimality of \((\tilde{\alpha}, \tilde{\pi})(x_{n_k}) \). \(\blacksquare \)
3. Convergence of optimal strategies. We are now going to use the
results of the previous section in the general case. We define the Bellman
functions:

\[V^n_T(x) := U_T(x), \]
\[(3.1) \quad V^n_t(x) := \text{ess sup}_{(\alpha, \pi) \in \mathcal{A}} \left\{ U^n_t(\alpha x) + \mathbb{E}(V^n_{t+1}(x(\pi, \zeta_t)) \mid \mathcal{F}_t) \right\}, \]

for \(x \in (0, \infty) \) and \(t = 0, \ldots, T - 1 \).

Theorem 3.1. For all \(n \in \mathbb{N} \) and \(t = 0, \ldots, T \):

(i) the function \(V^n_t \) has a version which is strictly increasing and strictly
concave almost surely,

(ii) there exists a unique \(\mathcal{B}(0, \infty) \otimes \mathcal{F}_t \)-measurable function \((\hat{\alpha}^n_t, \hat{\pi}^n_t) \in \mathcal{A}_t \)
such that for all \(x \in (0, \infty) \),

\[V^n_t(x) = U^n_t(\hat{x}^n_t(x)) + \mathbb{E}(V^n_{t+1}(x(\hat{\pi}^n(x), \zeta_t)) \mid \mathcal{F}_t). \]

Proof. Fix \(n \in \mathbb{N} \) and use backward induction. It is clear that \(V^n_T \) is
strictly concave and strictly increasing since \(U^n_T \) is. Then decreasing \(t \) from
\(T - 1 \) to 0 and applying Lemma 2.4 and Proposition 2.3 with \(w := V^n_T, u := U^n_t, v := V^n_{t+1}, \mathcal{A} := \mathcal{A}_t, \mathcal{H} := \mathcal{F}_t \)
and \(\zeta := \zeta_t \), we find that \(V^n_t \) has a strictly increasing and strictly concave version, and there is a unique
optimal strategy \((\hat{\alpha}^n_t, \hat{\pi}^n_t) := (\hat{\alpha}, \hat{\pi}) \) which is \(\mathcal{F}_t \)-measurable for all \(x \in (0, \infty) \)
and almost surely continuous, hence \(\mathcal{B}(0, \infty) \otimes \mathcal{F}_t \)-measurable. This proves
the theorem. \(\blacksquare \)

In this section we will make repeated use of the following elementary fact.
It may be derived e.g. from pages 90 and 248 of [5], but we include an easy
proof for completeness.

Lemma 3.2. Let \(U \subset \mathbb{R} \) be an open set and \(f_n : U \to \mathbb{R} \) be a sequence of
increasing functions such that \(f_n \) converges pointwise on \(U \) to a continuous
function \(f \). Then \(f_n \) converges to \(f \) uniformly on each compact subset of \(U \).

Proof. First notice that \(f \) is increasing, being the limit of a sequence
of increasing functions. Fix a compact set \(C \subset U \) and an arbitrary \(\varepsilon > 0 \).
Without loss of generality, we may assume that \(C = [a, b] \) is an interval. On \(C \),
the function \(f \) is uniformly continuous, hence we can find \(x_0, \ldots, x_k \in C \) with \(a := x_0 < x_1 < \cdots < x_{k-1} < x_k =: b \) such that \(|f(x_i) - f(x_{i-1})| < \varepsilon / 2 \) for
\(i \in \{1, \ldots, k\} \). Let \(N_i \in \mathbb{N} \) be such that \(|f_n(x_i) - f(x_i)| < \varepsilon / 2 \) for \(n \geq N_i \),
and define \(N := \max\{N_i : i \in \{0, \ldots, k\}\} \). Then for any \(x \in A \) there is
\(i \in \{0, \ldots, k - 1\} \) such that \(x \in [x_i, x_{i+1}] \), and for \(n \geq N \) we have
\[f(x) - \varepsilon \leq f(x_{i+1}) - \varepsilon \leq f_n(x_{i+1}) - \varepsilon / 2 \leq f_n(x) \leq f_n(x_i) + \varepsilon / 2 \leq f(x_i) + \varepsilon \leq f(x) + \varepsilon. \]

Since \(x \in C \) was arbitrary, the assertion follows. \(\blacksquare \)
Now we are ready to prove the convergence of optimal strategies. Again we will start with the one-step case.

Proposition 3.3. Assume that for every $n \in \mathbb{N}$ functions u^n, v^n are strictly increasing and strictly concave, and moreover $\lim_{n \to \infty} u^n(x) = u^\infty(x)$ and $\lim_{n \to \infty} v^n(x) = v^\infty(x)$ for all $x \in (0, \infty)$. Let $(\hat{\alpha}^n, \hat{\pi}^n)$ denote the optimal strategy fulfilling (2.1) with u and v replaced by u^n and v^n. Then, for every $x \in (0, \infty)$,

$$\lim_{n \to \infty} (\hat{\alpha}^n, \hat{\pi}^n)(x) = (\hat{\alpha}^\infty, \hat{\pi}^\infty)(x) \quad \text{a.s.}$$

Proof. Suppose that, on the contrary, the convergence fails for some $x \in (0, \infty)$. Since $[0, 1] \times \Delta_0$ is compact, by the use of Lemma 2 from [3] we choose a random subsequence $(n_k \in \mathbb{N} : k \in \mathbb{N})$ such that $\lim_{k \to \infty} (\hat{\alpha}^{n_k}, \hat{\pi}^{n_k})(x) = (\hat{\alpha}, \hat{\pi}) \in \mathcal{A}$, $(\hat{\alpha}, \hat{\pi}) \neq (\hat{\alpha}^\infty, \hat{\pi}^\infty)$. Define

$$w^n(\alpha, \pi) := u^n(x \alpha) + \mathbb{E}v^n(x(\pi, \zeta) | \mathcal{H}), \quad (\alpha, \pi) \in \mathcal{A}, n \in \mathbb{N},$$

with a continuous version of the conditional expectation. Then the functions w^n depend continuously on $\hat{\pi}$ and α, the uniform convergence of w^n and v^n on compact sets gives

$$\lim_{k \to \infty} w^{n_k}(\alpha^{n_k}, \hat{\pi}^{n_k}) = w^\infty(\hat{\alpha}, \hat{\pi}) \quad \text{a.s.,}$$

and by our hypothesis

$$\tilde{w} := w^\infty(\hat{\alpha}, \hat{\pi}) < w^\infty(\hat{\alpha}^\infty, \hat{\pi}^\infty) =: w.$$

Fix $\varepsilon \in (0, (w - \tilde{w})/2)$. Since pointwise convergence ensures

$$\lim_{n \to \infty} w^n(\hat{\alpha}^\infty, \hat{\pi}^\infty) = w,$$

for k large enough we have

$$w^k(\hat{\alpha}^\infty, \hat{\pi}^\infty) > w - \varepsilon > \tilde{w} + \varepsilon,$$

while from (3.2) we get

$$w^{n_k}(\alpha^{n_k}, \hat{\pi}^{n_k}) < \tilde{w} + \varepsilon.$$

Combining (3.3) and (3.4) we obtain $w^{n_k}(\hat{\alpha}^\infty, \hat{\pi}^\infty) > w^{n_k}(\hat{\alpha}^{n_k}, \hat{\pi}^{n_k})$, contradicting the optimality of $(\hat{\alpha}^{n_k}, \hat{\pi}^{n_k})$. ■

Now we can prove the main theorem.

Theorem 3.4. Let $((\hat{\alpha}_t^n, \hat{\pi}_t^n) : t = 0, \ldots, T - 1)$ be optimal strategies maximizing (1.3) with the corresponding functions (U^n_0, \ldots, U^n_T), $n \in \mathbb{N}$. Then for every $x \in (0, \infty)$,

$$\lim_{n \to \infty} (\hat{\alpha}_t^n, \hat{\pi}_t^n)(x) = (\hat{\alpha}_t^\infty, \hat{\pi}_t^\infty)(x) \quad \text{a.s.,} \quad t = 0, \ldots, T - 1.$$

Proof. The assertion follows from the foregoing proposition applied consecutively to the Bellman functions (3.1) with $u^n := U_t^n$ and $v^n := V_{t+1}^n$ for $t = T - 1, \ldots, 0$. We only need to check that $\lim_{n \to \infty} V_t^n(x) = V_t^\infty(x)$
for $x \in (0, \infty)$ and $t = T, \ldots, 1$. For $t = T$ this is obvious since $V^n_T = U^n_T$, $n \in \mathbb{N}$. If we have proved that $(\widehat{\alpha}^n_t, \widehat{\pi}^n_t) \to (\widehat{\alpha}^\infty_t, \widehat{\pi}^\infty_t)$ for some $t \leq T$, then from uniform convergence on compact sets and the Lebesgue Theorem, for all $x \in (0, \infty)$,

$$
\lim_{n \to \infty} V^n_t(x) = \lim_{n \to \infty} (U^n_t(x\widehat{\alpha}^n_t(x)) + \mathbb{E}(V^n_{t+1}(x\widehat{\pi}^n_t(x, \zeta_t) | \mathcal{F}_t))
= U^\infty_t(x\widehat{\alpha}^\infty_t(x)) + \mathbb{E}(V^\infty_{t+1}(x\widehat{\pi}^\infty_t(x, \zeta_t) | \mathcal{F}_t)
= V^\infty_t(x).
$$

References

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: R.Kucharski@impan.gov.pl

Received on 24.1.2006;
revised version on 10.3.2006

(1804)