RAFAŁ KUCHARSKI (Warszawa)

CONVERGENCE OF OPTIMAL STRATEGIES IN A DISCRETE TIME MARKET WITH FINITE HORIZON

Abstract. A discrete-time financial market model with finite time horizon is considered, together with a sequence of investors whose preferences are described by a convergent sequence of strictly increasing and strictly concave utility functions. Existence of unique optimal consumption-investment strategies as well as their convergence to the limit strategy is shown.

Introduction. Recently, in a number of papers the following question was considered: does convergence of investors' preferences imply the convergence of their optimal strategies? In [2] a model with complete Brownian market model was described, while in [1] a discrete time model with finite horizon and utility functions defined on the whole real line was studied. Both papers gave a positive answer to the above problem under suitable assumptions.

In the present paper we prove a similar result for a discrete time market model with a finite horizon. We assume weaker regularity conditions on utility functions: strict concavity and strict monotonicity. The utility functions considered are defined on the positive axis.

In the first section we describe our model of financial market. Then we consider a one-step model and utilizing ideas from [4], we establish a few useful technical results. Finally, we prove the existence of optimal strategies for our model and their convergence together with the convergence of the investors' preferences.

1. Market model. Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{0 \leq t \leq T}, \mathbb{P})$ be a discrete-time filtered probability space with finite time horizon $T \in \mathbb{N}$, with $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Prices of

²⁰⁰⁰ Mathematics Subject Classification: 49L20, 91B16, 91B28, 93E20.

 $Key \ words \ and \ phrases:$ utility maximization, dynamic programming, optimal strategies.

R. Kucharski

d risky securities available on the market are represented by a *d*-dimensional, almost surely positive adapted process $S_t = (S_{t,1}, \ldots, S_{t,d})', 0 \le t \le T$. For $t = 0, \ldots, T - 1$ we define

$$\zeta_{t,i} = \frac{S_{t+1,i}}{S_{t,i}}, \quad i = 1, \dots, d,$$

and $\zeta_t = (\zeta_{t,1}, \ldots, \zeta_{t,d})'$. Let $D_t(\omega)$ be the smallest linear subspace containing the support of the regular conditional distribution of ζ_t with respect to \mathcal{F}_t (it exists, cf. [6, Theorem 2.7.5]). Throughout the paper we assume that there are no redundant assets on the market, thus we have the following non-degeneracy assumption:

Assumption 1.1. D_t is almost surely equal to \mathbb{R}^d for $0 \le t \le T - 1$.

Let $\Delta_0 = \{\nu \in \mathbb{R}^d : \nu_i \geq 0, \sum_{i=1}^d \nu_i \leq 1\}$, and $\Delta = \{\nu \in \Delta_0 : \sum_{i=1}^d \nu_i = 1\}$. We denote by $\langle \cdot, \cdot \rangle$ the usual scalar product in \mathbb{R}^d . Denote by X_t the wealth process at time t before consumption and possible transactions. Let $\pi_{t,i}$ and $\overline{\pi}_{t,i}$ be the portions of the wealth X_t invested in the *i*th asset at time t before and respectively after consumption and possible transactions. We do not allow short selling or short borrowing, so $\pi_t = (\pi_{t,1}, \ldots, \pi_{t,d})' \in \Delta$ and $\overline{\pi}_t = (\overline{\pi}_{t,1}, \ldots, \overline{\pi}_{t,d})' \in \Delta_0$.

At time $t = 0, \ldots, T-1$, the investor who owns initial wealth X_t invested in portfolio π_t , consumes a part $\alpha_t \in [0, 1]$ of his wealth and changes his portfolio composition to $\overline{\pi}_t$, according to the equation

$$X_t = X_t \alpha_t + X_t \sum_{i=1}^d \overline{\pi}_{t,i},$$

which implies that we are interested only in \mathcal{F}_t -measurable strategies such that $(\alpha_t, \overline{\pi}_t) \in [0, 1] \times \Delta_0$ a.s. and

(1.1)
$$\alpha_t + \sum_{i=1}^d \overline{\pi}_{t,i} = 1 \quad \text{a.s.}$$

Denote the set of such strategies by \mathcal{A}_t .

At time t + 1, due to price changes, the investor's wealth changes to

(1.2)
$$X_{t+1} = \sum_{i=1}^{d} X_t \overline{\pi}_{t,i} \zeta_{t,i} = X_t \langle \overline{\pi}_t, \zeta_t \rangle.$$

Equation (1.2) describes the dynamics of the control system we are dealing with: X_t is regarded as a state of the system, and $(\alpha_t, \overline{\pi}_t) \in [0, 1] \times \Delta_0$ are its control parameters, constrained by (1.1) describing the admissible strategies. The initial condition is given by the endowment $x := X_0 > 0$. We consider a sequence of investors with preferences described by utility functions $U_t^n: (0,\infty) \to \mathbb{R}, 0 \le t \le T, n \in \overline{\mathbb{N}} := \mathbb{N} \cup \{\infty\}.$

ASSUMPTION 1.2. The functions U_t^n are strictly increasing and strictly concave for $t \in \{0, ..., T\}$ and $n \in \overline{\mathbb{N}}$. Moreover, for all $t \in \{0, ..., T\}$ and $x \in (0, \infty)$,

$$U_t^n(x) \to U_t^\infty(x) \quad \text{ as } n \to \infty.$$

We are interested in maximization of the expected utility from consumption and terminal wealth, that is, we want to maximize the following reward functional:

(1.3)
$$J_T^n(x,(\alpha,\overline{\pi})) = \mathbb{E}\Big(\sum_{t=0}^{T-1} U_t^n(X_t\alpha_t) + U_T^n(X_T)\Big).$$

For our dynamic programming problem to be well posed and finite, we assume that the following conditions are satisfied:

Assumption 1.3. For all $n \in \overline{\mathbb{N}}$, $k \in \{1, \ldots, T\}$ and x > 0,

$$\mathbb{E}(U_k^n)^+ \left(x \prod_{t=0}^{k-1} \max\{\zeta_{t,i} : i = 1, \dots, d\} \right) < \infty,$$
$$\mathbb{E}(U_k^n)^- \left(x \prod_{t=0}^{k-1} \min\{\zeta_{t,i} : i = 1, \dots, d\} \right) < \infty.$$

REMARK 1.4. One can consume all or nothing of the wealth, so we need values of utility functions at 0. We deal with that problem by putting $U(0) := \lim_{x\to 0^+} U(x)$; if this limit is finite, the continuity and concavity properties are kept, and if not (e.g. for a logarithmic function), the agent will not choose such a strategy to maximize utility.

2. One-step case. We start with the case T = 1. Let $u, v: (0, \infty) \to \mathbb{R}$ be strictly increasing functions, u strictly concave and v concave. Let \mathcal{H} be a sub- σ -field of \mathcal{F} , let $\zeta = (\zeta_1, \ldots, \zeta_d)'$ be an \mathbb{R}^d -valued random variable with non-degenerate (in the sense of Assumption 1.1) conditional distribution with respect to \mathcal{H} , and let $\mathbb{E}(\cdot | \mathcal{H})$ denote conditional expectation with respect to \mathcal{H} . Denote by \mathcal{A} the set of admissible strategies: \mathcal{H} -measurable random variables such that $(\alpha, \overline{\pi}) \in [0, 1] \times \Delta_0$ a.s. and $\alpha + \sum_{j=1}^d \overline{\pi}_j = 1$. Define the value function by

$$w(x) := \underset{(\alpha,\overline{\pi})\in\mathcal{A}}{\operatorname{ess\,sup}} \{ u(x\alpha) + \mathbb{E}(v(x\langle\overline{\pi},\zeta\rangle) \,|\, \mathcal{H}) \}, \quad x > 0$$

Analogously to Assumption 1.3, we introduce

Assumption 2.1. For all x > 0,

$$\mathbb{E}v^+(x\max_{i\in\{1,\dots,d\}}\zeta_i)<\infty\quad and\quad \mathbb{E}v^-(x\min_{i\in\{1,\dots,d\}}\zeta_i)<\infty.$$

The following technical lemmas are crucial:

LEMMA 2.2. There exists an almost surely continuous, strictly concave and strictly increasing (with respect to every coordinate) version of

 $[0,\infty)^d \setminus \{0\} \ni \pi \mapsto \mathbb{E}(v(\langle \pi,\zeta \rangle) \,|\, \mathcal{H}).$

Proof. Let κ denote the regular conditional distribution of ζ given \mathcal{H} . Then

$$\mathbb{E}(v(\langle \pi, \zeta \rangle) \,|\, \mathcal{H}) = \int_{\mathbb{R}^d} v(\langle \pi, x \rangle) \,\kappa(dx) \quad \text{ a.s.},$$

and we take the right side as a definition of our version. By a routine calculation one checks it has the desired properties. We will show concavity. Fix $\pi^1, \pi^2 \in [0, \infty)^d \setminus \{0\}, \ \pi^1 \neq \pi^2$ and $t \in (0, 1)$. Then

$$\begin{split} t \mathbb{E}(v(\langle \pi^1, \zeta \rangle) \,|\, \mathcal{H}) + (1-t) \mathbb{E}(v(\langle \pi^2, \zeta \rangle) \,|\, \mathcal{H}) \\ &= \int_{\mathbb{R}^d} [tv(\langle \pi^1, x \rangle) + (1-t)v(\langle \pi^2, x \rangle)] \,\kappa(dx) \\ &< \int_{\mathbb{R}^d} v(\langle t\pi^1 + (1-t)\pi^2, x \rangle) \,\kappa(dx) \\ &= \mathbb{E}(v(\langle t\pi^1 + (1-t)\pi^2, \zeta \rangle) \,|\, \mathcal{H}) \quad \text{a.s.} \end{split}$$

The strict inequality is justified by Assumption 1.1. \blacksquare

PROPOSITION 2.3. For every $x \in (0, \infty)$ there exists a unique optimal pair $(\widehat{\alpha}, \widehat{\pi}) \in \mathcal{A}$ such that

(2.1)
$$w(x) = u(x\widehat{\alpha}) + \mathbb{E}(v(x\langle\widehat{\pi},\zeta\rangle) \,|\, \mathcal{H}) \quad a.s$$

Proof. We take the version of conditional expectation with the properties stated in Lemma 2.2, and consider the mapping

$$\Phi \colon [0,1] \times \Delta_0 \times \Omega \ni (\alpha, \overline{\pi}, \omega) \mapsto u(x\alpha) + \mathbb{E}(v(x\langle \overline{\pi}, \zeta\rangle) \,|\, \mathcal{H})(\omega) \in \mathbb{R}$$

which is continuous except on a \mathbb{P} -zero set N. Since the set

(2.2)
$$\left\{ (\alpha, \overline{\pi}) \in [0, 1] \times \Delta_0 : \alpha + \sum_{j=1}^d \overline{\pi}_j = 1 \right\}$$

is compact, for any $\omega \in \Omega \setminus N$ there is a pair $(\widehat{\alpha}(\omega), \widehat{\pi}(\omega))$ attaining the supremum of Φ .

Suppose that there are two such pairs, say $(\alpha^1, \overline{\pi}^1), (\alpha^2, \overline{\pi}^2) \in \mathcal{A}$. Take any $t \in (0, 1)$. Putting $\alpha = t\alpha^1 + (1 - t)\alpha^2, \ \overline{\pi} = t\overline{\pi}^1 + (1 - t)\overline{\pi}^2$ we have

$$\begin{aligned} \alpha \in (0,1), \, \overline{\pi} \in \Delta_0 \text{ a.s. Since } \sum_{i=1}^m \overline{\pi}_i &= 1-\alpha, \text{ it follows that } (\alpha,\overline{\pi}) \in \mathcal{A} \text{ and} \\ w(x) &= tw(x) + (1-t)w(x) \\ &= t[u(x\alpha^1) + \mathbb{E}(v(x\langle\overline{\pi}^1,\zeta\rangle) \mid \mathcal{H})] \\ &+ (1-t)[u(x\alpha^2) + \mathbb{E}(v(x\langle\overline{\pi}^2,\zeta\rangle) \mid \mathcal{H})] \\ &\leq u(x\alpha) + \mathbb{E}(v(tx\langle\overline{\pi}^1,\zeta\rangle + (1-t)x\langle\overline{\pi}^2,\zeta\rangle) \mid \mathcal{H}) \\ &= u(x\alpha) + \mathbb{E}(v(x\langle\overline{\pi},\zeta\rangle) \mid \mathcal{H}) \leq w(x) \quad \text{ a.s.} \end{aligned}$$

Both u and v are strictly concave, thus the above inequality turns into an equality iff $\alpha^1 = \alpha^2$ and $\langle \overline{\pi}^1, \zeta \rangle = \langle \overline{\pi}^2, \zeta \rangle$ a.s. From the assumption we made on the support of the distribution of ζ , that implies $\overline{\pi}_i^1 = \overline{\pi}_i^2$ a.s., $i = 1, \ldots, d$, hence the proof of uniqueness is finished.

The optimal pair $(\hat{\alpha}, \hat{\pi})$ is an \mathcal{H} -measurable random variable, since for any open ball $B \subset \mathbb{R}^{d+1}$,

$$(\widehat{\alpha},\widehat{\pi})(\omega)\in B \iff \bigvee_{(\alpha^*,\pi^*)\in C\cap B}\bigwedge_{(\alpha,\pi)\in C\setminus B} \varPhi(\alpha^*,\pi^*)(\omega) > \varPhi(\alpha,\pi)(\omega)$$

where C denotes a countable dense subset of (2.2), and therefore

$$\{(\widehat{\alpha},\widehat{\pi})\in B\}=\bigcup_{(\alpha^*,\pi^*)\in C\cap B}\bigcap_{(\alpha,\pi)\in C\setminus B}\{\varPhi(\alpha^*,\pi^*)>\varPhi(\alpha,\pi)\}\in\mathcal{H}.$$

LEMMA 2.4. There is a version of the value function w which is almost surely strictly increasing and strictly concave.

Proof. For every $q \in (0, \infty) \cap \mathbb{Q}$ fix a version of w(q), which by Assumption 2.1 is almost surely finite. Fix $x, y \in (0, \infty) \cap \mathbb{Q}$. It is obvious that if y < x then w(y) < w(x) a.s. To show strict concavity, fix $t \in (0, 1) \cap \mathbb{Q}$ and let $(\alpha^x, \overline{\pi}^x), (\alpha^y, \overline{\pi}^y) \in \mathcal{A}$ be optimal pairs for x and y respectively. Put $z = tx + (1-t)y, \ \beta = tx/z, \ \alpha = \beta \alpha^x + (1-\beta)\alpha^y, \ \overline{\pi} = \beta \overline{\pi}^x + (1-\beta)\overline{\pi}^y$. Obviously $\alpha \in [0, 1], \ \beta \in (0, 1)$ a.s. Since $\sum_{i=1}^d \overline{\pi}_i = 1 - \alpha$, we obtain

$$tx\overline{\pi}^x + (1-t)y\overline{\pi}^y = z(\beta\overline{\pi}^x + (1-\beta)\overline{\pi}^y) = z\overline{\pi},$$

and since u and v are strictly concave and ζ is almost surely positive, we have

$$tw(x) + (1-t)w(y) = t[u(x\alpha^{x}) + \mathbb{E}(v(x\langle \overline{\pi}^{x}, \zeta\rangle) | \mathcal{H})] + (1-t)[u(y\alpha^{y}) + \mathbb{E}(v(y\langle \overline{\pi}^{y}, \zeta\rangle) | \mathcal{H})] \leq u(z\alpha) + \mathbb{E}(v(z\langle \overline{\pi}, \zeta\rangle | \mathcal{H})) \leq w(z) \quad \text{a.s}$$

and moreover this inequality turns into an equality iff

 $x\alpha^x = y\alpha^y$ and $x\langle \overline{\pi}^x, \zeta \rangle = y\langle \overline{\pi}^y, \zeta \rangle$ a.s.

Once again using our assumption on the distribution of ζ , this implies

$$x\overline{\pi}_i^x = y\overline{\pi}_i^y, \quad i = 1, \dots, d,$$

R. Kucharski

and summing those equalities up for i = 1, ..., d we obtain

$$x[1 - \alpha^x] = y[1 - \alpha^y],$$

hence also x = y. This shows in particular that for all $x, y \in (0, \infty) \cap \mathbb{Q}$, $x \neq y$, we have

$$w\left(\frac{x+y}{2}\right) > \frac{w(x)+w(y)}{2}$$
 a.s.

We can now extend this version of w to a function which is almost surely strictly increasing and strictly continuous for all $x \in (0, \infty)$. Finally, from monotone convergence, for fixed $x \in (0, \infty)$ and a sequence of rationals $q_n \uparrow x$ we have

$$w(x) = \lim_{n} w(q_n) = \lim_{n} \underset{(\pi,\alpha)\in\mathcal{A}}{\operatorname{ess sup}} \{ u(q_n\alpha) + \mathbb{E}(v(q_n\langle\overline{\pi},\zeta\rangle) \,|\, \mathcal{H}) \}$$
$$= \underset{(\pi,\alpha)\in\mathcal{A}}{\operatorname{ess sup}} \{ u(x\alpha) + \mathbb{E}(v(x\langle\overline{\pi},\zeta\rangle) \,|\, \mathcal{H}) \}. \bullet$$

PROPOSITION 2.5. There exists a selector of optimal strategies

$$(0,\infty) \in x \mapsto (\widehat{\alpha},\widehat{\pi})(x) \in \mathcal{A}$$

which is continuous for almost all ω .

Proof. We fix a version of conditional expectation with the properties stated in Lemma 2.2. The random function

$$w(x, (\alpha, \overline{\pi})) := u(x\alpha) + \mathbb{E}(v(x\langle \overline{\pi}, \zeta \rangle) \,|\, \mathcal{H})$$

is then almost surely continuous, jointly for all arguments. Suppose there exists $x \in (0, \infty)$ and a sequence $x_n \in (0, \infty)$, $n \in \mathbb{N}$, such that $x_n \to x$ and $(\widehat{\alpha}, \widehat{\pi})(x_n) \not\to (\widehat{\alpha}, \widehat{\pi})(x)$. Since all $(\widehat{\alpha}, \widehat{\pi})(x_n)$ belong to the compact set (2.2), we may choose, using Lemma 2 from [3], a random subsequence $(\widehat{\alpha}, \widehat{\pi})(x_{n_k})$ converging to some $(\widetilde{\alpha}, \widetilde{\pi})$. Condition (1.1) holds for all $k \in \mathbb{N}$, so letting $k \to \infty$, we get $(\widetilde{\alpha}, \widetilde{\pi}) \in \mathcal{A}$. By continuity,

(2.3)
$$\lim_{k \to \infty} w(x_{n_k}, (\widehat{\alpha}, \widehat{\pi})(x_{n_k})) = w(x, (\widetilde{\alpha}, \widetilde{\pi})) =: \widetilde{w},$$

(2.4)
$$\lim_{n \to \infty} w(x_n, (\widehat{\alpha}, \widehat{\pi})(x)) = w(x, (\widehat{\alpha}, \widehat{\pi})(x)) =: w$$

and if $(\tilde{\alpha}, \tilde{\pi}) \neq (\hat{\alpha}, \hat{\pi})(x)$, then $\tilde{w} < w$. If we fix $\varepsilon \in (0, (w - \tilde{w})/2)$, then for k large enough

(2.5)
$$w(x_{n_k}, (\widehat{\alpha}, \widehat{\pi})(x)) > w - \varepsilon > \widetilde{w} + \varepsilon,$$

while from (2.3),

(2.6)
$$w(x_{n_k}, (\widehat{\alpha}, \widehat{\pi})(x_{n_k})) < \widetilde{w} + \varepsilon.$$

Inequalities (2.5) and (2.6) lead to

$$w(x_{n_k}, (\widehat{\alpha}, \widehat{\pi})(x)) > w(x_{n_k}, (\widehat{\alpha}, \widehat{\pi})(x_{n_k}))$$

contradicting the optimality of $(\widehat{\alpha}, \widehat{\pi})(x_{n_k})$.

3. Convergence of optimal strategies. We are now going to use the results of the previous section in the general case. We define the Bellman functions:

(3.1)
$$V_T^n(x) := U_T(x),$$
$$V_t^n(x) := \underset{(\alpha,\overline{\pi})\in\mathcal{A}}{\operatorname{sssup}} \{ U_t^n(\alpha x) + \mathbb{E}(V_{t+1}^n(x\langle\overline{\pi},\zeta_t\rangle) \,|\, \mathcal{F}_t) \}$$

for $x \in (0, \infty)$ and t = 0, ..., T - 1.

THEOREM 3.1. For all $n \in \overline{\mathbb{N}}$ and $t = 0, \ldots, T$:

- (i) the function V_t^n has a version which is strictly increasing and strictly concave almost surely,
- (ii) there exists a unique $\mathcal{B}(0,\infty) \otimes \mathcal{F}_t$ -measurable function $(\widehat{\alpha}_t^n, \widehat{\pi}_t^n) \in \mathcal{A}_t$ such that for all $x \in (0,\infty)$,

$$V_t^n(x) = U_t^n(x\widehat{\alpha}_t^n(x)) + \mathbb{E}(V_{t+1}^n(x\langle\widehat{\pi}_t^n(x),\zeta_t\rangle) \,|\, \mathcal{F}_t).$$

Proof. Fix $n \in \overline{\mathbb{N}}$ and use backward induction. It is clear that V_T^n is strictly concave and strictly increasing since U_T^n is. Then decreasing t from T-1 to 0 and applying Lemma 2.4 and Proposition 2.3 with $w := V_t^n$, $u := U_t^n$, $v := V_{t+1}^n$, $\mathcal{A} := \mathcal{A}_t$, $\mathcal{H} := \mathcal{F}_t$ and $\zeta := \zeta_t$, we find that V_t^n has a strictly increasing and strictly concave version, and there is a unique optimal strategy $(\widehat{\alpha}_t^n, \widehat{\pi}_t^n) := (\widehat{\alpha}, \widehat{\pi})$ which is \mathcal{F}_t -measurable for all $x \in (0, \infty)$ and almost surely continuous, hence $\mathcal{B}(0, \infty) \otimes \mathcal{F}_t$ -measurable. This proves the theorem.

In this section we will make repeated use of the following elementary fact. It may be derived e.g. from pages 90 and 248 of [5], but we include an easy proof for completeness.

LEMMA 3.2. Let $U \subset \mathbb{R}$ be an open set and $f_n: U \to \mathbb{R}$ be a sequence of increasing functions such that f_n converges pointwise on U to a continuous function f. Then f_n converges to f uniformly on each compact subset of U.

Proof. First notice that f is increasing, being the limit of a sequence of increasing functions. Fix a compact set $C \subset U$ and an arbitrary $\varepsilon > 0$. Without loss of generality, we may assume that C = [a, b] is an interval. On C, the function f is uniformly continuous, hence we can find $x_0, \ldots, x_k \in C$ with $a := x_0 < x_1 < \cdots < x_{k-1} < x_k =: b$ such that $|f(x_i) - f(x_{i-1})| < \varepsilon/2$ for $i \in \{1, \ldots, k\}$. Let $N_i \in \mathbb{N}$ be such that $|f_n(x_i) - f(x_i)| < \varepsilon/2$ for $n \ge N_i$, and define $N := \max\{N_i : i \in \{0, \ldots, k\}\}$. Then for any $x \in A$ there is $i \in \{0, \ldots, k-1\}$ such that $x \in [x_i, x_{i+1}]$, and for $n \ge N$ we have

$$f(x) - \varepsilon \le f(x_{i+1}) - \varepsilon \le f_n(x_{i+1}) - \varepsilon/2 \le f_n(x) \le f_n(x_i) + \varepsilon/2$$
$$\le f(x_i) + \varepsilon \le f(x) + \varepsilon.$$

Since $x \in C$ was arbitrary, the assertion follows.

R. Kucharski

Now we are ready to prove the convergence of optimal strategies. Again we will start with the one-step case.

PROPOSITION 3.3. Assume that for every $n \in \overline{\mathbb{N}}$ functions u^n , v^n are strictly increasing and strictly concave, and moreover $\lim_{n\to\infty} u^n(x) = u^{\infty}(x)$ and $\lim_{n\to\infty} v^n(x) = v^{\infty}(x)$ for all $x \in (0,\infty)$. Let $(\widehat{\alpha}^n, \widehat{\pi}^n)$ denote the optimal strategy fulfilling (2.1) with u and v replaced by u^n and v^n . Then, for every $x \in (0,\infty)$,

$$\lim_{n \to \infty} (\widehat{\alpha}^n, \widehat{\pi}^n)(x) = (\widehat{\alpha}^\infty, \widehat{\pi}^\infty)(x) \qquad a.s.$$

Proof. Suppose that, on the contrary, the convergence fails for some $x \in (0, \infty)$. Since $[0, 1] \times \Delta_0$ is compact, by the use of Lemma 2 from [3] we choose a random subsequence $(n_k \in \mathbb{N} : k \in \mathbb{N})$ such that $\lim_{k\to\infty} (\widehat{\alpha}^{n_k}, \widehat{\pi}^{n_k})(x) = (\widetilde{\alpha}, \widetilde{\pi}) \in \mathcal{A}, \ (\widetilde{\alpha}, \widetilde{\pi}) \neq (\widehat{\alpha}^{\infty}, \widehat{\pi}^{\infty})$. Define

$$w^n(\alpha,\overline{\pi}) := u^n(x\alpha) + \mathbb{E}v^n(x\langle\overline{\pi},\zeta\rangle \,|\,\mathcal{H}), \quad (\alpha,\overline{\pi}) \in \mathcal{A}, \, n \in \overline{\mathbb{N}},$$

with a continuous version of the conditional expectation. Then the functions w^n depend continuously on $\overline{\pi}$ and α , the uniform convergence of u^n and v^n on compact sets gives

(3.2)
$$\lim_{k \to \infty} w^{n_k}(\widehat{\alpha}^{n_k}, \widehat{\pi}^{n_k}) = w^{\infty}(\widetilde{\alpha}, \widetilde{\pi}) \quad \text{a.s.}$$

and by our hypothesis

$$\widetilde{w} := w^{\infty}(\widetilde{\alpha}, \widetilde{\pi}) < w^{\infty}(\widehat{\alpha}^{\infty}, \widehat{\pi}^{\infty}) =: w.$$

Fix $\varepsilon \in (0, (w - \widetilde{w})/2)$. Since pointwise convergence ensures

$$\lim_{n\to\infty} w^n(\widehat{\alpha}^\infty,\widehat{\pi}^\infty) = w,$$

for k large enough we have

(3.3)
$$w^k(\widehat{\alpha}^{\infty}, \widehat{\pi}^{\infty}) > w - \varepsilon > \widetilde{w} + \varepsilon,$$

while from (3.2) we get

(3.4)
$$w^{n_k}(\widehat{\alpha}^{n_k}, \widehat{\pi}^{n_k}) < \widetilde{w} + \varepsilon.$$

Combining (3.3) and (3.4) we obtain $w^{n_k}(\widehat{\alpha}^{\infty}, \widehat{\pi}^{\infty}) > w^{n_k}(\widehat{\alpha}^{n_k}, \widehat{\pi}^{n_k})$, contradicting the optimality of $(\widehat{\alpha}^{n_k}, \widehat{\pi}^{n_k})$.

Now we can prove the main theorem.

THEOREM 3.4. Let $((\widehat{\alpha}_t^n, \widehat{\pi}_t^n) : t = 0, \dots, T-1)$ be optimal strategies maximizing (1.3) with the corresponding functions (U_0^n, \dots, U_T^n) , $n \in \overline{\mathbb{N}}$. Then for every $x \in (0, \infty)$,

$$\lim_{n \to \infty} (\widehat{\alpha}_t^n, \widehat{\pi}_t^n)(x) = (\widehat{\alpha}_t^\infty, \widehat{\pi}_t^\infty)(x) \quad a.s., \ t = 0, \dots, T-1$$

Proof. The assertion follows from the foregoing proposition applied consecutively to the Bellman functions (3.1) with $u^n := U_t^n$ and $v^n := V_{t+1}^n$ for $t = T - 1, \ldots, 0$. We only need to check that $\lim_{n\to\infty} V_t^n(x) = V_t^{\infty}(x)$

for $x \in (0, \infty)$ and $t = T, \ldots, 1$. For t = T this is obvious since $V_T^n = U_T^n$, $n \in \overline{\mathbb{N}}$. If we have proved that $(\widehat{\alpha}_t^n, \widehat{\pi}_t^n) \to (\widehat{\alpha}_t^\infty, \widehat{\pi}_t^\infty)$ for some $t \leq T$, then from uniform convergence on compact sets and the Lebesgue Theorem, for all $x \in (0, \infty)$,

$$\lim_{n \to \infty} V_t^n(x) = \lim_{n \to \infty} (U_t^n(x \widehat{\alpha}_t^n(x)) + \mathbb{E}(V_{t+1}^n(x \langle \widehat{\pi}_t^n(x), \zeta_t \rangle) | \mathcal{F}_t))$$
$$= U_t^\infty(x \widehat{\alpha}_t^\infty(x)) + \mathbb{E}(V_{t+1}^\infty(x \langle \widehat{\pi}_t^\infty(x), \zeta_t \rangle) | \mathcal{F}_t)$$
$$= V_t^\infty(x). \quad \bullet$$

References

- L. Carassus and M. Ràsonyi, Optimal strategies and utility-based prices converge when agents' preferences do, preprint.
- [2] E. Jouini and C. Napp, Convergence of utility functions and convergence of optimal strategies, Finance Stoch. 8 (2004), 133-144.
- [3] Yu. M. Kabanov and Ch. Stricker, A teachers' note on no-arbitrage criteria, in: Séminaire de Probabilités, XXXV, Lecture Notes in Math. 1755, Springer, Berlin, 2001, 149–152.
- [4] M. Ràsonyi and Ł. Stettner, On utility maximization in discrete-time financial market models, Ann. Appl. Probab. 15 (2005), 1367–1395.
- [5] R. T. Rockafellar, Convex Analysis, Princeton Math. Ser. 28, Princeton Univ. Press, Princeton, NJ, 1970.
- [6] A. N. Shiryaev, *Probability*, Grad. Texts in Math. 95, Springer, New York, 1996.

Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland E-mail: R.Kucharski@impan.gov.pl

> Received on 24.1.2006; revised version on 10.3.2006

(1804)