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ON TWO FRAGMENTATION SCHEMES WITH

ALGEBRAIC SPLITTING PROBABILITY

Abstract. Consider the following inhomogeneous fragmentation model:
suppose an initial particle with mass x0 ∈ (0, 1) undergoes splitting into
b > 1 fragments of random sizes with some size-dependent probability p(x0).
With probability 1 − p(x0), this particle is left unchanged forever. Iterate
the splitting procedure on each sub-fragment if any, independently.

Two cases are considered: the stable and unstable case with p(x0) = xa
0

and p(x0) = 1 − xa
0 respectively, for some a > 0. In the first (resp. second)

case, since smaller fragments split with smaller (resp. larger) probability,
one suspects some stabilization (resp. instability) of the fragmentation pro-
cess.

Some statistical features are studied in each case, chiefly fragment size
distribution, partition function, and the structure of the underlying random
fragmentation tree.

1. Introduction. Suppose an initial particle with mass (or size) x0 ∈
(0, 1) possibly undergoes splitting into b sub-fragments with some size-
dependent probability p(x0). If splitting occurs, the active parental mass
is shared between its b > 1 offspring at random, different laws of parti-
tion fitting different splitting processes. With complementary probability
p(x0) := 1− p(x0), splitting does not take place and the ancestral fragment
remains inactive forever. The effect of this splitting/non-splitting feature
of such a fragmentation model is to stabilize the global number of split-
ting events. Its inhomogeneous character is a consequence of the splitting
probability depending on fragment sizes.
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This size-dependent splitting process is next iterated independently on
first-generation sub-fragments if ever generated, with induced size-dependent
fragmentation probability; the process is then iterated over subsequent gen-
erations.

In a first (stable) model investigated, the splitting probability p(x0)
grows algebraically with fragment size at each step; specifically, p(x0) = xa

0

for some a > 0. Since smaller fragments split with smaller probability, one
suspects some stabilization of the fragmentation process. Some aspects of
this problem were recently investigated in Huillet (2005); we recall some of
the results and develop additional aspects of the stable splitting model.

In a second (unstable) model, the splitting probability p(x0) now decays
algebraically with fragment sizes at each step; specifically, p(x0) = 1 − xa

0

for some a > 0. Once formed, smaller fragments split with larger probabil-
ity, producing new smaller sub-fragments themselves very likely to further
split, and so forth; some instability of the fragmentation process is expected
to be induced by such a reinforcement design, resulting from an increased
breakability of small items.

The purpose of this note is to initiate a comparative study of some basic
statistical features shared by both toy-models.

Roughly speaking, the physical image we have in mind is the following:
suppose a collection of items with different (but bounded above) sizes is
subject to an external source of random shocks or collisions. In the first
stable model, items once hit will split: larger items being more likely to
be hit, the splitting probability increases with size. In the second unstable
model, all items are equally likely to be hit, regardless of their sizes. But
splitting of an item is not automatic if once hit: due to intrinsic fragility,
small items are more likely to be smashed than larger ones.

Inhomogeneous fragmentation processes presenting loose analogies with
our model were considered by Brennan and Durrett (1986, 1987), in contin-
uous time (see also Filippov, 1961). In their model, with probability 1, an
initial particle with mass x0 > 0 undergoes splitting into two uniform sub-
fragments in random exponential time with size-dependent rate xa

0. The pro-
cess is iterated on subsequent fragments, independently. If a > 0, the smaller
the fragment size, the smaller its fragmentation rate; the process stabilizes
in the sense that the empirical distribution function of rescaled fragment
sizes converges to some random variable. If a < 0, the smaller the fragment
size, the larger its fragmentation rate; the process becomes unstable. In this
unstable case, although mass is conserved, the number (and next the mass)
of fragments in the fragmentation process explodes (vanishes) in finite time;
see Filippov (1961) and Brennan and Durrett (1986, 1987). In Filippov’s
paper (p. 276), the unstable model was considered to be physically unre-
alistic. However, in the subsequent years, this model received considerable
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attention as it was responsible for the shattering transition (formation of
dust), a phenomenon considered by Ziff as the counterpart of gelation phe-
nomenon (infinite cluster formation) in coagulation processes. See McGrady
and Ziff (1987) and Jeon (2002), for example. In contrast with our model,
size-dependence of successive fragmentations appears here in the rates, not
in the splitting probability.

Clearly, our unstable (with size-dependent splitting probability) process
also enhances formation of dust but to a lesser extent: indeed, by giving an
opportunity of not splitting, one expects the limiting coexistence of both
macroscopic and microscopic elements in the fragmentation tree.

2. First-generation partition law. There are many ways to split x0

into b offspring fragments with random sizes. So we need to be more specific.

Start then with an initial interval of mass (or size) x0 ∈ (0, 1). With prob-
ability p(x0), this interval will split. If it splits, it splits into b > 1 fragments
with random sizes, say Ux0 := (U1x0, . . . , Ubx0). Here U :=(U1, . . . , Ub) is

assumed to have exchangeable distribution, with U
d
= U1

d
= · · · d

= Ub. We
assume that U has density π(u) > 0 on (0, 1). Further, we shall assume a

strict mass-conservation property:
∑b

k=1 Uk = 1, a.s.

More specifically, we shall restrict ourselves to the following first-genera-
tion partitioning law: fix θ > 0 and assume that U :=(U1, . . . , Ub) is dis-
tributed according to the symmetric Dirichlet-Db(θ) density function on the
simplex, that is to say,

(1) π(u1, . . . , ub) =
Γ (bθ)

Γ (θ)b

b∏

k=1

uθ−1
k · δ(

∑
b

k=1
uk=1).

Alternatively, U := (U1, . . . , Ub) is characterized by its joint moment func-
tion

φ(q1, . . . , qb) := E

[ b∏

k=1

U qk

k

]
=

Γ (bθ)

Γ (bθ +
∑b

k=1 qk)

b∏

k=1

Γ (θ + qk)

Γ (θ)
.

In this case, Uk
d
= U , k = 1, . . . , b, and the individual fractions are all

identically distributed. Their common density π(u) on the interval (0, 1) is
the one of a beta(θ, (b−1)θ) random variable. Stated differently, the moment
function of U reads

(2) φ(q) := E(U q) =
Γ (bθ)

Γ (bθ + q)

Γ (θ + q)

Γ (θ)
, q > −θ,

with mean E(U) = 1/b and variance σ2(U) = (b − 1)/b2(bθ + 1).

The parameter θ indicates how concentrated the distribution of U is
around its mean (1/b, . . . , 1/b): the larger θ, the more concentrated the dis-
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tribution of U around the mean. The intermediate case θ = 1 corresponds
to the usual uniform partition into b fragments for which

φ(q) =
(b − 1)!

(q + 1)b−1
, q > −1,

where (q)b := q(q + 1)(q + 2) · · · (q + b − 1).

3. The stable fragmentation model. We first suppose that, with
x0 ∈ (0, 1), the splitting probability is p(x0) = xa

0, a > 0, increasing with
initial fragment size x0. In this model, smaller fragments, once produced,
generate (with smaller probability) other fragments with smaller sizes with
themselves a smaller probability to undergo further splitting and so on. One
suspects stability in that the fragmentation process (tree) should terminate
with probability 1 (respectively, should be finite).

We first derive the fragment size distribution and then study the induced
tree structure.

3.1. Stable fragment size distribution. A particular realization of our
fragmentation process is clearly a marked b-ary sub-tree of the full b-ary
tree. At step h ≥ 1 of the fragmentation process, the fragmentation sub-tree
has height at most h. It has height exactly h if there is still at least one
active (possibly splitting) node at this step. Otherwise, it has height strictly
less than h as fragmentation stopped before h and the tree has only inactive
leaves.

We shall consider the random variable Xh(x0), defined to be the mass
attached to a random leaf of a step-h realization of the stable fragmentation
process. By a random leaf, we mean the leaf reached in at most h steps
by choosing at each step one of the sub-fragments with probability 1/b
whenever the node is an active one, and stopping the sampling process
otherwise; Xh(x0) is thus the terminal mass in a random path from the
step-h fragmentation sub-tree. Call it fragment size at step h.

Let now U1, . . . , Uh, . . . be a sequence of replicas of U . Introduce the ran-
dom quantity H(x0) = inf{h ≥ 1 : Bh(x0) = 0} − 1. Here {Bh(x0) : h ≥ 1}
is a sequence of Bernoulli((U1 · · ·Uh−1x0)

a) distributed random variables in-
dicating if splitting took place or not at step h; P(Bh(x0) = 1) = xa

0φ(a)h−1.
Clearly, H(x0) represents the limiting height of a random path in the full
fragmentation tree.

Using the renewal structure of the process, we easily obtain the recursive
identity in distribution

(3) Xh+1(x0)
d
= x0B(x0) + B(x0)X

′
h(Ux0), h ≥ 0, X0(x0) = x0.

Here B(x0) is a {0, 1}-valued Bernoulli(xa
0) random variable, taking the

value 1 with splitting probability p(x0) = xa
0; B(x0) := 1 − B(x0); X ′

h(·) d
=
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Xh(·) is a statistical copy of Xh(·) and (B(x0), X
′
h(Ux0), U) are mutually

independent random variables.
Let us briefly comment on the identity (3): if there is no splitting at

step one (the event B(x0) = 1 occurring with probability p(x0)) the random
size Xh+1(x0) at step h + 1 is just the size x0 of the initial fragment that
does not undergo further fragmentation. If splitting occurs at step one (the
event B(x0) = 1 with probability p(x0)), Xh+1(x0) coincides in law with
X ′

h(Ux0) at step h, after rescaling x0 properly by U . Since H(x0) < ∞ a.s.,
the limiting fragment size X(x0) := X∞(x0) exists as h ↑ ∞. In Huillet
(2005), the following result was obtained by iteration:

Proposition 1. As h ↑ ∞, the limiting fragment size X(x0) := X∞(x0)
satisfies the distributional equality

X(x0)
d
= x0B(x0) + B(x0)X

′(Ux0).

If Φx0
(q) := E(X(x0)

q) is its moment function, then for q > q∗ = −θ, we

have

(4) Φx0
(q) = xq

0

(
1 −

∑

m≥1

am(q)xma
0

)
.

Here,
a1(q) = 1 − φ(q),

am(q) = a1(q)

m−1∏

k=1

φ(q + ka), m ≥ 2,

and φ(q) is given by (2).

Note that the series representation of Φx0
(q) is the unique C∞ solution

of

(5) Φx0
(q) = xq

0(1 − xa
0) + xa

0

1\
0

Φux0
(q)π(u) du.

Uniqueness for integral equations of the type (5) is indeed a consequence of
Lemma 3 of Iserles and Liu (1997).

Remark. The law of X(x0) clearly has an atom at x = x0 with mass
1 − xa

0 when splitting does not take place. Observing that Φx0
(0) = 1, we

have P(X(x0) > 0) = 1: the height H(x0) of a random path being finite
with probability 1, the probability that X(x0) = 0 is null.

When a ↓ 0, for q > 0, Φx0
(q) → 0; this means that X(x0) → 0 in distri-

bution and in probability: as splitting probability tends to 1, the fragment
size tends to zero. When a ↑ ∞, the splitting probability tends to 0 and one
may check that Φx0

(q) ∼ xq
0: the initial fragment is left unchanged forever.

Finally, the range of X(x0) is [0, x0].
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Example. Suppose a = 1/2, b = 3 and θ = 1/2. In this case, U
d∼

beta(1/2, 1) and φ(q) = (2q + 1)−1. So,

am(q) =
2q∏m

k=1(2q + k)
.

Thus, am := am(1) = 4/(m + 2)!, leading to the average fragment length

x(x0) = 4 + 3x0 + 4
√

x0 − 4e
√

x0 ∈ (0, x0).

3.2. Number of fragments in the stable fragmentation tree. Let Nh(x0)
be the number of leaves, active or not, in the stable fragmentation tree at
step h. Clearly, as h ↑ ∞, the limiting number of leaves (fragments), starting
with an interval of size x0, is a well defined random variable; call it N(x0).

Plainly, with Nk(·) d
= N(·), it satisfies

N(x0)
d
= B(x0) + B(x0)

b∑

k=1

Nk(Ukx0).

Let us first consider its expected value m(x0) := E(N(x0)). If x0 ∈ (0, 1),
we have

(6) m(x0) = 1 − xa
0 + bxa

0

1\
0

m(ux0)π(u) du.

Similarly, using Lemma 3 of Iserles and Liu (1997), by iteration, we obtain
a result already stated in Huillet (2005):

Proposition 2.

(i) The series representation of m(x0),

(7) m(x0) = 1 +
∑

m≥1

bmxma
0 ,

is the unique C∞ solution in x0 of (6). The sequence bm, m ≥ 1, is

defined by
b1 = b − 1,

bm = b1b
m−1

m−1∏

k=1

φ(ka), m ≥ 2.

(ii) For any a > 0 and x0 ∈ (0, 1), m(x0) < ∞.

Example. Let b = 3, θ = 1 and φ(q) = (2q + 1)−1. Assuming a = 1/2,
we find

bm = 2 · 3m−1
m−1∏

k=1

1

k + 1
= 2

3m−1

m!
;

the expected number of leaves is m(x0) = 1
3(2e3

√
x0 + 1) < ∞.
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3.3. Partition function. Let Xi(x0) be the mass attached to fragment
number i, i = 1, . . . , N(x0), in the stable limiting fragmentation tree. The
system (Xi(x0); i = 1, . . . , N(x0)) constitutes a random partition of I =[0, 1].
We shall study its random partition function.

Consider the random partition function

Zx0
(β) :=

N(x0)∑

i=1

Xi(x0)
β.

with Zx0
(1) = x0, Zx0

(0) = N(x0). If Zx0,k(β), k = 1, . . . , b, are replicas of
Zx0

(β), then Zx0
(β) solves

Zx0
(β)

d
= xβ

0B(x0) + B(x0)

b∑

k=1

ZUkx0,k(β).

Let zx0
(β) := E(Zx0

(β)) be the first moment of Zx0
(β). Then

(8) zx0
(β) = xβ

0 (1 − xa
0) + bxa

0

1\
0

zux0
(β)π(u) du.

We obtain the following result:

Proposition 3.

(i) When β > β∗ = −θ, zx0
(β) is well defined and

zx0
(β) = xβ

0

(
1 −

∑

m≥1

bm(β)xma
0

)
,

where

b1(β) = 1 − bφ(β),

bm(β) = b1(β)bm−1
m−1∏

k=1

φ(β + ka), m ≥ 2,

is the unique C∞ solution in x0 of (8).

(ii) Let σ(dx) be the structural (or occupation) measure of the partition

system (Xi(x0); i = 1, . . . , N(x0)), with

σ(dx) := E

N(x0)∑

i=1

I(Xi(x0) ∈ dx).

Then

σ(dx)/dx ∼
x↓0

Ca(x0)x
−(1−θ)
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for the positive constant

Ca(x0) = bxa−θ
0

Γ (bθ)

Γ ((b − 1)θ)Γ (θ)

(
1 +

∑

m≥1

(bxa
0)

m
m∏

k=1

φ(−θ + ka)
)
.

Proof. (i) Looking for formal solutions of zx0
(β) of the form

zx0
(β) = xβ

0

(
1 −

∑

m≥1

bm(β)xma
0

)
,

we obtain the coefficients

b1(β) = 1 − bφ(β),

bm(β) = bbm−1(β)φ((m − 1)a + β), m ≥ 2.

(ii) Under our assumption, the series with positive terms
∑

m≥1bm(β)xma
0

is always convergent because

bm+1(β)x
(m+1)a
0

bm(β)xma
0

= bφ(β + ma)xa
0 −→

m↑∞
0.

As a result, zx0
(β) is absolutely convergent, hence convergent. This proves

the following: let σ(dx) be the structural measure of the system (Xi(x0);
i ≥ 1). It has Mellin transform

zx0
(β) =

x0\
0

xβσ(dx).

It is easy to check that

zx0
(β) = xβ

0

(
1 − b1(β)xa

0

(
1 +

∑

m≥1

(bxa
0)

m
m∏

k=1

φ(β + ka)
))

.

Now, it is clear that β∗ = −θ is a dominant pole of zx0
(β), with zx0

(β) ∼β=−θ

Ca(x0)/(β + θ) and Ca(x0) given by (ii). Finally, from elementary singularity
analysis we get

σ(dx)/dx ∼
x↓0

Ca(x0)x
−(1−θ).

Note that β∗ = −θ < 0 is independent of a. When θ < 1, σ(dx)/dx diverges
at x = 0, whereas if θ > 1, σ(dx)/dx vanishes at x = 0. When θ = 1,
σ(dx)/dx ∼x↓0 Ca(x0).

Remark. The behavior at x = 0 of the occupation measure is an in-
teresting information, for example for the following reason. Let n−(ε) =
E[N−(ε)], where N−(ε) :=

∑
i≥1 I(Xi(x0) ≤ ε) counts the number of frag-

ments whose size is less than ε > 0. We clearly have

n−(ε) =

ε\
0

σ(dx) ∼
ε↓0

Ca(x0)

θ
εθ.
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Similarly, let x−(ε) = E[X−(ε)], where X−(ε) :=
∑

i≥1 Xi(x0)I(Xi(x0) ≤ ε)
is the contribution to the total mass of the fragments whose size is less
than ε. We obtain

x−(ε) =

ε\
0

xσ(dx) ∼
ε↓0

Ca(x0)

θ + 1
εθ+1.

4. Unstable fragmentation model. We now suppose that, for x0 ∈
(0, 1), the splitting probability is p(x0) = 1 − xa

0, a > 0, decreasing with
initial fragment size x0. In this model, smaller fragments, once produced,
generate (with larger probability) other fragments with smaller sizes, with
themselves a larger probability to undergo further splitting and so on. One
suspects this fragmentation process to be unstable in that the fragmentation
tree is extremely leafy and bushy.

We first derive the fragment size distribution and then study the induced
tree structure.

4.1. Unstable fragment size distribution. Under our assumptions, the
moment function of the fragment size now satisfies the integral equation

(9) Φx0
(q) = xq+a

0 + (1 − xa
0)

1\
0

Φux0
(q)π(u) du.

In particular, for E[X(x0)] =: x(x0), we have

x(x0) = xa+1
0 + (1 − xa

0)

1\
0

x(ux0)π(u) du.

Upon iterating, and using again Lemma 3 of Iserles and Liu (1997), we find
the uniqueness of C∞ solutions and

Proposition 4.

(i) We have

x(x0) =
∑

m≥1

(−1)m−1amxma+1
0 ,

where

a1 =
1

1 − φ(a + 1)
,

am =

∏m−1
k=1 φ(1 + ka)∏m

k=1(1 − φ(1 + ka))
, m ≥ 2.

(ii) More generally , for all q > q∗ = −a,

(10) Φx0
(q) =

∑

m≥1

(−1)m−1am(q)xma+q
0 ,
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where

a1(q) =
1

1 − φ(q + a)
,

am(q) =

∏m−1
k=1 φ(q + ka)∏m

k=1(1 − φ(q + ka))
, m ≥ 2.

Proof. x(x0) can be searched in the form

x(x0) =
∑

m≥1

(−1)m−1amxma+1
0 ,

where the coefficients am are to be determined. Putting the series expansion
into the functional equation which x(x0) satisfies, we obtain
∑

m≥1

(−1)m−1amxma+1
0 = xa+1

0 + (1 − xa
0)

∑

m≥1

(−1)m−1amxma+1
0 φ(ma + 1).

Identifying the terms, we get

a1 = 1/(1 − φ(a + 1)),

am = amφ(1 + ma) + am−1φ(1 + (m − 1)a), m ≥ 2,

leading to

am =

∏m−1
k=1 φ(1 + ka)∏m

k=1(1 − φ(1 + ka))
, m ≥ 2.

Under our assumptions, the series
∑

m≥1 amxma+1
0 with positive terms is

always convergent because

am+1x
(m+1)a+1
0

amxma+1
0

=
φ(1 + ma)

1 − φ(1 + (m + 1)a)
xa

0 −→
m↑∞

0 < 1.

So,
∑

m≥1(−1)m−1amxma+1
0 is absolutely convergent, hence convergent.

Concerning Φx0
(q) itself, proceeding similarly, we obtain the solutions

displayed in (ii).

Remarks. 1) The moment function q 7→ Φx0
(q), defined in (10), is

also the Laplace transform of the function 0 < t 7→ fx0
(e−t)e−t. From the

expression of a1(q), it has a dominant singularity at q∗ = −a which is a
simple pole. It follows from elementary singularity analysis (see for example
Section 5.2 of Wilf 1994) that fx0

(e−t)e−t ∼t↑∞ A(x0)e
q∗t. After the change

of variable x = e−t, we obtain an algebraic divergence (x ↓ 0) for fragment
size density, the scaling exponent of which is −(q∗ + 1). In other words, we
get

fx0
(x) ∼

x↓0
A(x0)x

−(1−a).

It diverges (resp. vanishes) when a < 1 (resp. a > 1).
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The constant A(x0) = limq→q∗=−a(q − q∗)Φx0
(q) is found to be

A(x0) =
1

−φ′(0)

(
1 +

∑

m≥1

(−1)m
m∏

k=1

φ((k − 1)a)

1 − φ(ka)
xma

0

)
.

Note that a determines the scaling exponent in the unstable fragmentation
model.

2) The law of X(x0) clearly also has an atom at x = x0, now with mass xa
0

when splitting does not take place. At q = 0, one can check that Φx0
(0) < 1.

Therefore P(X(x0) = 0) = 1 − Φx0
(0) > 0: the height H(x0) of the random

path is now infinite with some positive probability.
When a ↑ ∞, Φx0

(q) → 0 for q > 0; this means that X(x0) → 0 in
distribution and in probability: as splitting probability tends to 1, the frag-
ment size tends to zero. When a ↓ 0, the splitting probability tends to 0 and
Φx0

(q) ∼ xq
0.

Finally, the range of X(x0) is [0, x0]. Define X̃(x0) := X(x0)/x0; then

the range of X̃(x0) is [0, 1], its moment function is

Φ̃x0
(q) := E[X̃(x0)

q] =
∑

m≥1

(−1)m−1am(q)xma
0

and X̃(x0) is not a scaling quantity (X̃(x0)
d
6= x0X1). When q = 0, we have

Φ̃x0
(q) < 1: X̃(x0) = 0 with positive probability. When q ↑ ∞, Φ̃x0

(q) → xa
0,

which is the probability not to split: X̃(x0) has an atom at x = 1.

Examples.

• Assume θ = 1, b = 2 and φ(q) = (1 + q)−1. If a = 1, we find

am(q) =
q + m + 1∏m
k=1(q + k)

.

Thus, am = am(1) = (m + 2)/(m + 1)!, leading to the average fragment
length

x(x0) = 2x0 − 1 + e−x0(1 − x0) ∈ (0, x0).

The function x0 7→ x(x0) is continuous and monotone.
• Assume a = 1/2, b = 3 and θ = 1/2. In this case, we have φ(q) =

(2q + 1)−1, and we find

am(q) =
2q + m + 1∏m
k=1(2q + k)

.

Thus, am := am(1) = (2m + 6)/(m + 2)!, leading to the average fragment
length

x(x0) = 2 + 3x0 − 4
√

x0 + 2e−
√

x0(
√

x0 − 1) ∈ (0, x0).

The function x0 7→ x(x0) is continuous and monotone.
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4.2. Number of fragments in the unstable fragmentation tree. We start
with the limiting number of leaves (or fragments) in the process, starting
with an interval of length x0, say N(x0). First, N(x0) < ∞ with positive
probability at least equal to xa

0 (the probability that N(x0) = 1). With

Nk(·) d
= N(·), it satisfies

N(x0)
d
= B(x0) + B(x0)

b∑

k=1

Nk(Ukx0).

Let us consider the expected value m(x0) := E(N(x0)). If this quantity
exists, it fulfills the functional equation

(11) m(x0) = xa
0 + b(1 − xa

0)

1\
0

m(ux0)π(u) du.

Then we have the following result:

Proposition 5. For all a > 0 and x0 ∈ (0, 1) we have m(x0) = ∞.

Proof. Looking for formal unique C∞ solutions of the form

(12) m(x0) =
∑

m≥1

(−1)m−1bmxma
0 ,

for some unknown sequence bm, m ≥ 1, we obtain

b1 =
1

1 − bφ(a)
,

bm =

∏m−1
k=1 bφ(ka)∏m

k=1(1 − bφ(ka))
, m ≥ 2.

Fix x0 ∈ (0, 1). The quantity m(x0), as a function of the parameter a > 0,
is increasing because the splitting probability 1 − xa

0 is now increasing in
a for all x0. On the other hand, the series representation of m(x0) shows
that m(x0) diverges for values of a of the form a = 1/k where k ≥ 1 is any
integer.

Thus, m(x0) < ∞ for all a < ac where ac = inf{a : m(x0) = ∞}. We
conclude that the sole trivial value of a for which m(x0) < ∞ is a = 0 (in
which case m(x0) = 1 since the splitting probability is 0). Conversely, for
any a > 0, m(x0) = ∞.

To conclude, the expected number of leaves in the unstable fragmentation
tree is infinite. This result supports (but does not prove) the conjecture that
the explosion probability P(N(x0) = ∞) of this model is positive for all a > 0
and x0 ∈ (0, 1). We have not been able to supply a closed form expression
for this probability.
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4.3. Partition function. We shall now study the random partition func-
tion

Zx0
(β) :=

N(x0)∑

i=1

Xi(x0)
β

with Zx0
(1) = x0 and Zx0

(0) = N(x0). Let Zx0,k(β), k = 1, . . . , b, be inde-
pendent statistical copies of Zx0

(β). They must solve

Zx0
(β)

d
= xβ

0B(x0) + B(x0)
b∑

k=1

ZUkx0,k(β).

Let zx0
(β) := E(Zx0

(β)) be the first moment of Zx0
(β). Then

(13) zx0
(β) = xβ+a

0 + b(1 − xa
0)

1\
0

zux0
(β)π(u) du.

Assume that a > 0. Then the definition domain of zx0
(β) is included in

{β : β > 0} because zx0
(0) = m(x0) diverges for all a > 0. We obtain the

following result:

Proposition 6.

(i) When β > βc := max(0, 1 − a), zx0
(β) is well defined and

zx0
(β) =

∑

m≥1

(−1)m−1bm(β)xma+β
0

is the unique C∞ solution in x0 for (13). Here the sequence bm(β),
m ≥ 1, is defined by

b1(β) =
1

1 − bφ(a + β)
,

bm(β) = b1(β)
m−1∏

k=1

bφ(β + ka)

1 − bφ(β + (k + 1)a)
, m ≥ 2.

(ii) Assume 0 < a ≤ 1. Then with βc = 1 − a ≥ 0 we have: for all

b ≥ 2, there exists 0 < Ca,b = (1 − bφ(1 + a))1/a < 1 such that for

all x0 ∈ (0, Ca,b],

zx0
(β) ∼

β=1−a
Ca(x0)(β − βc)

−1

for the positive constant

(14) Ca(x0) =
x0

−bφ′(1)

(
1 −

∑

m≥1

(−1)m+1
m∏

k=1

bφ(1 + (k − 1)a)

1 − bφ(1 + ka)
xma

0

)
.

Proof. (i) Looking for formal solutions of zx0
(β) of the form

zx0
(β) =

∑

m≥1

(−1)m−1bm(β)xma+β
0 ,
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we obtain the coefficients

b1(β) =
1

1 − bφ(a + β)
,

bm(β) =

∏m−1
k=1 bφ(β + ka)∏m

k=1(1 − bφ(β + ka))
, m ≥ 2.

Clearly, zx0
(β) diverges for values of β of the form β = 1− ka where k ≥ 1.

Next, for β > 0, the function zx0
(β) is decreasing in β. This shows that

zx0
(β) < ∞ for β > βc where βc = sup{β > 0 : zx0

(β) = ∞} = max(0, 1−a).

(ii) Assume a ≤ 1 and set βc = 1 − a ≥ 0. Then it is easy to check that

zx0
(β) = xa+β

0 b1(β)

(
1 +

∑

m≥1

(−1)m
m∏

k=1

bφ(β + ka)

1 − bφ(β + (k + 1)a)
xma

0

)

∼
β=1−a

Ca(x0)(β − βc)
−1,

where Ca(x0) is given in (ii).

We shall now study the convergence of the function Ca(x0). First, let

Am :=
m∏

k=1

bφ(1 + (k − 1)a)

1 − bφ(1 + ka)
xma

0 .

For 1 ≤ k ≤ m, one can check that

0 ≤ bφ(1 + (m − 1)a)

1 − bφ(1 + ma)
≤ bφ(1 + (k − 1)a)

1 − bφ(1 + ka)
≤ 1

1 − bφ(1 + a)
.

Therefore,
∣∣∣
∑

m≥1

(−1)m+1Am

∣∣∣ ≤
∑

m≥1

(
xa

0

1 − bφ(1 + a)

)m

.

Thus, for all a > 0 and b ≥ 2, Ca(x0) is absolutely convergent for all
x0 ∈ (0, Ca,b), where 0 < Ca,b = (1 − bφ(1 + a))1/a < 1.

To study the convergence at the point Ca,b, we shall substitute 1 −
bφ(1 + a) for xa

0 in the expression of Ca(x0). We obtain

Ca(x0) =
x0

−bφ′(1)

(
1 −

∑

m≥1

(−1)m+1Bm

)
,

with

Bm =

m∏

k=1

(bφ(1 + (k − 1)a))(1 − bφ(1 + a))

1 − bφ(1 + ka)
.

We get
Bm+1

Bm
=

(bφ(1 + ma))(1 − bφ(1 + a))

1 − bφ(1 + (m + 1)a)
=: bm+1,
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with bφ(1 + ma) < 1 as a result of 1 + ma > 1. Further, one can check that

1 − bφ(1 + a)

1 − bφ(1 + (m + 1)a)
< 1

and so bm+1 < 1. Thus, Bm is a decreasing sequence. Next,

bφ(1 + ka)

1 − bφ(1 + (k + 1)a)
<

bφ(1 + (k − 1)a)

1 − bφ(1 + ka)
, ∀k ≥ 2.

Consequently,

Bm ≤
m∏

k=2

bφ(1 + a)(1 − bφ(1 + a))

1 − bφ(1 + 2a)
= bm−1

2 ,

converging to 0 as m ↑ ∞, because b2 < 1. By the alternating series theorem,
Ca(x0) is convergent at x0 = Ca,b. Further, Ca,b →a↑∞ 1 and Ca,b →a↑0+ 0.
Since∣∣∣∣

∑

m≥1

(−1)m+1
m∏

k=1

bφ(1 + (k − 1)a)

1 − bφ(1 + ka)
xma

0

∣∣∣∣ =

∣∣∣∣
∑

m≥1

(−1)m+1

(
x0

Ca,b

)ma

Bm

∣∣∣∣

≤ B1 = 1,

for 0 < a ≤ 1 we get Ca(x0) ≥ 0 for all x0 ∈ (0, Ca,b].

From this study, we obtain the following result

Lemma 7. When a ≤ 1 and σ(dx) := E
∑N(x0)

i=1 I(Xi(x0) ∈ dx), the

occupation measure satisfies

σ(dx) ∼
x↓0

Ca(x0)x
−(2−a) dx,

where Ca(x0) is defined by (14).

Proof. Assume a ≤ 1. Let σ(dx) be the structural measure of the system
(Xi(x0); i ≥ 1). Then

zx0
(β) =

x0\
0

xβ σ(dx).

From Proposition 6(ii), zx0
(β) has a simple pole at βc = 1 − a; from singu-

larity analysis, we obtain

σ(dx)/dx ∼
x↓0

Ca(x0)x
−(βc+1) = Ca(x0)x

−(2−a),

where 2 − a ∈ (1, 2) ≥ 1.
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2 Avenue Adolphe Chauvin
95032 Cergy-Pontoise, France
and
Laboratoire d’ Analyse, Géometrie et Applications
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2 Avenue Adolphe Chauvin
95032 Cergy-Pontoise, France
E-mail: Thierry.Huillet@ptm.u-cergy.fr

Received on 10.7.2005;

revised version on 3.4.2006 (1790)


