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ON THE OPTIMAL REINSURANCE PROBLEM

Abstract. In this paper we consider the optimal reinsurance problem in
endogenous form with respect to general convex risk measures % and pricing
rules π. By means of a subdifferential formula for compositions in Banach
spaces we first characterize optimal reinsurance contracts in the case of one
insurance taker and one insurer. In the second step we generalize the charac-
terization to the case of several insurance takers. As a consequence we obtain
a result saying that cooperation brings less risk compared to insurance tak-
ers acting individually. Our results extend previously known results from the
literature.

1. Introduction. (Re)insurance problems are classical problems in
mathematical economics and insurance. They have been studied in the con-
text of expected utilities in extenso, to name but a few papers: Borch (1962),
Arrow (1963), Raviv (1979), Deprez and Gerber (1985), Zagrodny (2003),
Kałuszka (2004), Aase (2006), Dana and Scarsini (2007), Kałuszka and
Okolewski (2008), and Kuciński (2011). Since the upcoming of risk mea-
sure theory in the late 90’s there have been several papers which carried
over insurance problems to risk measures. Here we refer to Gajek and Za-
grodny (2004), Barrieu and El Karoui (2005), Jouini et al. (2007) Balbás
et al. (2009), [KR] (2008)(1), [KR] (2010), Balbás et al. (2011), and Cheung
et al. (2011).

In the context of risk measures the authors mostly studied insurance
problems for specific (classes of) risk measures % and pricing rules π and
derived explicit solutions of the infimal convolution problem which in the
case of one insurer takes the form
(1.1) argmin

R
{%(X −R) + π(R)}.
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In this paper we allow general risk and pricing functionals %, π and assume
that the premium the insurer charges has a direct endogenous impact on the
insurance takers’ decision. Thus the problem under consideration has the
general form

(1.2) argmin
R

%(X −R+ π(R)).

In the expected utility framework this problem was already considered
by Deprez and Gerber (1985). They studied the maximization problem

argmax
R

E[u(−X −H(R) +R)],

where u : R→ R is a risk averse utility function and H is a convex Gâteaux
differentiable (pricing) principle.

Let (Ω,F ,P) be a probability space and %i : Lp(P) → [0,∞] for i ∈
{1, . . . , n} be convex, proper, normed, monotone with respect to the almost
sure order, lower semicontinuous, and subdifferentiable mappings, called in
the following risk functionals. The value %i(Xi) is called the risk of the
loss Xi ∈ Lp and describes the risk evaluation of individual i regarding Xi.
A natural property of the risk functionals is their monotonicity with respect
to the almost sure order, i.e. if Xi ≥ Yi almost surely, then %i(Xi) ≥ %i(Yi).
We focus on unbounded losses and assume that 1 < p <∞.

In the models we analyze we have either one or n > 1 individuals, in
the following called insurance taker(s), who want to insure their initial loss
X ∈ Lp+ with a suitable insurance coverage R ∈ Lp such that the residual loss
minimizes their risk. The insurance coverages are provided by one insurance
company, called the insurer, who charges the insurance taker(s) a premium
according to a pricing rule π.

Depending on the model we analyze, each individual is provided with a
capital endowment c ∈ R+ which represents the maximal amount the insur-
ance taker is willing to spend for the premium of an insurance coverage R.
This results in the side constraint π(R) ≤ c. The pricing rules π : Lp → [0,∞]
are exogenously given normed, non-negative, convex, Lp-continuous, thus
subdifferentiable, functions defined on the space of p-integrable random vari-
ables.

For the infimal convolution problem (1.1) a general characterization of
solutions is known (see Jouini et al. (2007), Acciaio (2007), and [KR] (2008)).
Under certain assumptions the optimal coverages R∗ are characterized by the
condition

(1.3) ∂%(X −R∗) ∩ ∂π(R∗) 6= ∅.
Reformulated, this means that there exist V ∈ ∂%(X − R∗) and W ∈

∂π(R∗) such that
0 = W − V a.s.
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In the present paper we show that the solutions to problem (1.2) have
a similar characterization. In fact R∗ is an optimal coverage if and only if
there exist V ∈ ∂%(X −R∗ + π(R∗)) and W ∈ ∂π(R∗) such that

(1.4) 0 = E[V ]W − V a.s.

For translation equivariant risk functionals with %(X + c) = %(X) + c,
c ∈ R, we show

V ∈ ∂%(X) ⇒ E[V ] = 1.

Therefore, the characterization (1.4) reduces in this case to the known
condition (1.3) for the infimal convolution problem.

The structure of the paper is the following. First we adapt and specify a
chain rule for subdifferentials of the composition Ψ = %◦g in general Banach
spaces to the optimal insurance problem where g(R) := X−R+π(R). Based
on this rule we are able to characterize explicitly optimal insurance coverages
in the framework of subdifferentiable risk functionals.

Then in Section 2 we analyze the insurance model where one insurance
taker insures his initial loss with one insurance company, and in Section 3
we deal with the case where n insurance takers pool (aggregate) their initial
losses and seek to insure them with one insurance company.

Each of these two sections is divided into two subsections. The first part
of each covers the case where the insurance coverage is chosen arbitrarily,
and the second handles the case where only specific insurance coverages are
allowed; in particular, the side condition that the premium cannot exceed
the capital endowment cannot be violated.

In the final section we deduce that cooperation between insurance takers
brings less risk compared to their acting individually. The results of this
paper are mainly based on the thesis of Kiesel (2013).

2. One insurance taker and one insurer. In this section we deal with
the endogenous insurance problem (1.2) in the case of one insurance taker
and one insurer. In the first subsection we consider the case of unrestricted
insurance coverage R.

2.1. Unrestricted contracts. First we consider the case where one
insurance company is willing to cover the initial loss of one insurance taker to
any extent R ∈ Lp. Thus the insurance coverage problem can be formulated
as follows:

(2.1) argmin
R∈Lp

%(X −R+ π(R)).

For a given loss X ∈ Lp we define the mapping g(R) := X−R+π(R). Since
the underlying measure P is a probability measure, the real numbers R can
be regarded as p-integrable constant functions, and g : Lp → Lp.
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Obviously the composite function Ψ := % ◦ g is proper and convex, thus
Fermat’s rule applies and gives the following optimality condition:

(2.2) R0 is a minimizer of h if and only if 0 ∈ ∂Ψ(R0).

Therefore, it is crucial to describe the subdifferential of the composi-
tion Ψ . Since g maps into a Banach space, we need some basic notions of
convex analysis in Banach lattices. Some of these notions, like subdifferen-
tials of Banach lattice valued mappings and the necessary definitions and
statements including a general chain rule for subdifferentials, are collected
in Appendix A.

As noted there, Lp-spaces, 1 < p <∞, are conditionally complete Banach
lattices with σ-order continuous norm. Thus Theorem A.7 is applicable to
the composition function Ψ and we have

(2.3) ∂Ψ(R0) = {X∗ = A∗[µ] | µ ∈ ∂%(g(R0)), A ∈ ∂g(R0)},

where A∗[µ] is the value of the adjoint operator A∗ on µ.

Lemma 2.1. The subdifferential of g at R0 is given by

(2.4) ∂g(R0) = {A = Y ∗ − idLp ∈ L(Lp, Lp) | Y ∗ ∈ ∂π(R0)}.

Proof. Consider the right directional derivative of g at R0, given by

D(g,R0)(R) = lim
λ↘0

X − (R0 + λR) + π(R0 + λR)−X +R0 − π(R0)

λ

= lim
λ↘0

−λR+ π(R0 + λR)− π(R0)

λ

= −R+D(π,R0)(R) = (D(π,R0)− idLp)(R).

Then, by Proposition A.4,

∂g(R0) = {A ∈ L(Lp, Lp) | A[R] ≤ (D(π,R0)− idLp)(R), ∀R ∈ Lp}
= {A ∈ L(Lp, Lp) | (A+ idLp)[R] ≤ D(π,R0)(R), ∀R ∈ Lp}.

Hence A ∈ ∂g(R0) if and only if A+ idLp ∈ ∂π(R0).

Next we determine the adjoint operator A∗ of A ∈ ∂g(R0).

Lemma 2.2. Let Z ∈ Lq and A ∈ ∂g(R0). Then the adjoint operator A∗
is given by

(2.5) A∗[Z] = E[Z] · Y ∗ − Z,

where Y ∗ ∈ ∂π(R0) is such that A = Y ∗ − idLp .

Proof. Note first that ∂π(R0) ⊂ (Lp)∗ = L(Lp,R) ⊆ L(Lp, Lp), because
R can be seen as a subset of Lp. Thus for Y ∗ ∈ ∂π(R0) the value Y ∗[Z] can
be identified with 〈Z | Y ∗〉 for the dual pairing of (Lp, Lq, 〈· | ·〉). For X ∈ Lp
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we derive

〈A[X] | Z〉 = 〈(Y ∗ − idLp)[X] | Z〉 = 〈Y ∗[X]−X | Z〉
= 〈〈X | Y ∗〉 | Z〉 − 〈X | Z〉 = 〈X | Y ∗〉 · 〈1 | Z〉 − 〈X | Z〉
= 〈X | E[Z] · Y ∗ − Z〉,

which proves the claim.

As a consequence we obtain the following description of the subdifferen-
tial of Ψ .

Theorem 2.3. The composition function Ψ := % ◦ g with g(R) := X −
R+ π(R) is subdifferentiable and its subdifferential is given by

∂(% ◦ g)(R) = {X∗ ∈ Lq | ∃Z ∈ ∂%(g(R)), Y ∈ ∂π(R) : X∗ = E[Z] · Y − Z}.

This theorem enables us to extend the known characterizations of optimal
insurance coverages. As a consequence of Theorem 2.3 and Fermat’s rule we
obtain the following characterization.

Corollary 2.4. R0 ∈ Lp is an optimal insurance coverage of problem
(2.1) if and only if there exist Z ∈ ∂%(g(R0)) and Y ∈ ∂π(R0) such that

(2.6) 0 = E[Z] · Y − Z a.s.

Remarks 2.5. (a) A sufficient condition for the validity of condition
(2.6) is the following. If there exists an insurance coverage R0 such that

(2.7) 0 ∈ ∂%(g(R0)),

then (2.6) holds for every Y ∈ ∂π(R0). Hence R0 is then an optimal insurance
coverage of (2.1).

For lower semicontinuous convex risk functionals, (2.7) is equivalent to

(2.8) g(R0) ∈ ∂%∗(0).

Under this condition the solutions of the optimization problem

(2.9) argmin
R: g(R)∈∂%∗(0)

π(R)

are optimal insurance coverages which additionally minimize the premium.
If there is no R0 ∈ Lp such that (2.7) holds, then we get at least a

necessary condition for Y ∈ ∂π(R). Taking the expectation in (2.6) we see
that for any optimal insurance coverage R0 the following has to hold:

E[Y ] = 1.

(b) For %(X) := −E[u(−X)] and π(X) := H(X), where u : R → R is
a risk averse utility function and H is a convex Gâteaux differentiable pric-
ing principle, Corollary 2.4 yields the characterization of optimal insurance
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contracts R0 by

(2.10) ∇H(R0) =
u′(−X +R−H(R0))

E[u′(−X +R−H(R0))]
,

which corresponds to Deprez and Gerber (1985, Theorem 9).

We next consider condition (2.6) for the special class of cash invariant
risk functionals as in classical monetary risk measure theory.

Proposition 2.6. Let f : Lp → [0,∞] be a lower semicontinuous, con-
vex, and cash invariant function with f(0) < ∞. Then for any X ∈ Lp the
following implication holds:

Y ∈ ∂f(X) ⇒ E[Y ] = 1.

Proof. From the definition of the convex conjugate and the properties of
f we derive

f∗(Y ) = sup
X∈Lp

{E[XY ]− f(X)} ≥ sup
c∈R
{cE[Y ]− f(c)}

= sup
c∈R
{cE[Y ]− c} − f(0) = sup

c∈R
{c(E[Y ]− 1)} − f(0).

Thus Y 6∈ dom(f∗) if E[Y ] 6= 1.
Since

{∂f(X) | X ∈ Lp} =: range(∂f) ⊆ dom(f∗),

the proof is complete.

With this result, for cash invariant risk functionals Corollary 2.4 reads
as follows.

Corollary 2.7. If the underlying risk functional % is additionally cash
invariant, then R0 is an optimal insurance coverage of (2.1) if and only if
there exist Z ∈ ∂%(g(R0)) and Y ∈ ∂π(R0) such that

(2.11) Y = Z a.s.

As mentioned in the introduction, this statement corresponds to the char-
acterization of an optimal allocation of the minimal total risk problem with
respect to % and π in (1.3).

2.2. Restricted contracts. Classical insurance contracts only cover
part of the risk and do not allow overinsurance R > X or negative risk
increasing parts R < 0. The coverage R taken by the insurer is determined
by a function I of the initial loss X ∈ Lp+. The coverage R of the initial loss
covered by the insurer is described by R = I(X), and I is called an insurance
contract.

The set of all admissible insurance contracts is given by

(2.12) I := {I : R+ → R+ | 0 ≤ I(x) ≤ x, ∀x ∈ R+}.
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For a loss X ∈ Lp+ the set of its admissible coverages is thus given by

(2.13) RI(X) = R := {R ∈ Lp+ | ∃I ∈ I : R = I(X)}.
With the cost constraint π(R) ≤ c, where c > 0 represents the maximal

amount of money the insurance taker is willing to pay for an insurance, the
minimization problem of interest is

(2.14) argmin
R∈R, π(R)≤c

%(X −R+ π(R)).

In the classical papers like Deprez and Gerber (1985) this problem is
considered for the linear pricing rule

π(R) := (1 + θ)E[R].

In several of the papers mentioned in the introduction it is shown that for
law invariant risk measures the stop–loss reinsurance and related contracts
are optimal.

In order to apply the Kuhn–Tucker Theorem (see Theorem B.1) to char-
acterize solutions of the optimal insurance problem (2.14) we next establish
the closedness of the class R of insurance claims.

Proposition 2.8. R is a convex, closed and bounded subset of Lp.

Proof. The convexity and boundedness of R are obvious. To prove its
closedness, let (Rk)k∈N be a sequence in R which converges in Lp to some
R ∈ Lp. For each Rk ∈ R let Ik ∈ I be an insurance contract with Ik(X) =
Rk. By the modified Komlos Lemma as in Delbaen and Schachermayer (1994)
there exists a sequence Ĩk ∈ conv(Ij : j ≥ k), k ∈ N, such that Ĩk → I a.s.
We show that I ∈ I and I(X) = R. Let (βkj )j≥0 be the corresponding weights
with

Ĩk =
∑
j≥0

βkj Ik+j .

As I is convex, we have Ĩk ∈ I for all k ∈ N. From the Komlos Lemma we
get the non-negativity of I. Further, since Ĩ ∈ I it follows that

I(X) = lim
k→∞

Ĩk(X) ≤ X.

Thus I ∈ I. It remains to show that I(X) = limk→∞Rk = R ∈ R. This
follows from

I(X) = lim
k→∞

Ĩk = lim
k→∞

∑
j≥0

βkj Ik+j(X) = lim
k→∞

∑
j≥0

βkjRk+j = R.

Hence there exists an insurance contract I ∈ I with I(X) = R and thus
R ∈ R.

The Kuhn–Tucker Theorem provides a characterization for solutions of
restricted minimization problems with functional side conditions.
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Defining f1(R) := π(R)−c, we see that for 0 ∈ R we have f1(0) = −c < 0.
Thus the Slater condition (B.15) is fulfilled and by using Theorem B.1 we
conclude that R0 is a minimizer of (2.14) if and only if there exists a Lagrange
multiplier λ1 ∈ R+ such that

(2.15) 0 ∈ ∂((% ◦ g) + λ1f1 + 1R)(R0) with λ1f1(R0) = 0.

Here 1A(x) denotes as usual the convex indicator function (see Appendix B).
If this problem is well-posed, i.e. if

(2.16) domc(% ◦ g) ∩ domc(f1) ∩R 6= ∅,
where domc(f) stands for the domain of continuity of the function f ,

domc(f) := {x | f is finite and continuous at x},
then the subdifferential sum formula (cf. Barbu and Precupanu (1986, Sec-
tion 3, Theorem 2.6)) is applicable to (2.15) and yields

(2.17) 0 ∈ ∂(% ◦ g)(R0) + λ1∂f1(R0) + ∂1R(R0).

Due to Theorem 2.3 we obtain the following Kuhn–Tucker type charac-
terization of optimal insurance coverages.

Theorem 2.9 (Kuhn–Tucker characterization of optimal insurances). If
problem (2.14) is well-posed, then R0 is an optimal insurance coverage of
the insurance problem in (2.14) if and only if there exist Z ∈ ∂%(g(R0)),
Y ∈ ∂π(R0), W ∈ ∂1R(R0) and a Lagrange multiplier λ1 ≥ 0 such that

(2.18) 0 = −Z + E[Z]Y + λ1Y +W, λ1f1(R0) = 0.

In order to get a better understanding of the preceding statement we
describe the subdifferential ∂1R.

Lemma 2.10. For W ∈ Lq we have W ∈ ∂1R(R0) if and only if

(2.19)

W ≤ 0 on A := {R0 = 0 ∧X 6= 0},
W = 0 on B := {0 < R0 < X},
W ≥ 0 on C := {R0 = X ∧X 6= 0},
W is arbitrary on D := {R0 = X = 0}.

Proof. Obviously P(A ∪B ∪ C ∪D) = 1. As ∂1R(R0) is defined by

∂1R(R0) = {W ∈ Lq | 〈W,R−R0〉 ≤ 0, ∀R ∈ R}
the sufficiency of these conditions is clear. For the converse we have to discuss
every condition separately. Let W ∈ ∂1R(R0).

(a) We assume that W > 0 on A. Then for R := X1A + R01Ac ∈ R we
conclude

〈W,R−R0〉 = 〈W, (X −R0)1A〉+ 〈W, (R0 −R0)1Ac〉 = 〈W,X1A〉 > 0,

which contradicts W ∈ ∂1R(R0).
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By the same arguments the following insurance coverages produce con-
tradictions to the respective sets:

(b) R := R01Bc ∈ R for W < 0 and R := X1B +R01Bc ∈ R for W > 0.
(c) R := R01Cc ∈ R.
(d) On the set D it is not possible to specify the form of a subgradientW .

If X = 0 on a certain set U , then every insurance coverage R ∈ R has to be
zero itself on U . Thus (R − R0)1D = 0, which implies 〈W,R − R0〉 = 0 on
D for all W ∈ Lq.

Remark. The undeterminedness on D can be overcome by considering
only risks X ∈ Lp+ with P(X > 0) = 1, which yields P(D) = 0.

Based on Lemma 2.10 we next describe the optimality condition of The-
orem 2.9 in a more precise form.

Theorem 2.11. Let P(X > 0) = 1. If (2.14) is well-posed, then R0 is an
optimal insurance coverage of (2.14) if and only if there exist Z ∈ ∂%(g(R0)),
Y ∈ ∂π(R0), W ∈ ∂1R(R0) and a Lagrange multiplier λ1 ≥ 0 such that

0 ≤ −Z + Y (λ1 + E[Z]) on A,(2.20)
0 = −Z + Y (λ1 + E[Z]) on B,(2.21)
0 ≥ −Z + Y (λ1 + E[Z]) on C,(2.22)
λ1f1(R0) = 0.(2.23)

In order to establish the existence of solutions of (2.14) we next prove
the lower semicontinuity of % ◦ g.

Lemma 2.12. For % lower semicontinuous and a pricing rule π the com-
posite function % ◦ g is lower semicontinuous on R.

Proof. Let (Rn)n∈N ⊂ R converge in Lp to R ∈ R. Then from the lower
semicontinuity of % and the Lp-continuity of π we get

lim inf
n→∞

(% ◦ g)(Rn) = lim inf
n→∞

%(g(Rn))

≥ %
(

lim
n→∞

g(Rn)
)

= %
(
X −R+ lim

n→∞
π(Rn)

)
= %(X −R+ π(R)) = (% ◦ g)(R).

We define the admissible contract set F := {R ∈ Lp+ | π(R) ≤ c}. From
the continuity and convexity of π we see that F is closed and convex. We
reformulate problem (2.14) as

(2.24) argmin
R∈R∩F

(% ◦ g)(R).
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Lemma 2.13. R∩ F is a closed, bounded and convex subset of Lp+.

Proof. Due to Proposition 2.8 and the previous considerations these
properties are immediate.

Classical results in functional analysis imply that in reflexive Banach
spaces bounded sets are relatively weakly compact. Moreover, the closure
of a convex set coincides with its weak closure. Thus convex, closed, and
bounded sets in Lp (1 < p < ∞) are weakly compact. On the other hand,
proper functions defined on a linear normed space are lower semicontinuous if
and only if they are weakly lower semicontinuous (cf. Barbu and Precupanu
(1986, Chapter 2, Proposition 1.5)).

Thus Lemma 2.13 and the classical Weierstrass Theorem yield the exis-
tence of solutions of (2.14).

Theorem 2.14. Let 1 < p <∞. For a lower semicontinuous convex risk
functional % : Lp → R+, a pricing rule π : Lp → R+ and an initial loss
X ∈ Lp+ there exists a solution of the optimal insurance problem

argmin
R∈R∩F

%(X −R+ π(R)).

3. Several insurance takers and one insurer. In this section we as-
sume that there are n insurance takers with initial losses Xi, i ∈ {1, . . . , n},
and risk functionals %i respectively, and one insurance company with one
pricing rule π. We are now interested in optimal insurance coverages occur-
ring under cooperation. The individuals cooperate by forming a coalition and
hence pool their initial losses Xi to the total loss X̄ =

∑n
i=1Xi. Then they

buy an insurance contract from the insurance company and redistribute the
residual loss back. In this way we view the coalition itself as one individual
who intends to insure one initial loss X̄. The appropriate mutual risk func-
tional this new individual uses has to reflect the procedure of redistributing
the residual losses back to the individuals. This, however, depends on the
individual risk functionals and suggests using the infimal convolution

(3.1) %̂(S) := inf
Si∈Lp:

∑n
i=1 Si=S

n∑
i=1

%i(Si)

as a joint risk functional. In the following we assume exactness of the infimal
convolution %̂, i.e. for any S ∈ Lp there exist (S1, . . . , Sn) with

∑n
i=1 Si = S

such that %̂(S) =
∑n

i=1 %i(Si). This implies its subdifferentiability as well
as its lower semicontinuity (see [KR] (2010)). Interior point conditions are
known (see [KR] (2010)) which are sufficient for the validity of the epigraph
condition. This epigraph condition in turn is equivalent to the exactness of %̂.
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3.1. Unrestricted contracts. We define the unrestricted coalitionary
insurance problem to be
(3.2) argmin

R∈Lp
%̂(X̄ −R+ π(R)).

Setting ḡ(R) := X̄ −R+ π(R) we define

Definition 3.1. A tuple (R0, S1, . . . , Sn) ∈ Lpn+1 with
∑n

i=1 Si = ḡ(R0)
is called a coalitional solution of the unrestricted coalitionary insurance prob-
lem (3.2) if

• R0 solves (3.2),
• (S1, . . . , Sn) minimizes %̂(ḡ(R0)).

An immediate consequence of the characterization of optimal allocations
(see [KR] (2010), Theorem 3.1) and Corollary 2.4 is:

Corollary 3.2. If %̂ is exact and well-posed, then the tuple
(R0, S1, . . . , Sn) ∈ Lpn+1 with

∑n
i=1 Si = ḡ(R0) is a coalitional solution of

problem (3.2) if and only if there exist Z ∈
⋂n
i=1 ∂%i(Si) and Y ∈ ∂π(R0)

such that

(3.3) 0 = E[Z] · Y − Z.
As a consequence of Corollary 3.2 we recover the known characterizations

of coalitional solutions for cash invariant risk functionals % and Gâteaux
differentiable price functionals π.

Remarks 3.3. (a) If there exist k ∈ {1, . . . , n} such that %k is cash
invariant, then R0 solves (3.2) if and only if

∂%̂(ḡ(R0)) ∩ ∂π(R0) 6= ∅.
Similarly (R0, S1, . . . , Sn) with

∑n
i=1 Si = ḡ(R0) is a coalitional solution of

(3.2) if and only if

(3.4)
n⋂
i=1

∂%i(Si) ∩ ∂π(R0) 6= ∅.

(b) If additionally to (a) the pricing rule π is Gâteaux differentiable, then
R0 solves (3.2) if and only if

∇π(R0) ∈ ∂%̂(ḡ(R0)).

Similarly (R0, S1, . . . , Sn) with
∑n

i=1 Si = ḡ(R0) is a coalitional solution of
(3.2) if and only if

(3.5) ∇π(R0) ∈
n⋂
i=1

∂%i(Si).

For lower semicontinuous risk functionals %i the latter is equivalent to
(3.6) Si ∈ ∂%∗i (∇π(R0)), ∀i ∈ {1, . . . , n}.
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3.2. Restricted contracts. As in Section 2.2, we restrict the minimiza-
tion problem (3.2) to the admissible insurance coverages

(3.7) R̄ = R(X̄) := {R ∈ Lp+ | ∃I ∈ I : R = I(X̄)}.

Using similar arguments to those for Theorem 2.14 we obtain the cor-
responding existence result for the restricted coalitional insurance problem.
With X̄ =

∑n
i=1Xi and c̄ =

∑n
i=1 ci we obtain

Corollary 3.4. For lower semicontinuous convex risk functionals %i :
Lp → R+, 1 < p < ∞, such that %̂ is exact, a pricing rule π : Lp → R+

and initial losses Xi ∈ Lp, there exists an optimal insurance coverage of the
problem

(3.8) argmin
R∈R̄,π(R)≤c̄

%̂(X̄ −R+ π(R)).

Proof. Due to the exactness of %̂ and its lower semicontinuity, this follows
as in the proof of Theorem 2.14.

Further by the arguments in Subsection 2.2 we obtain

Corollary 3.5. Let P(X > 0) = 1. If (3.8) is well-posed, then R0 is an
optimal insurance coverage of (2.14) if and only if there exist Z ∈ ∂%̂(g(R0)),
Y ∈ ∂π(R0) and a Lagrange multiplier λ1 ≥ 0 such that

0 ≤ −Z + Y (λ1 + E[Z]) on A,
0 = −Z + Y (λ1 + E[Z]) on B,
0 ≥ −Z + Y (λ1 + E[Z]) on C,
λ1f1(R0) = 0.

Combining this with Corollary 3.2 we get the following Kuhn–Tucker
type characterization of restricted coalitional solutions.

Corollary 3.6 (Kuhn–Tucker characterization of coalitional solutions).
If in the situation of Corollary 3.5 additionally %̂ is exact and well-posed,
then the tuple (R0, S1, . . . , Sn) ∈ R × Lpn with

∑n
i=1 Si = g(R0) is a coali-

tional solution of the restricted problem (3.8) if and only if there exist Z ∈⋂n
i=1 ∂%i(Si), Y ∈ ∂π(R0) and a Lagrange multiplier λ1 ≥ 0 such that the

inequalities in Corollary 3.5 hold.

4. Whether to act individually or cooperatively. In the context
of a group of n insurance takers and one insurance company the natural
question arises whether individual or cooperative insurance contracts bring
a lower minimal total risk in restricted models. We will see in the following
that cooperation brings less risk and therefore is preferable.
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The total minimization problem where every individual acts alone is given
by

(4.1)
n∑
i=1

argmin
Ri∈R(Xi)
π(Ri)−ck≤0

%i(Xi −Ri + π(Ri)).

The objective function is the sum of the objective functions of the corre-
sponding individual insurance problems in (2.14). Aiming at comparing (4.1)
with the coalitional insurance problem in (3.8) we introduce the following no-
tation. This notation aims to include the side conditions of the corresponding
minimization problems into the minimization sets.

For each individual i ∈ {1, . . . , n} the set of extended insurance contracts
for individual insurance problem is defined by

Ĩi := {I : R+ → R+ | 0 ≤ I(x) ≤ x, ∀x ∈ R+, π(I(x)) ≤ ci}, i ∈ {1, . . . , n}.

The set of extended contracts for insurance coverages is given by

R̃i = R̃i(Xi) := {R ∈ Lp+ | ∃I ∈ Ĩi : R = I(Xi)}, i ∈ {1, . . . , n}.

Additionally we denote the corresponding sets of residual losses after insur-
ance by

Li = Li(Xi) := {L | ∃R ∈ R̃i : L = Xi −R+ π(R)}, i ∈ {1, . . . , n}.

The sets of extended coalitional contracts and losses corresponding to the
cooperative insurance problem are defined by

Ĩ := {I : R+ → R+ | 0 ≤ I(x) ≤ x, ∀x ∈ R+, π(I(x)) ≤ c̄},
R̃ = R̃(X̄) := {R ∈ Lp+ | ∃I ∈ Ĩ : R = I(X̄)},
L = L(X̄) := {L | ∃R ∈ R̃ : L = X̄ −R+ π(R)},

with X̄ =
∑n

i=1Xi and c̄ =
∑n

i=1 ci. Furthermore,

AL = AL(X̄) :=
{

(L1, . . . , Ln) ∈ (Lp+)n
∣∣∣ ∃L ∈ L :

n∑
i=1

Li = L
}

denotes the set of all admissible redistributions of the cooperative insurance
problem. For (L1, . . . , Ln) ∈ AL the component Li reflects the part of L ∈
L(X̄) that is reassigned to individual i. And

A(M) :=
{

(M1, . . . ,Mn) ∈ (Lp+)n
∣∣∣ n∑
i=1

Mi = M
}

is called the set of all admissible allocations of M ∈ Lp+.
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Proposition 4.1. The value of the individual insurance problem (4.1)
is identical to

n∑
i=1

inf
Ki∈Li(Xi)

%i(Ki).

The value of the coalitional insurance problem (3.8) is identical to

inf
(Mi)i∈AL

n∑
i=1

%i(Mi).

Proof. We only show the second equality. The first one follows similarly.
For the value of problem (3.8) we have

inf
R∈R̄
π(R)≤c̄

%̂(ḡ(R)) = inf
R∈R̃

%̂(ḡ(R)) = inf
R∈R̃

inf
{ n∑
i=1

%i(Mi)
∣∣∣ (Mi)i ∈ A(ḡ(R))

}

= inf
(Mi)i∈AL

n∑
i=1

%i(Mi).

For subadditive pricing rules we have the following relation between in-
dividual and cooperative residual losses.

Proposition 4.2. Let π be a subadditive pricing rule. Then for every
K = (K1, . . . ,Kn) ∈×n

i=1 Li there exists an L ∈ L(X̄) such that
n∑
i=1

Ki ≥ L a.s.

Proof. Let Ki ∈ Li(Xi). Then there exists an Ri ∈ R̃i(Xi) such that
Ki = Xi − Ri + π(Ri) with π(Ri) ≤ ci. From the subadditivity of π we
conclude that

n∑
i=1

Ki ≥ X̄ −
n∑
i=1

Ri + π
( n∑
i=1

Ri

)
=: L.

Obviously R0 :=
∑n

i=1Ri ∈ R̃(X̄) and thus L ∈ L(X̄).

Now we are ready to state the main result of this section.

Theorem 4.3. The value of the individual insurance problem dominates
the value of the coalitional insurance problem, i.e.

(4.2)
n∑
i=1

inf
Ri∈R̃i

%i(Xi −Ri + π(Ri)) ≥ inf
R∈R̃

%̂(X̄ −R+ π(R)).

Proof. The infimal convolution %̂ inherits the monotonicity with respect
to the almost sure order from the risk functionals %i (cf. Acciaio (2007)).
Let K = (K1, . . . ,Kn) ∈×n

i=1 Li. Then we know from Proposition 4.2 that
there exists an L ∈ L(X̄) such that

∑n
i=1Ki ≥ L a.s. From the inclusion
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A(L) ⊆ AL, we conclude that
n∑
i=1

%i(Ki) ≥ inf
(Li)i∈A(

∑
Ki)

n∑
i=1

%i(Li) ≥ inf
(Li)i∈A(L)

n∑
i=1

%i(Li)

≥ inf
(Li)i∈AL

n∑
i=1

%i(Li).

Since this holds for all (K1, . . . ,Kn) ∈×n
i=1 Li(Xi) we get

n∑
i=1

inf
Ki∈Li(Xi)

%i(Ki) ≥ inf
(Li)i∈AL

n∑
i=1

%i(Li),

and the claim follows from Proposition 4.1.

Appendix A. Subdifferentiability of Banach lattice valued map-
pings. In this section we collect some notions and results on subdifferen-
tiability of Banach lattice valued mappings as used in Sections 2–4 of this
paper. Let (Y,≤) be a Banach lattice. We assume throughout that Y is con-
ditionally (or Dedekind) complete, i.e. every subset A ⊂ Y which is bounded
above has a least upper bound y0 = supA. In particular reflexive Banach
lattices, like Lp, 1 < p <∞, are conditionally complete.

Let F : X → Y be a convex mapping from the Banach space X to Y
and denote the directional derivative in x0 in direction x by

(A.1) D(F, x0)(x) := lim
h↘0

F (x0 + hx)− F (x0)

h
.

Then conditional completeness of Y implies

Proposition A.1.
(A.2) D(F, x0)(x) ∈ Y for all x0, x ∈ X.

Proof. For h > 0 the difference quotient

g(x0, x, h) :=
F (x0 + hx)− F (x0)

h
lies in Y for any x0, x ∈ X. Moreover it is increasing in h. Let h1 < h2. Then
the convexity of F gives

F (x0 + h1x)− F (x0) = F

(
h1

h2
x0 +

(
1− h1

h2

)
x0 +

h1

h2
h2x

)
− F (x0)

= F

(
h1

h2
(x0 + h2x) +

(
1− h1

h2

)
x0

)
− F (x0)

≤ h1

h2
F (x0 + h2x) +

(
1− h1

h2

)
F (x0)− F (x0)

=
h1

h2
F (x0 + h2x) +

h1

h2
F (x0).
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This is equivalent to
F (x0 + h1x)− F (x0)

h1
≤ F (x0 + h2x)− F (x0)

h2
.

Thus g(x0, x, h) decreases as h↘ 0, and

(A.3) D(F, x0)(x) = inf
h>0

g(x0, x, h).

Set x0 := 1
1+h(x0 + hx) + h

1+h(x0 − x). Then the convexity of F yields

F (x0) ≤ 1

1 + h
F (x0 + hx) +

h

1 + h
F (x0 − x),

which implies that for all h > 0,

F (x0)− F (x0 − x) ≤ F (x0 + hx)− F (x0)

h
.

Thus g(x0, x, h), h > 0, are bounded from below by −g(x0, x,−1), and con-
ditional completeness of Y implies the existence of the element D(F, x0)(x)
in Y .

The subdifferential of a Banach lattice valued mapping is defined analo-
gously to the real case.

Definition A.2. The subdifferential of the convex mapping F : X → Y
at x0 ∈ X is defined by

(A.4) ∂F (x0) := {A ∈ L(X,Y ) | A(x− x0) ≤ F (x)− F (x0) ∀x ∈ X}.
Here L(X,Y ) stands for the set of all continuous linear operators on X with
values in Y .

We next collect some useful results stated in Ioffe and Levin (1972) con-
cerning right directional derivatives and subdifferentials.

Proposition A.3 (Continuity of right directional derivative). The right
directional derivative x 7→ D(F, x0)(x) at x0 ∈ X is sublinear. If F : X → Y
is additionally continuous at x0 then D(F, x0)(·) is a continuous mapping
from X to Y .

Proposition A.4. ∂F (x0) = ∂(D(F, x0))(0).

In lattices the concept of order convergence can be introduced in a nat-
ural way. Therefore, when speaking of an increasing sequence (yn)n∈N we
understand that y1 ≤ y2 ≤ · · · .

Definition A.5. A sequence (yn)n∈N in a Banach lattice Y is called

order convergent to y0 ∈ Y (yn
(o)−−→ y0 or y0 = (o)-limn→∞ yn) if there

exist two monotonic sequences in Y : one decreasing, (xn), and the other
increasing, (zn), such that
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• sup(zn) = y0 = inf(xn),

• zn ≤ yn ≤ xn for all n ∈ N.

Following Ioffe and Levin (1972) and Vulikh (1967) a Banach lattice Y
is said to have property (A) if:

(A) Every decreasing sequence (yn)n∈N ⊂ Y with yn
(o)−−→ 0 converges in

norm, ‖yn‖Y → 0.

Proposition A.6 (Compactness of subdifferentials). Let Y have prop-
erty (A). Further let G ⊂ X and U ⊂ Y be open convex sets and F : G→ U
be a continuous convex mapping. Then for x0 ∈ G the subdifferential ∂F (x0)
is a non-empty convex set that is compact in the weak operator topology of
L(X,Y ).

The following theorem is a subdifferential chain rule for the composition
of a real valued function and a Banach lattice valued mapping.

Theorem A.7 (Chain rule for subdifferentials). Let F : G → U be a
continuous convex mapping, G ⊂ X and U ⊂ Y be open convex sets, where
X is a Banach space and Y is a conditionally complete Banach lattice with
property (A) and let % be a monotonic convex real valued function on U .
Then for the composition Ψ := % ◦ F and x0 ∈ G we have

(A.5) ∂Ψ(x0) = {x∗ = A∗[µ] | µ ∈ ∂%(F (x0)), A ∈ ∂F (x0)},

where A∗ denotes the adjoint operator of A.

To study the subdifferential sum formula for Banach lattice valued map-
pings we rely on the following results in Kusraev and Kutateladze (1995).
These authors introduce a concept of general position which guarantees the
subdifferential sum formula, similarly to the interior point conditions in the
real case (see [KR] (2010)).

Let X and Y be two topological vector spaces and Φ be a subset of the
product X × Y . Then Φ is called a correspondence from X to Y . We define
its domain dom(Φ) and image im(Φ) by

dom(Φ) := {x ∈ X | ∃y ∈ Y : (x, y) ∈ Φ},
im(Φ) := {y ∈ Y | ∃x ∈ X : (x, y) ∈ Φ}.

For U ⊂ X the correspondence Φ∩ (U × Y ) is called the restriction of Φ
to U and is denoted by Φ�U . The set Φ(U) := im(Φ�U) is called the image
of U under Φ and we have

Φ(x) := Φ({x}) = {y ∈ Y | (x, y) ∈ Φ},
dom(Φ) = {x ∈ X | Φ(x) 6= ∅},
Φ(U) = {Φ(x) | x ∈ U} = {y ∈ Y | ∃x ∈ U : y ∈ Φ(x)}.
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Definition A.8. A correspondence Φ ⊂ X × Y is called

• convex if Φ is a convex subset of X × Y ,
• conic if Φ is a cone in X × Y ,
• open at (x0, y0) ∈ Φ if for every neighborhood U of x0 the set Φ(U)−y0

is a neighborhood of the origin in Y . For x0 = 0 and y0 = 0 we speak
of openness at the origin.

Definition A.9. Consider two cones K1 and K2 in the topological
space X and put κ := (K1,K2). We say κ is a non-oblate pair if the conic
correspondence Φκ ⊂ X2 ×X defined by

(A.6) Φκ := {(k1, k2, x) ∈ X2 ×X | x = k1 − k2, ki ∈ Ki, i = 1, 2}

is open at the origin.

Thus openness of the correspondence Φκ in the definition above (or non-
oblateness of the pair K1, K2) means that for every neighborhood V ⊂ X
of the origin in X the set

Φκ(V 2) = V ∩K1 − V ∩K2

is a neighborhood of the origin in X.
The following is a useful characterization of non-oblateness. Let ∆n :

x 7→ (x, . . . , x) denote the embedding of X into the diagonal ∆n(X) of the
space Xn.

Lemma A.10 (Characterization of non-oblate pairs). A pair of cones
κ := (K1,K2) is non-oblate if and only if the pair λ := (K1×K2, ∆2(X)) is
non-oblate in X2.

Definition A.11. We say that the cones K1 and K2 are in general
position if the following three conditions are satisfied:

• K1 and K2 reproduce (algebraically) some subspace X0 ⊆ X, i.e. X0 =
K1 −K2 = K2 −K1.
• The subspace X0 is complemented, i.e. there exists a continuous pro-

jection π : X → X such that π(X) = X0.
• (K1,K2) is a non-oblate pair in X.

Let σn : (X × Y )n → Xn × Y n denote the natural isomorphism between
(X × Y )n and Xn × Y n defined by the rearrangement of the coordinates

σn : ((x1, y1), . . . , (xn, yn)) 7→ ((x1, . . . xn), (y1, . . . , yn)).

Definition A.12. We say that sublinear operators π1, . . . , πn : X → Y ,
with dom(πi) ⊆ X, are in general position if the sets ∆n(X) × Y n and
σn(epi(π1)× · · · × epi(πn)) are in general position.
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Theorem A.13 (Subdifferential sum formula). Let X be a Banach space
and let Y be a conditionally complete Banach lattice. If sublinear operators
π1, . . . , πn : X → Y are in general position, then the following subdifferential
sum formula holds at zero:

∂
( n∑
i=1

πi

)
(0) =

n∑
i=1

∂πi(0).

Appendix B. Minimization of convex functions. Let f : E → R
be a proper convex function on a locally convex topological vector space E.
Convex analysis then gives important tools for minimization problems. For
general background we refer to Barbu and Precupanu (1986). We give a
collection of results related to Fermat’s rule which are used throughout the
text.

For x ∈ dom(∂f) we have

(B.1) x∗ ∈ ∂f(x) ⇔ 〈x∗ | x〉 − f(x) = sup
y∈E

(〈x∗ | y〉 − f(y)).

In case x∗ = 0 this equivalence becomes

(B.2) 0 ∈ ∂f(x) ⇔ f(x) = inf
y∈E

f(y).

Thus x is a (global) minimizer of f if and only if Fermat’s rule

(B.3) 0 ∈ ∂f(x)

is valid. If f is furthermore lower semicontinuous, then by the Fenchel–
Moreau theorem we get the equivalence

(B.4) 0 ∈ ∂f(x) ⇔ x ∈ ∂f∗(0).

Thus in this case ∂f∗(0) represents the set of all minimizers of f .

Fermat’s rule for restricted minimization problems. Minimiza-
tion problems are seldom globally defined. Thus the question arises what
Fermat’s rule looks like in the case of restricted minimization problems

(B.5) inf
x∈A

f(x),

where A ⊆ E is a closed convex subset and f is a proper function on E. For
such a set A, 1A denotes the convex indicator function

(B.6) 1A(x) :=

{
0, x ∈ A,
∞, x /∈ A.

With this notation, (B.5) can be equivalently expressed by

(B.7) inf
x∈E

(f(x) + 1A(x)),
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and Fermat’s condition reads now

(B.8) 0 ∈ ∂(f(x) + 1A(x)).

In the context of restricted minimization problems we generally assume that
there exists at least one x ∈ A where f is continuous and finite. The domain
of continuity of f is defined by

(B.9) domc(f) := {x ∈ E | f is finite and continuous in x}.
Then the minimization problem (B.5) is called well-posed for A ⊆ E if

(B.10) domc(f) ∩A 6= ∅.
By the subdifferential sum formula as in Barbu and Precupanu (1986, Chap-
ter 3) the right hand side of (B.8) yields

(B.11) 0 ∈ ∂f(x) + ∂1A(x).

Thus x ∈ A is a minimizer of (B.5) if and only if there exists v ∈ ∂1A(x)
such that −v ∈ ∂f(x). For the indicator function 1A the definition of the
subdifferential yields

(B.12) ∂1A(x) = {x∗ ∈ E∗ | 〈x∗ | x− y〉 ≥ 0 for all y ∈ A}.
This is the normal cone NA(x) to the set A at a point x ∈ A; it consists of
all vectors which are perpendicular to half-spaces that support A at x. It is
a closed convex cone with vertex at the origin and we get the following two
properties:

• dom(∂1A) = A,
• ∂1A(x) = {0} for x ∈ intA.

Fermat’s rule under a functional side condition. Here we consider
a functional form of the preceding restricted minimization problem. Let again
E be a Banach space paired with its dual space E∗ by (E,E∗, 〈· | ·〉). Let
fi : E → R, i ∈ {0, . . . , n}, be convex functions and A ⊂ E be a closed
convex subset. Then we consider the minimization problem

(B.13) inf{f0(x) | x ∈ A, fi(x) ≤ 0, i ∈ {1, . . . , n}}.

Such problems can be solved by using the Lagrangian function

(B.14) L(x, λ1, . . . , λn) :=
n∑
i=0

λifi(x) + 1A(x).

Then the Kuhn–Tucker Theorem, stated in the version of Ioffe and Tikhomi-
rov (1979, Chapter 1.1.2), provides necessary conditions for x ∈ A to be a
solution to problem (B.13). If the Slater condition

(B.15) ∃x ∈ A such that fi(x) < 0 for all i ∈ {1, . . . , n}
is fulfilled, the above mentioned necessary conditions are sufficient as well.
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Theorem B.1 (Kuhn–Tucker Theorem). Let fi : E →R, i ∈ {0, . . . , n},
be convex functions and A ⊂ E be a convex set. If there is a y ∈ A which
solves problem (B.13), then there exist Lagrangian multipliers (λ0, . . . , λn) ∈
Rn+1 \ {0} such that

(B.16) L(y, λ0, . . . , λn) = min
x∈A
L(x, λ0, . . . , λn)

and

(B.17) λifi(y) = 0 for i ∈ {1, . . . , n}.
If the Slater condition (B.15) holds true, then λ0 6= 0 and we can assume
λ0 = 1. In the latter case conditions (B.16) and (B.17) are sufficient for y
to minimize (B.13).

Again we assume that the minimization problem is well-posed. In this
context this means

n⋂
i=0

domc(λifi) ∩A 6= ∅.

Thus Fermat’s rule and the subdifferential sum formula yield under the as-
sumption of the Slater condition that x ∈ A solves problem (B.13) if and
only if there exists a weight vector (λ1, . . . , λn) ∈ Rn \ {0} such that

0 ∈ ∂f0(x) +
n∑
i=1

λi∂fi(x) + ∂1A(x),

λifi(x) = 0 for i ∈ {1, . . . , n}.
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