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ON WEAK SOLUTIONS TO THE

LAGRANGE–D’ALEMBERT EQUATION

Abstract. We consider nonholonomic systems with collisions and propose
a concept of weak solutions to Lagrange–d’Alembert equations. Using this
concept we describe the dynamics of collisions. Collisions of a rotating ball
and a rough floor are considered.

1. The description of the problem. Let us start from the following
model example. Consider a solid ball B of radius r and mass m and let its
centre of mass coincide with the geometric centre S. The moment of inertia
relative to any axis passing through the point S is equal to J .

Here is an informal description of the problem. Being subjected to some
potential forces the ball moves in three-dimensional space and sometimes
collides with a floor. After the collision the ball bounces from the floor. The
floor and the ball are rough: the ball cannot slide on the floor. That is, at
the time of collision the ball obeys a nonholonomic constraint.

We wish to construct a theory of such a motion in the Lagrangian frame.
In particular, we wish to give a meaning to the term “superelastic collision”
in nonholonomic context.

In physical space we introduce a Cartesian coordinate system Oxyz. Let
(xS , yS , zS) be the coordinates of the point S.

Suppose that the plane Oxy is a solid rough floor. Then for all time t ≥ 0
we have zS ≥ r.

Denote by C ∈ B the contact point of the ball and the floor. The ball
cannot slide on the floor, so

(1.1) vC = vS + [ω, SC] = 0,
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where [·, ·] is vector product, vC is the velocity of the point C, and ω is the
angular velocity of the ball.

However the ball can rotate about the vertical axis at the contact point.

The configuration manifold of the system is M = R3 × SO(3), where
(xS , yS , zS) ∈ R3 and an element of SO(3) determines the orientation of the
ball.

In the general construction we suppose that the system is nonholonomic
not only at the time of collision but also outside the unilateral constraint.

Thus the general construction is as follows. We have a smooth config-
uration manifold M with dimM = m and a smooth submanifold N ⊂ M
with dimN = m− 1 (the floor: {zS = r}). We assume that both manifolds
carry some distributions.

In the example under consideration the manifold M does not carry a
nonholonomic constraint but the manifold N does: the constraint on N is
given by (1.1).

Let

x = (x1, . . . , xm)T ∈M
be local coordinates on M .

Denote the distribution on M by E(x) ⊆ TxM , x ∈ M , and let F (x) ⊆
TxN , x ∈ N , be the distribution on N ⊂M . Assume also that

F (x) ⊆ E(x), x ∈ N.

The dynamics of the system is described by a smooth Lagrangian L(x, ẋ).

From the viewpoint of the configuration manifold’s geometry, collisions
of rigid bodies are considered in [4].

The manifold M is endowed with the Riemannian metric generated by
the kinetic energy of the system. The evolution of the system is expressed
by a function t 7→ x(t) ∈M .

When the moving point x(t) collides with the submanifold N , i.e. x(τ)
∈ N for some τ , it bounces, obeying the law of reflection: “the angle of
incidence is equal to the angle of reflection”. This law is obtained by means
of a limit process where the constraint is replaced by a strong potential force
field [4].

These results have been obtained in the absence of nonholonomic con-
straints. We generalize them to the nonholonomic case.

Another concept of generalized solutions to the Lagrange–d’Alembert
equations in non-Lagrangian form has been investigated in [5].

In Section 5 we consider a rough ball colliding with a floor and obtain
formulas which in particular describe the following effect [3]: “A perfectly
rough ball which conserves kinetic energy behaves in such an unexpected
way that it is difficult to pick up after it has bounced twice upon the floor,
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and, more bizarre, it returns to the hand on being thrown to the floor in
such a way that it bounces from the underside of a table.”

2. Weak solutions to the Lagrange–d’Alembert equation. In this
section we assume that L : M × TM → R is a C∞-smooth function.

In the absence of a unilateral constraint N , a smooth function

x(t) = (x1, . . . , xm)T (t) ∈M, xi(·) ∈ C2[t1, t2],

is a motion of the system if and only if for any function

(2.1)
ψ(t) = (ψ1, . . . , ψm)T (t), ψk ∈ D(R),

suppψk ⊂ (t1, t2), ψ(t) ∈ E(x(t)),

it satisfies the Lagrange–d’Alembert equation

(2.2)

(
∂L

∂x
(x(t), ẋ(t))− d

dt

∂L

∂ẋ
(x(t), ẋ(t))

)
ψ(t) = 0, t ∈ [t1, t2],

and the equation of constraint

(2.3) ẋ(t) ∈ E(x(t)).

Definition 1. We shall say that a function x(·) ∈ H1[t1, t2] is a weak
solution to the system of Lagrange–d’Alembert equations and the equations
of constraint if the equation

(2.4)

t2�

t1

(
∂L

∂x
(x(t), ẋ(t))ψ(t) +

∂L

∂ẋ
(x(t), ẋ(t))ψ̇(t)

)
dt = 0

holds for any ψ that satisfies (2.1), and condition (2.3) holds for almost all
t ∈ [t1, t2].

In formula (2.4) we suppose that the functions L and x(t) are such that
the integrand belongs to L1(t1, t2).

Note that by the Sobolev embedding theorem, the space H1[t0, t1] is
contained in C[t0, t1].

In the case of a smooth function x(·), equations (2.4), (2.3) are equivalent
to (2.2), (2.3). This follows from integration by parts and the Lagrange–
d’Alembert principle [1], [7].

If the motion x(t) contains collisions it is piecewise differentiable: at
the time of collision its first derivative is not continuous and the second
derivative does not exist.

Equations (2.4) do not contain the second derivative of x(t). Therefore
the concept of weak solutions is a proper tool to describe the motion with
collisions.

Let us turn to the details.
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Consider a solution x(·) that collides with the wall at time τ ∈ (t1, t2),
i.e. x(τ) ∈ N . Correspondingly, one must put

(2.5) ψ(τ) ∈ F (x(τ)).

We suppose that x(·) ∈ C[t1, t2] and

x(t) =

{
x−(t), t ∈ [t1, τ ],

x+(t), t ∈ (τ, t2],

and x−(·) ∈ C2[t1, τ ], x+(·) ∈ C2(τ, t2].
By definition put

x+(τ) = lim
t→τ+

x+(t), ẋ+(τ) = lim
t→τ+

ẋ+(t).

We assume that these limits exist.
The solution x(·) obeys a nonholonomic constraint, that is,

(2.6) ẋ±(t) ∈ E(x±(t)).

If ẋ−(τ) = ẋ+(τ) then the derivative ẋ(τ) is defined and

(2.7) ẋ(τ) ∈ F (x(τ)).

2.1. Equations of collision. Introduce the notation

v± = ẋ±(τ) ∈ E(x(τ)).

Splitting the integral (2.4) into
	τ
t1

+
	t2
τ and integrating by parts, we

obtain
τ�

t1

(
∂L

∂x
(x(t), ẋ(t))− d

dt

∂L

∂ẋ
(x(t), ẋ(t))

)
ψ(t) dt = 0,(2.8)

t2�

τ

(
∂L

∂x
(x(t), ẋ(t))− d

dt

∂L

∂ẋ
(x(t), ẋ(t))

)
ψ(t) dt = 0,(2.9) (

∂L

∂ẋ
(x(τ), v+)− ∂L

∂ẋ
(x(τ), v−)

)
ψ(τ) = 0.(2.10)

Indeed, to obtain (2.10) one must take a sequence of functions ψ(·) with
support shrinking to the point τ . Then to obtain (2.8) one must employ
functions ψ with support lying in (t1, τ).

Equations (2.8), (2.9) express the fact that the functions x±(·) satisfy
the Lagrange–d’Alembert equations. By assumption they also satisfy the
equations of constraint (2.6). That is, before and after collisions the system
behaves in the standard way.

In particular, if the system is holonomic outside N (i.e. E(x) = TxM)
then in their domains the functions x±(·) satisfy the Lagrange equations

∂L

∂x
(x±(t), ẋ±(t))− d

dt

∂L

∂ẋ
(x±(t), ẋ±(t)) = 0.
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Equation (2.10) describes the behaviour of the system at the time of
collision (see also [6]). This equation is of main importance to us.

3. A lemma from vector algebra. The following lemma is mainly
used in Section 5. But we place it here because it provides an introduction
to the geometry of the next section.

Lemma 1. Let X = Rm be a Euclidean vector space with scalar product
given by its Gram matrix G. And let B be the matrix of a linear operator
(we denote operators and their matrices by the same letter)

B : X → Rm−s, rankB = m− s.
Let

X = kerB ⊕W, W ⊥ kerB,

be the orthogonal decomposition.

Then the square matrix of the orthogonal projector P : X → X onto W
is

(3.1) P = G−1BT (BG−1BT )−1B.

If an operator A : X → Rk is such that kerB ⊆ kerA then

(3.2) AP = A.

In particular, this implies that P (kerA) ⊆ kerA.

Proof. To obtain formula (3.1) fix an arbitrary vector x ∈ X and intro-
duce the linear function f(ξ) = (Px)TGξ. It is clear

kerB ⊆ ker f.

This implies that there is an operator λ : Rm−s → R such that (Px)TG =
λB and Px = G−1BTλT . It remains to find λT from the equation B(x−Px)
= 0.

To obtain formula (3.2) note that there exists an operator

γ : Rm−s → Rk

such that A = γB. Consequently, formula (3.2) follows from (3.1).

The lemma is proved.

4. The natural Lagrangian system. In applications, distributions
are determined by means of linear operators in the following way. Introduce
a linear operator

A(x) : TxM → Rm−l, dim imA(x) = m− l, x ∈M,

with a smooth mapping x 7→ A(x) such that E(x) = kerA(x) is an l-
dimensional distribution on M . To determine an s-dimensional distribution
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F (x) on N introduce a linear operator

B(x) : TxM → Rm−s, dim imB(x) = m− s, x ∈ N, F (x) = kerB(x).

The operator B(x) is also assumed to be a smooth function of x.
Recall also that kerB(x) ⊆ kerA(x) for x ∈ N.
The operators A,B are not uniquely defined: the same distributions can

be generated by other operators A,B.
To proceed with our analysis put

L = T (x, ẋ, ẋ)− V (x).

The form

T (x, ξ, η) = 1
2ξ
TG(x)η, ξ = (ξ1, . . . , ξm)T , η = (η1, . . . , ηm)T ,

is the kinetic energy of the system, the matrix G(x) ≡ GT (x) is positive
definite. It defines a Riemannian metric on M . The potential energy V is a
smooth function on M .

By (2.5) equation (2.10) reduces to

(4.1) T (x(τ), v+ − v−, u) = 0 for any u ∈ kerB(x(τ)).

From formula (4.1) it follows that the difference v+ − v− is perpendicular
to kerB(x(τ)).

Hypothesis 1. The vector v+ depends on v− by means of a linear op-
erator

v+ = R(x(τ))v−, R(x(τ)) : kerA(x(τ))→ kerA(x(τ)).

This hypothesis is not the unique possible: see for example [8, 2] for
nonlinear models of collision.

Hypothesis 2. The energy is conserved during collisions:

T (x(τ), v+, v+) = T (x(τ), v−, v−).

This is the simplest relation between energies before and after collision.
There are various possibilities to relax this assumption, for example, intro-
ducing the restitution coefficient (see Section 6).

Hypothesis 3. The system is reversible: if x(t) is a motion of the sys-
tem then x(−t) is also a motion. For a collision this implies that

v− = R(x(τ))v+.

The third hypothesis implies (R(x(τ)))2 = I. All these hypotheses are
consistent with Lagrangian theory of impact in holonomic systems [4].

Note that if dim kerB(x(τ)) = dim kerA(x(τ))−1 then the last hypoth-
esis is automatically satisfied.

It is reasonable to consider the decomposition

Tx(τ)M = kerB(x(τ))⊕W (x(τ)),
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where W (x(τ)) is the orthogonal complement of kerB(x(τ)), and let

P : Tx(τ)M →W (x(τ))

be the orthogonal projection.

Introduce the notation Pv = v⊥, (I − P )v = v‖ ∈ kerB(x(τ)) and the

norm |ξ|2 = T (x(τ), ξ, ξ). Then write

v± = v±⊥ + v±‖ .

Theorem 4.1. Under Hypotheses 1–3 the following formula holds:

(4.2) v+ = (I − 2P )v−.

Formula (4.2) gives a physically correct model of collision.

Namely, denote by x(t, x̂, v̂), t ∈ [t1, t2], a solution such that

x(t1, x̂, v̂) = x̂, ẋ(t1, x̂, v̂) = v̂

and for some x̂′, v̂′ and τ ′ ∈ (t1, t2) we have

lim
t→τ ′−

ẋ(t, x̂′, v̂′) /∈ Tx(τ ′,x̂′,v̂′)N, x(τ ′, x̂′, v̂′) ∈ N.

Theorem 4.2. The solution x(t, x̂, v̂) is a continuous function of t ∈
[t1, t2] for (x̂, v̂) close to (x̂′, v̂′), and there exists a continuous function

τ = τ(x̂, v̂), τ(x̂′, v̂′) = τ ′

such that the collision occurs at time τ , i.e. x(τ(x̂, v̂), x̂, v̂) ∈ N .

Theorem 4.2 follows directly from the implicit function theorem and from
the fact that the function x 7→ B(x) is smooth.

Proof of Theorem 4.1. Actually we deal with vectors v ∈ kerA(x(τ))
only. By Lemma 1 one has P (kerA(x(τ))) ⊆ kerA(x(τ)).

By Hypothesis 2 it follows that |v+| = |v−| and R(x(τ)) is an isometric
operator.

Since the difference v+ − v− = (v+‖ − v
−
‖ ) + (v+⊥ − v

−
⊥) is perpendicular

to kerB(x(τ)), we have

v+‖ = v−‖

so that

R(x(τ))|kerB(x(τ)) = I.

Introduce the space

H(x(τ)) = W (x(τ)) ∩ kerA(x(τ)).

Then kerA(x(τ)) = H(x(τ))⊕kerB(x(τ)) and R(x(τ))H(x(τ)) = H(x(τ)).

We finally have

(4.3) v+ = Qv−⊥ + v−‖ , Q = R(x(τ))|H(x(τ)) : H(x(τ))→ H(x(τ)).
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Hypothesis 3 implies that Q2 = I and consequently each eigenvalue of
Q is either equal to 1 or to −1.

If Qv−⊥ = v−⊥ then v−⊥ = 0. Indeed, the assumption implies v+ = Qv−⊥ +
v−‖ = v−. According to (2.7) one has v− ∈ kerB(x(τ)) so that v−⊥ = 0.

Consequently, Q = −I and v+ = −v−⊥ + v−‖ . In terms of the matrix P the

same is written in (4.2).
The theorem is proved.

5. Superelastic ball. Introduce the notation J ′ = J + r2m.
We use the Euler angles local coordinates in SO(3).
Consequently, the position of the ball is determined by the vector

x = (xS , yS , zS ,−ϕ, θ, ψ)T .

Why we are writing ϕ with a negative sign will be clear below.
Being subjected to some potential forces the ball can move in the half-

space {zS > r} and sometimes it can collide with the floor.
After the ball meets the floor (zS = r) it bounces. The point of contact

C ∈ B has zero velocity (1.1).
In [3] the following hypotheses for collision of a rough ball with surfaces

are used. The energy and the angular momentum are conserved during colli-
sions and the modulus of the vertical component of the ball center’s velocity
is also conserved. Those hypotheses are enough for a two-dimensional model.
Our case is substantially three-dimensional and this setting does not work.
But formulas of [3] turn out to be a special case of Theorem 5.1. For a similar
reason the result presented below does not follow from [6].

Let v±S , ω
± stand for the velocity of the point S and for the ball’s angular

velocity after (+) and before (−) collision respectively.
In the coordinates Oxyz,

v±S = (v±1 , v
±
2 , v

±
3 ), ω± = (ω±1 , ω

±
2 , ω

±
3 ).

Theorem 5.1. At the time of collision,

v+1 =
mr2 − J

J ′
v−1 +

2Jr

J ′
ω−2 , ω+

1 = −2rm

J ′
v−2 +

J −mr2

J ′
ω−1 ,

v+2 =
mr2 − J

J ′
v−2 −

2Jr

J ′
ω−1 , ω+

2 =
2rm

J ′
v−1 +

J −mr2

J ′
ω−2 ,

v+3 = −v−3 , ω+
3 = ω−3 .

Note that by these formulas the angular momentum about the point of
contact C is conserved during collision:

m[CS, v+S ] + Jω+ = m[CS, v−S ] + Jω−.

Due to (2.10) this is not a surprise.
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Proof of Theorem 5.1. Introduce the Euler angles so that at the time of
collision one has ϕ = ψ = 0, θ = π/2. Then it follows that ω = θ̇ex + ψ̇ez −
ϕ̇ey. Thus at the time of collision we have

v± = (v±1 , v
±
2 , v

±
3 , ω

±
1 , ω

±
2 , ω

±
3 )T .

The formula T = 1
2mv

2
S + 1

2Jω
2 implies G = diag(m,m,m, J, J, J). From

(1.1) one obtains

B =

1 0 0 0 −r 0

0 1 0 r 0 0

0 0 1 0 0 0

 , A = 0.

The matrix of the operator P is computed with the help of Lemma 1:

P =
1

J ′



J 0 0 0 −Jr 0

0 J 0 Jr 0 0

0 0 1 0 0 0

0 rm 0 r2m 0 0

−rm 0 0 0 r2m 0

0 0 0 0 0 0


.

Now Theorem 5.1 follows from (4.2).

Nonholonomic pendulum. Suppose that the ball moves in the standard
gravity field g = −gez.

Throw the ball to the floor so that

v−S = −vex − uez, ω− =
rmv

J
ey, u, v > 0.

From Theorem 5.1 it follows that

v+S = −v−S , ω+ = −ω−.
Thus after the ball bounces from the floor, its center S moves along the
same parabola just in the opposite direction. Since the angular velocity also
changes its direction, the motion is periodic.

6. A remark on inelastic collision. Analogously it is possible to
construct models of inelastic collision.

For example, following Newton’s law of restitution, we propose the fol-
lowing hypothesis:

(6.1) v+ = −µv−⊥ + v−‖ ,

where µ ∈ [0, 1] is the restitution coefficient. This hypothesis is consistent
with (4.1).
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For a plastic collision we have µ = 0, and for a superelastic one we have
µ = 1. In terms of the operator P formula (6.1) has the form

v+ = (I − (1 + µ)P )v−.

Under this hypothesis the corresponding formulas for the ball colliding
with the floor take the form

v+1 =
mr2 − µJ

J ′
v−1 +

Jr(1 + µ)

J ′
ω−2 , ω+

1 =−rm(1 + µ)

J ′
v−2 +

J − µmr2

J ′
ω−1 ,

v+2 =
mr2 − µJ

J ′
v−2 −

Jr(1 + µ)

J ′
ω−1 , ω+

2 =
rm(1 + µ)

J ′
v−1 +

J − µmr2

J ′
ω−2 ,

v+3 =−µv−3 , ω+
3 = ω−3 .
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