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THE MARTINGALE METHOD OF SHORTFALL RISK
MINIMIZATION IN A DISCRETE TIME MARKET

Abstract. The shortfall risk minimization problem for the investor who
hedges a contingent claim is studied. It is shown that in case the nonneg-
ativity of the final wealth is not imposed, the optimal strategy in a finite
market model is obtained by super-hedging a contingent claim connected
with a martingale measure which is a solution of an auxiliary maximization
problem.

1. Introduction. In the paper we consider the problem of minimiza-
tion of the risk of loss of the investor who hedges a contingent claim and
starts with an initial capital which is smaller than the initial cost of the
super-hedging strategy. This is an important problem, especially in incom-
plete markets where in general super-hedging requires a large initial capital.
One of the most natural measures of risk is the expected shortfall which is
defined as the expected value, with respect to an objective probability, of
the positive part of the difference between the value of the contingent claim
and the final wealth of the investor. The shortfall risk minimization in a
continuous time model was studied e.g. in [4]. In this paper a discrete time
market is considered. One can distinguish two cases: when the final wealth
of the investor is nonnegative and when this condition is not imposed. In the
constrained case the dynamic problem can be reduced to the static one and
solved via an auxiliary dual problem. This approach was presented in [5],
where the convex duality method of [1] was used. In the unconstrained case
the problem of shortfall risk minimization can be solved by dynamic pro-
gramming (see [2], [3], [8] and [9]).
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In this paper it is shown that for a finite market model the static problem
of minimization can be solved via an auxiliary problem of maximization and
the maximum is searched in the set of all martingale measures.

This paper generalizes some results of [3], [8] and [11].
In Section 2 we present the basic definitions and facts in a discrete time

market model. In Section 3 the results in the constrained case obtained in
[5] are briefly recalled. Then, these results are used to obtain the proper
auxiliary maximization problem and to solve the shortfall risk minimization
problem in the unconstrained case.

2. The model. Let (Ω,F , P ) be a probability space, T a positive nat-
ural number and F = {Ft, t = 0, . . . , T} a family of σ-algebras such that
F0 = {∅, Ω}, Ft ⊆ Ft+1 for t = 0, . . . , T − 1 and FT = F .

Throughout this paper, equalities and inequalities depending on ω ∈ Ω
hold P -almost surely unless stated otherwise. Moreover, we assume that if
Ω is finite then F consists of all subsets of Ω and P ({ω}) > 0 for all ω ∈ Ω.

We consider a market in which one can trade in one stock and in the
bank account with interest rate for simplicity equal to 0. The generalization
to the case of an arbitrary nonnegative interest rate is straightforward. We
assume that all assets are infinitely divisible.

The stock price movement is modeled by a process {St, t = 0, . . . , T}
where St denotes the price of the stock at time t, for t = 0, . . . , T . We assume
that St is Ft-measurable and positive P -almost surely for t = 0, . . . , T .

A contingent claim is a nonnegative, random variable H ∈ L1(P ).
A trading strategy β = {βt}t=0,...,T−1 is a process adapted to the filtration

{Ft, t = 0, . . . , T − 1} where the random variable βt represents the number
of shares of the stock held by the seller of the contingent claim at time t
after a possible transaction at that time instance.

For a trading strategy β and an initial capital x > 0 we define the wealth
process V (x, β) as follows:

V0(x, β) = x,

Vt+1(x, β) = x+

t∑
n=0

βn(Sn+1 − Sn) for t = 0, . . . , T − 1.

This means that at every trading date, sales must finance purchases, that is,
the strategy is self-financing.

Denote by B the set of all trading strategies.
A probability measure Q such that the discounted stock price process is

a martingale under Q is called a martingale measure. We assume that in our
market model there exists at least one equivalent martingale measure, which
means that in this model there is no arbitrage opportunity (see [10]).
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3. The shortfall risk minimization. We define the super-replication
cost V ∗ of a contingent claim H by

V ∗ = inf{x ∈ R : VT (x, β) ≥ H for some β ∈ B}.

Denote L∞(Ω,F , P ) by L∞(P ) and let Q be the set of probability measures
defined as follows:

Q =

{
Q� P :

dQ

dP
∈ L∞(P ) and Q is a martingale measure

}
.

By Theorem 3.1 in [6] the super-replication cost V ∗ of the contingent claim
is given by the formula

V ∗ = sup
Q∈Q

EQ(H).

Remark 3.1. It is easily seen that if Ω is finite then for all β ∈ B the
wealth process V (x, β) is a martingale under every Q ∈ Q.

Let x ∈ R denote an initial capital of the investor. We say that a strategy
β ∈ B is a super-hedging strategy for a contingent claim H at the initial
capital x ∈ R if VT (x, β) ≥ H.

For the initial capital x ∈ R and a strategy β ∈ B the expected shortfall
is defined as the expected value under P of (H − VT (x, β))+.

From now on we assume that 0 < x < V ∗.
Our aim is to minimize the shortfall risk, that is, to minimize the expected

shortfall.

3.1. Minimization of shortfall risk with the nonnegativity con-
dition. Let B(x) = {β ∈ B : VT (x, β) ≥ 0}. We consider the following
optimization problem:

(3.1) inf
β∈B(x)

EP ((H − VT (x, β))+).

Let X (x) = {X ∈ L1(P ) : 0 ≤ X ≤ H, supQ∈QE
Q(X) ≤ x}. The next

proposition is a consequence of Proposition 4.2 in [5] and reduces the dynamic
problem (3.1) to a static one.

Proposition 3.2. Suppose that X̂ ∈ X(x) is a solution to the static
problem

(3.2) inf
X∈X (x)

EP (H −X).

Then there exists a super-hedging strategy β̂ ∈ B(x) for X that solves the
dynamic problem (3.1). Moreover, EP ((H − VT (x, β))+) = EP (H − X̂).
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Set

Z =

{
Z ∈ L∞(P ) :

Z ≥ 0, EP (Z) ≤ 1,

EP (ZX) ≤ EP (X) for all X ∈ L1
+(P )

}
,

G =

{
G ∈ L1

+(P ) :
EP (G) ≤ 1, EP (GH) ≤ V ∗,
EP (GX) ≤ x for all x > 0 and X ∈ X (x)

}
(cf. [5] where the sets G and Z are defined for a more general problem).

Lemma 3.3. We have Z = {Z ∈ L∞(P ) : 0 ≤ Z ≤ 1}.

Proof. It is easily seen that {Z ∈ L∞(P ) : 0 ≤ Z ≤ 1} ⊆ Z. Conversely,
let Z ∈ Z and A = {Z > 1}. It is clear that 1A ∈ L1

+(P ) and consequently
EP (Z1A) ≤ EP (1A). Moreover, by the definition of A we have EP (Z1A) ≥
EP (1A) and thus EP (Z1A) = EP (1A). Consequently, by the definition of A
we have P (A) = 0. Therefore Z ⊆ {Z ∈ L∞(P ) : 0 ≤ Z ≤ 1}.

Consider the following auxiliary problems:

sup{EP (H(Z ∧ yG))− xy : Z ∈ Z, G ∈ G, y ≥ 0},(3.3)

sup{EP (H(1 ∧ yG))− xy : G ∈ G, y ≥ 0}.(3.4)

By the inequality H ≥ 0 and Lemma 3.3 if the triple (Ẑ, Ĝ, ŷ) is a solution
of the problem (3.3) then so is (1, Ĝ, ŷ). Therefore using Theorem 4.11 in [5]
we have the following fact:

Theorem 3.4. Let (Ĝ, ŷ) be an optimal pair for problem (3.4).

(i) There exists a [0, 1]-valued random variable C such that the random
variable X̂ = H1{ŷĜ<1}+HC1{ŷĜ=1} is a solution to problem (3.2).
Moreover, the supremum in (3.4) equals the infimum in (3.2).

(ii) If β is a super-hedging strategy for X̂ at the initial capital x then β
is a solution to (3.1).

A consequence of Remark 4.6 in [5] is the following lemma:

Lemma 3.5. Theorem 3.4 holds if we replace G by any set G′ satisfying
the following conditions:

(i) G′ is convex, closed under P -a.s. convergence, bounded in L1(P ) and
it includes the convex hull of the densities with respect to P of all
elements of Q, that is, conv{dQ/dP : Q ∈ Q} ⊆ G′.

(ii) If a sequence {Gn}∞n=1 from G′ converges to some random variable
G,P -a.s. on {H > 0} and if G = 0 on the set {H = 0}, then G ∈ G′.

By Lemma 3.5 we have the following fact:
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Lemma 3.6. Assume that Ω is finite. Then Theorem 3.4 holds if we
replace G by the set {dQ/dP : Q ∈ Q}.

Proof. Set

G′ = conv

({
dQ

dP
: Q ∈ Q

}
∪
{
dQ

dP
1{H>0} : Q ∈ Q

})
.

It is clear that G′ is convex and conv{dQ/dP : Q ∈ Q} ⊆ G′. Since Ω is
finite, G′ is bounded in L1(P ). Moreover, the same argument and Theorem
17.2 in [7] imply that G′ is closed under P -a.s. convergence. It is easily
seen that the set {dQ/dP : Q ∈ Q} is convex. Hence for each G ∈ G′
there exists Q(G) ∈ Q such that G = dQ(G)/dP on {H > 0}. Moreover,
since Ω is finite, each sequence in {dQ/dP : Q ∈ Q} has a subsequence
converging P -a.s. to an element of {dQ/dP : Q ∈ Q}. Therefore, G′ satisfies
conditions (i) and (ii) in Lemma 3.5, and consequently Theorem 3.4 holds
with G replaced by G′. Then, since for each G ∈ G′ there exists Q(G) ∈ Q
such that G = dQ(G)/dP on {H > 0}, it is clear that Theorem 3.4 holds if
we replace G′ by {dQ/dP : Q ∈ Q}.

3.2. Minimization of shortfall risk without the nonnegativity
condition. Now we consider the following optimization problem:

(3.5) inf
β∈B

EP ((H − VT (x, β))+).

We assume throughout this subsection that Ω is finite.

Remark 3.7. It is easily seen that a strategy β̂ solves problem (3.5) if
and only if for all l ∈ R it solves problem (3.5) with the contingent claim
H + l and the initial capital x+ l, which means that

EP ((H + l − VT (x+ l, β̂))+) = inf
β∈B

EP ((H + l − VT (x+ l, β))+).

Remark 3.7 easily implies the following fact:

Lemma 3.8. If a strategy β̂ ∈ B(x) is a solution to problems (3.1) and
(3.5) then for all l ∈ R+ it solves problem (3.1) with the contingent claim
H + l and the initial capital x+ l, which means that

EP ((H + l − VT (x+ l, β̂))+)

= inf
β∈B(x+l)

EP ((H + l − VT (x+ l, β))+) for all l ∈ R+.

Proof. Let l ∈ R+. It is clear that β̂ ∈ B(x+ l). Moreover, by Remark 3.7
it solves the problem infβ∈B E

P ((H + l− VT (x+ l, β))+). Consequently, the
inclusion B(x+ l) ⊆ B implies that β̂ solves the problem

inf
β∈B(x+l)

EP ((H + l − VT (x+ l, β))+).
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Let X(x,H) denote the set of all random variables satisfying the inequal-
ities X ≤ H and supQ∈QE

Q(X) ≤ x.
As in the case when the nonnegativity of the final wealth is imposed, we

can reduce the dynamic problem (3.5) to a static one (see also Lemma 4.3
in [3] and Proposition 4 in [11] for the case of the complete market model).

Lemma 3.9. Suppose that X̂ ∈ X(x,H) is a solution to the static problem

(3.6) inf
X∈X(x,H)

EP (H −X).

Then there exists a super-hedging strategy for X̂ at the initial capital x.
Moreover, if β̂ ∈ B is such a super-hedging strategy then β̂ solves the dynamic
problem (3.5) and we have EP ((H − VT (x, β̂))+) = EP (H − X̂).

Proof. Let β ∈ B. By Remark 3.1, min{VT (x, β), H} ∈ X(x,H), and
since X̂ is a solution to the static problem (3.6) we obtain

(3.7) EP ((H − VT (x, β))+) ≥ EP (H − X̂).

Since Ω is finite, by the inequality infQ∈QE
P (X̂) ≤ x and Theorem 3.1 in

[6] it is easily seen that there exists a super-hedging strategy β̂ ∈ B for X̂
at the initial capital x. It is clear that EP ((H − VT (x, β̂))+) ≤ E(H − X̂).
Thus, by (3.7) the strategy β̂ solves the dynamic problem (3.5). Moreover,
it is clear that EP ((H − VT (x, β̂))+) = E(H − X̂).

It is easily seen that the following lemma holds:

Lemma 3.10. Let l ∈ R. A random variable X̂ is a solution to problem
(3.6) if and only if the random variable X̂ + l is a solution to the problem
infX∈X(x+l,H+l)E

P (H + l −X). Moreover,

inf
X∈X(x,H)

EP (H −X) = inf
X∈X(x+l,H+l)

EP (H + l −X).

For every Q ∈ Q let GQ = dQ/dP , that is, GQ(ω) = Q({ω})/P ({ω})
for each ω ∈ Ω. Moreover, for all Q ∈ Q let yQ = min{1/GQ(ω) : ω ∈ Ω,
Q({ω}) > 0}.

Consider the following optimization problem:

(3.8) sup{EP (H(1 ∧ yGQ))− xy : Q ∈ Q, y ≥ 0}.

Remark 3.11. Let (Q̃, ỹ) be an optimal pair for problem (3.8). By
Lemma 3.6 we can replace the pair (Ĝ, ŷ) and problem (3.4) in Theorem 3.4
respectively by the pair (G

Q̃
, ỹ) and problem (3.8).

Consider the following maximization problem:

(3.9) sup
Q∈Q

yQ(E
Q(H)− x).
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Lemma 3.12. Let X ∈ X(x,H) and Q ∈ Q. Then EP (H − X) ≥
yQ(E

Q(H)− x).
Proof. By the inequality X ≤ H and the definitions of GQ and yQ we

have

EP (H −X) ≥ EP ((H −X)1{ω∈Ω:Q({ω})>0})

= EQ
(

1

GQ
(H −X)1{ω∈Ω:Q({ω})>0}

)
≥ EQ(yQ(H −X)1{ω∈Ω:Q({ω})>0}) = yQE

Q(H −X).

Consequently, by the definition of X(x,H) we obtain

EP (H −X) ≥ yQ(EQ(H)− x).
Since in the proof of the next theorem the problem of shortfall risk min-

imization will be considered when some nonnegative capital l is added both
to x and H, a generalization of the set X (x) is needed.

For all l ∈ R+ let

Xl(x) =
{
X ∈ L1(P ) : 0 ≤ X ≤ H + l, sup

Q∈Q
EQ(X) ≤ x+ l

}
.

Theorem 3.13. There exists a measure Q̂ ∈ Q which is a solution to
problem (3.9) such that:

(i) there exists a random variable C such that C ≤ 1 and the random
variable

X̂ = H1
{y

Q̂
dQ̂
dP
<1}

+HC1
{y

Q̂
dQ̂
dP

=1}

is a solution to problem (3.6). Moreover, the supremum in (3.9) equals
the infimum in (3.6).

(ii) If β̂ is a super-hedging strategy for X̂ at the initial capital x then β̂
is a solution to (3.5).

Proof. Let x > 0 be the initial capital and let X̂(x,H) denote the set of
all random variables which are solutions of problem (3.6). Define

v = inf
X∈X̂(x,H)

min
ω∈Ω

X(ω).

Since Ω is finite we have v > −∞. Consider a sequence {ln}∞n=1 of real
numbers such that ln > −min{v, 0} for all n ∈ N and limn→∞ ln =∞. Since
Ω is finite it is easily seen that there exist sequences {Q̃n}∞n=1 and {ỹn}∞n=1

such that Q̃n ∈ Q, ỹn ≥ 0 and the pair (G
Q̃n
, ỹn) is a solution to the problem

sup{EP ((H + ln)(1 ∧ yGQ))− (x+ ln)y : Q ∈ Q, y ≥ 0}.
Consequently, since ln ≥ 0 for all n ∈ N, Theorem 3.4 and Remark 3.11

imply that there exists a sequence {Cn}∞n=1 of [0, 1]-valued random variables
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such that for all n ∈ N the random variable

X̃n = (H + ln)1{ỹnGQ̃n
<1} + (H + ln)Cn1{ỹnGQ̃n

=1}

is a solution to problem (3.2) with the contingent claim H+ln and the initial
capital x+ ln, that is, X̃n ∈ Xln(x) and

(3.10) EP (H + ln − X̃n) = inf
X∈Xln (x)

EP (H + ln −X).

Let n ∈ N. It is clear that X̃n ∈ X(x + ln, H + ln). From the inequality
ln > −min{v, 0} and Lemma 3.10 it follows that every random variable
X ∈ X(x+ ln, H + ln) which is a solution to the static problem

inf
X∈X(x+ln,H+ln)

EP (H + ln −X)

is strictly positive and therefore it is also a solution to problem (3.2) with
the contingent claim H + ln and the initial capital x+ ln. This implies that

(3.11) EP (H + ln − X̃n)

= inf
X∈X(x+ln,H+ln)

EP (H + ln −Xn) for all n ∈ N.

For all n ∈ N define the random variable X̂n by X̂n = X̃n − ln. It is clear
that X̂n ∈ X(x,H) for all n ∈ N. Moreover, by Lemma 3.10 and (3.11),

(3.12) EP (H − X̂n) = inf
X∈X(x,H)

EP (H −X) for all n ∈ N.

By Theorem 3.4 and Remark 3.11 it follows that

EP ((H + ln)(1 ∧ ỹnGQ̃n
))− (x+ ln)ỹn = inf

X∈Xln (x)
EP (H + ln −X).

Thus by (3.10) and (3.11) we have

EP ((H + ln)(1 ∧ ỹnGQ̃n
))− (x+ ln)ỹn = inf

X∈X(x+ln,H+ln)
EP (H + ln −X).

The last equality, Lemma 3.10 and the definition of X(x,H) imply that

(3.13) EP ((H + ln)(1 ∧ ỹnGQ̃n
))− (x+ ln)ỹn

= inf
X∈X(x,H)

EP (H −X) ≥ 0 for all n ∈ N.

By (3.13) and since ln > 0 for each n ∈ N, we have

0 ≤ EP (H)− xỹn + ln(1− ỹn) for each n ∈ N,

and since x > 0 and ln > 0 for all n ∈ N, it follows that there exists a
number y∗ such that 0 ≤ ỹn < y∗ for all n ∈ N.

By the definition of X(x,H) and (3.12) there exists x∗ ∈ R such that
x∗ < X̂n ≤ H for all n ∈ N. Moreover, it is easily seen that 0 ≤ G

Q̃n
≤
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1/minω∈Ω P (ω) for all n ∈ N. Therefore, since Ω is finite, there exist subse-
quences {G

Q̃nk
}∞k=1,{X̂nk

}∞k=1,{ỹnk
}∞k=1 of {G

Q̃n
}∞n=1,{X̂n}∞n=1, {ỹn}∞n=1 re-

spectively, such that limk→∞GQ̃nk
= Ĝ, limk→∞ ỹnk

= ŷ, limk→∞ X̂nk
= X̂

for some random variable Ĝ, ŷ ∈ R+ and X̂ ∈ X(x,H).
It is clear that

(3.14) EP ((H + ln)(1 ∧ ỹnGQ̃n
))− (x+ ln)ỹn

= EP (H(1 ∧ ỹnGQ̃n
))− xỹn + ln(E

P (1 ∧ ỹnGQ̃n
)− ỹn) for all n ∈ N.

Thus, by (3.13), (3.14) and since limn→∞ ln =∞, we get

lim
k→∞

(EP (1 ∧ ỹnk
G̃
Q̃nk

)− ỹnk
) = 0.

Consequently,

(3.15) ŷĜ ≤ 1.

It is easily seen that there exists Q̂ ∈ Q such that Ĝ = G
Q̂
. Moreover, we

have EP (1 ∧ ỹnG̃Q̃n
)− ỹn ≤ 0 for each n ∈ N. Thus, by (3.13) and (3.14),

(3.16) ŷ(EQ̂(H)− x) ≥ inf
X∈X(x,H)

EP (H −X).

From the inequality x < V ∗ it follows easily that infX∈X(x,H)E
P (H − X)

> 0, and thus (3.16) implies that EQ̂(H) − x > 0. Thus, by (3.15), (3.16)
and the definition of y

Q̂
we get

(3.17) y
Q̂
(EQ̂(H)− x) ≥ ŷ(EQ̂(H)− x) ≥ inf

X∈X(x,H)
EP (H −X).

Consequently, by (3.17), Lemma 3.12 and the inequality EQ̂(H)− x > 0 we
obtain ŷ = y

Q̂
and

y
Q̂
(EQ̂(H)− x) = sup

Q∈Q
yQ(E

Q(H)− x) = inf
X∈X(x,H)

EP (H −X).

Thus, the measure Q̂ ∈ Q is a solution to problem (3.9) and the supremum
in (3.9) equals the infimum in (3.6). Moreover, from the definition of X̂ it
follows easily that there exists a random variable C such that C ≤ 1 and
X̂ = H1{y

Q̂
G

Q̂
<1} +HC1{y

Q̂
G

Q̂
=1}, and (3.12) implies that X̂ is a solution

to the static problem (3.6). This finishes the proof of (i).
Item (ii) is a consequence of Lemma 3.9.

The next proposition easily implies some of the results obtained in a
complete market model (see [3], [11]).
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Proposition 3.14. Let Q̂∈Q and let X = H1{y
Q̂
G

Q̂
<1}+HC1{y

Q̂
G

Q̂
=1}

where C is a random variable such that EQ̂(X̂) = supQ∈QE
Q(X̂) = x and

C ≤ H. Then X̂ ∈ X(x,H) and X̂ is a solution to problem (3.6). Moreover,
if β̂ ∈ B is a super-hedging strategy for the contingent claim X̂ then β̂ is a
solution to problem (3.5).

Proof. It is clear that X̂ ∈ X(x,H). To prove that X̂ is a solution to
problem (3.6) it is sufficient to show that EP (X̂ − X) ≥ 0 for all X ∈
X(x,H). Let X ∈ X(x,H). We have

EP (X̂ −X) = EP ((H −X)1{y
Q̂
G

Q̂
<1}) + EP ((X̂ −X)1{y

Q̂
G

Q̂
=1})

≥ y
Q̂
EQ̂(X̂ −X) = y

Q̂
(x− EQ̂(X))

≥ y
Q̂

(
x− sup

Q∈Q
EQ(X)

)
= 0.

The rest of the assertion is a consequence of Lemma 3.9.

Remark 3.15. Since the super-replication cost of the contingent claim
H is equal to supQ∈QEQ(H), from Theorem 3.13 it follows immediately that
for an initial capital x ∈ R we have

inf
β∈B

EP ((H − VT (x, β))+) = sup
Q∈Q

yQ((E
Q(H)− x)+).

3.3. The binomial model. Now we will consider the problem of min-
imizing the shortfall risk in a binomial market. This model was considered
in [2], [3], [8] and these papers use dynamic programming. It can be noticed
that in the case of complete information about the distribution of the stock
price at each time, the solution of the shortfall risk minimization problem in
the binomial model follows easily from Theorem 3.13.

We assume that the stock price satisfies the recursive formula

St+1 = (1 + γt+1)St, t = 0, . . . , T − 1, S0 > 0,

where {γt}Tt=1 is a sequence of i.i.d. random variables such that P (γt = b)
= p = 1−P (γt = a) for each t = 1, . . . , T where p ∈ (0, 1) and 0 < a < 1 < b
are given constants.

In this subsection we set Ft = σ(γu, 1 ≤ u ≤ t) for t = 0, . . . , T and
assume that H is a function of ST .

It is easily seen that in this model there exists a unique martingale mea-
sure Q∗ such that q∗ = Q∗(γt = b) = −a

b−a = 1−Q∗(γt = a) for t = 1, . . . , T .
Let V ∗n = EQ

∗
(H(ST ) | Fn) for n = 0, . . . , T . It is easily seen that V ∗n is

a function of Sn.

Theorem 3.16. Consider a contingent claim H in the binomial market
model.
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If p ≥ q∗ then

inf
β∈B

EP ((H − VT (x, β))+) =
(

1− p
1− q∗

)T
(V ∗ − x)

and an optimal strategy is given by

β̂t =
V ∗t+1(St(1 + b))− Vt(x, β̂)

Stb
for t = 0, . . . , T − 1.

If p < q∗ then

inf
β∈B

EP ((H − VT (x, β))+) =
(
p

q∗

)T
(V ∗ − x)

and an optimal strategy is given by

β̂t =
V ∗t+1(St(1 + a))− Vt(x, β̂)

Sta
for t = 0, . . . , T − 1.

This theorem is an easy consequence of Theorem 3.13. For the proof using
dynamic programming see [8].
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